Datasets:
Added load script
Browse files- mt_geneval.py +235 -0
mt_geneval.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""MT-GenEval: A Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation"""
|
16 |
+
|
17 |
+
import re
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
from datasets.utils.download_manager import DownloadManager
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{currey-etal-2022-mtgeneval,
|
27 |
+
title = "{MT-GenEval}: {A} Counterfactual and Contextual Dataset for Evaluating Gender Accuracy in Machine Translation",
|
28 |
+
author = "Currey, Anna and
|
29 |
+
Nadejde, Maria and
|
30 |
+
Pappagari, Raghavendra and
|
31 |
+
Mayer, Mia and
|
32 |
+
Lauly, Stanislas, and
|
33 |
+
Niu, Xing and
|
34 |
+
Hsu, Benjamin and
|
35 |
+
Dinu, Georgiana",
|
36 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
37 |
+
month = dec,
|
38 |
+
year = "2022",
|
39 |
+
publisher = "Association for Computational Linguistics",
|
40 |
+
url = ""https://arxiv.org/pdf/2211.01355.pdf,
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
_DESCRIPTION = """\
|
45 |
+
The MT-GenEval benchmark evaluates gender translation accuracy on English -> {Arabic, French, German, Hindi, Italian,
|
46 |
+
Portuguese, Russian, Spanish}. The dataset contains individual sentences with annotations on the gendered target words,
|
47 |
+
and contrastive original-invertend translations with additional preceding context.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://github.com/amazon-science/machine-translation-gender-eval"
|
51 |
+
|
52 |
+
_LICENSE = "Creative Commons Attribution Share Alike 3.0"
|
53 |
+
|
54 |
+
_URL = "https://github.com/amazon-science/machine-translation-gender-eval/raw/main/data"
|
55 |
+
|
56 |
+
_CONFIGS = ["sentences", "context"]
|
57 |
+
_LANGS = ["ar", "fr", "de", "hi", "it", "pt", "ru", "es"]
|
58 |
+
|
59 |
+
r = re.compile('<p>(.+?)</p>')
|
60 |
+
|
61 |
+
class MTGenEvalConfig(datasets.BuilderConfig):
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
data_type: str,
|
65 |
+
source_language: str,
|
66 |
+
target_language: str,
|
67 |
+
**kwargs
|
68 |
+
):
|
69 |
+
"""BuilderConfig for MT-GenEval.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
source_language: `str`, source language for translation.
|
73 |
+
target_language: `str`, translation language.
|
74 |
+
**kwargs: keyword arguments forwarded to super.
|
75 |
+
"""
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
self.data_type = data_type
|
78 |
+
self.source_language = source_language
|
79 |
+
self.target_language = target_language
|
80 |
+
|
81 |
+
|
82 |
+
class WmtVat(datasets.GeneratorBasedBuilder):
|
83 |
+
|
84 |
+
VERSION = datasets.Version("1.0.0")
|
85 |
+
|
86 |
+
BUILDER_CONFIGS = [
|
87 |
+
MTGenEvalConfig(
|
88 |
+
name=f"{cfg}_en_{lang}",
|
89 |
+
data_type=cfg,
|
90 |
+
source_language="en",
|
91 |
+
target_language=lang,
|
92 |
+
) for lang in _LANGS for cfg in _CONFIGS
|
93 |
+
]
|
94 |
+
|
95 |
+
def _info(self):
|
96 |
+
if self.config.name.startswith("sentences"):
|
97 |
+
features = datasets.Features(
|
98 |
+
{
|
99 |
+
"orig_id": datasets.Value("int32"),
|
100 |
+
"source_feminine": datasets.Value("string"),
|
101 |
+
"reference_feminine": datasets.Value("string"),
|
102 |
+
"source_masculine": datasets.Value("string"),
|
103 |
+
"reference_masculine": datasets.Value("string"),
|
104 |
+
"source_feminine_annotated": datasets.Value("string"),
|
105 |
+
"reference_feminine_annotated": datasets.Value("string"),
|
106 |
+
"source_masculine_annotated": datasets.Value("string"),
|
107 |
+
"reference_masculine_annotated": datasets.Value("string"),
|
108 |
+
"source_feminine_keywords": datasets.Value("string"),
|
109 |
+
"reference_feminine_keywords": datasets.Value("string"),
|
110 |
+
"source_masculine_keywords": datasets.Value("string"),
|
111 |
+
"reference_masculine_keywords": datasets.Value("string")
|
112 |
+
}
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
features = datasets.Features(
|
116 |
+
{
|
117 |
+
"orig_id": datasets.Value("int32"),
|
118 |
+
"context": datasets.Value("string"),
|
119 |
+
"source": datasets.Value("string"),
|
120 |
+
"reference_original": datasets.Value("string"),
|
121 |
+
"reference_flipped": datasets.Value("string")
|
122 |
+
}
|
123 |
+
)
|
124 |
+
return datasets.DatasetInfo(
|
125 |
+
description=_DESCRIPTION,
|
126 |
+
features=features,
|
127 |
+
homepage=_HOMEPAGE,
|
128 |
+
license=_LICENSE,
|
129 |
+
citation=_CITATION,
|
130 |
+
)
|
131 |
+
|
132 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
133 |
+
"""Returns SplitGenerators."""
