Datasets:
Create create_dict.py
Browse files- create_dict.py +53 -0
create_dict.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
XLS_FOLDER = "basic_korean_dict"
|
6 |
+
OUTPUT_FOLDER = "data"
|
7 |
+
SORT_KEY = ["어휘", "표제어"]
|
8 |
+
NUM_PROC = 32
|
9 |
+
hf_access_token = ""
|
10 |
+
hf_ID = ""
|
11 |
+
ds_name = "basic_korean_dict"
|
12 |
+
|
13 |
+
|
14 |
+
def flatten_examples(example: dict) -> dict:
|
15 |
+
text_line = ""
|
16 |
+
for key in example:
|
17 |
+
# some columns are empty or invalid
|
18 |
+
if key in ["의미 번호", "동형어 번호"]:
|
19 |
+
continue
|
20 |
+
if (single_column := example[key]) == None:
|
21 |
+
continue
|
22 |
+
# certain columns contain extraneous content
|
23 |
+
if key == "원어·어종":
|
24 |
+
single_column = single_column.removeprefix("안 밝힘 ")
|
25 |
+
text_line += key + ": " + single_column.strip() + ", "
|
26 |
+
return {"text": text_line.removesuffix(", ")}
|
27 |
+
|
28 |
+
|
29 |
+
if os.path.exists(XLS_FOLDER):
|
30 |
+
XLS_FOLDER = os.path.abspath(XLS_FOLDER)
|
31 |
+
xls_list = os.listdir(XLS_FOLDER)
|
32 |
+
else:
|
33 |
+
raise ValueError("input folder does not exist")
|
34 |
+
|
35 |
+
combined_df = pd.DataFrame()
|
36 |
+
length_check = 0
|
37 |
+
for xls in sorted(xls_list):
|
38 |
+
xls_path = os.path.join(XLS_FOLDER, xls)
|
39 |
+
if os.path.exists(xls_path):
|
40 |
+
# print(xls_path)
|
41 |
+
df = pd.read_excel(xls_path, header=0, index_col=None)
|
42 |
+
length_check += len(df)
|
43 |
+
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
44 |
+
|
45 |
+
assert len(combined_df) == length_check
|
46 |
+
ds = datasets.Dataset.from_pandas(combined_df)
|
47 |
+
for key in SORT_KEY:
|
48 |
+
if key in ds.column_names:
|
49 |
+
sorted_ds = ds.sort(key)
|
50 |
+
|
51 |
+
processed_ds = sorted_ds.map(flatten_examples, num_proc=NUM_PROC).select_columns("text")
|
52 |
+
|
53 |
+
processed_ds.push_to_hub(repo_id=ds_name, token=hf_access_token)
|