|
134 |
+
base_path = Path(_URL) / self.config.data_type
|
135 |
+
filepaths = {}
|
136 |
+
for split in ["dev", "test"]:
|
137 |
+
filepaths[split] = {}
|
138 |
+
if self.config.name.startswith("sentences"):
|
139 |
+
for curr_lang in [self.config.source_language, self.config.target_language]:
|
140 |
+
for gender in ["feminine", "masculine"]:
|
141 |
+
fname = f"geneval-sentences-{gender}-{split}.en_{self.config.target_language}.{curr_lang}"
|
142 |
+
langname = "source" if curr_lang == self.config.source_language else "reference"
|
143 |
+
url = base_path / split / fname
|
144 |
+
filepaths[split][f"{langname}_{gender}"] = dl_manager.download_and_extract(url)
|
145 |
+
annotated_url = base_path / split / "annotated" / fname
|
146 |
+
filepaths[split][f"{langname}_{gender}_annotated"] = dl_manager.download_and_extract(annotated_url)
|
147 |
+
else:
|
148 |
+
ftypes = ["2to1", "original", "flipped"]
|
149 |
+
for ftype in ftypes:
|
150 |
+
curr_lang = self.config.source_language if ftype == "2to1" else self.config.target_language
|
151 |
+
fname = f"geneval-context-wikiprofessions-{ftype}-{split}.en_{self.config.target_language}.{curr_lang}"
|
152 |
+
url = base_path / fname
|
153 |
+
filepaths[split][ftype] = dl_manager.download_and_extract(url)
|
154 |
+
return [
|
155 |
+
datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.TRAIN,
|
157 |
+
gen_kwargs={
|
158 |
+
"filepaths": filepaths["dev"],
|
159 |
+
"cfg_name": self.config.data_type
|
160 |
+
},
|
161 |
+
),
|
162 |
+
datasets.SplitGenerator(
|
163 |
+
name=datasets.Split.TEST,
|
164 |
+
gen_kwargs={
|
165 |
+
"filepaths": filepaths["test"],
|
166 |
+
"cfg_name": self.config.data_type
|
167 |
+
},
|
168 |
+
),
|
169 |
+
]
|
170 |
+
|
171 |
+
|
172 |
+
def _generate_examples(
|
173 |
+
self, filepaths: Dict[str, str], cfg_name: str
|
174 |
+
):
|
175 |
+
""" Yields examples as (key, example) tuples. """
|
176 |
+
if cfg_name == "sentences":
|
177 |
+
with open(filepaths["source_feminine"]) as f:
|
178 |
+
source_feminine = f.read().splitlines()
|
179 |
+
with open(filepaths["reference_feminine"]) as f:
|
180 |
+
reference_feminine = f.read().splitlines()
|
181 |
+
with open(filepaths["source_masculine"]) as f:
|
182 |
+
source_masculine = f.read().splitlines()
|
183 |
+
with open(filepaths["reference_masculine"]) as f:
|
184 |
+
reference_masculine = f.read().splitlines()
|
185 |
+
with open(filepaths["source_feminine_annotated"]) as f:
|
186 |
+
source_feminine_annotated = f.read().splitlines()
|
187 |
+
with open(filepaths["reference_feminine_annotated"]) as f:
|
188 |
+
reference_feminine_annotated = f.read().splitlines()
|
189 |
+
with open(filepaths["source_masculine_annotated"]) as f:
|
190 |
+
source_masculine_annotated = f.read().splitlines()
|
191 |
+
with open(filepaths["reference_masculine_annotated"]) as f:
|
192 |
+
reference_masculine_annotated = f.read().splitlines()
|
193 |
+
source_feminine_keywords = [r.findall(s) for s in source_feminine_annotated]
|
194 |
+
reference_feminine_keywords = [r.findall(s) for s in reference_feminine_annotated]
|
195 |
+
source_masculine_keywords = [r.findall(s) for s in source_masculine_annotated]
|
196 |
+
reference_masculine_keywords = [r.findall(s) for s in reference_masculine_annotated]
|
197 |
+
for i, (sf, rf, sm, rm, sfa, rfa, sma, rma, sfk, rfk, smk, rmk) in enumerate(
|
198 |
+
zip(
|
199 |
+
source_feminine, reference_feminine, source_masculine, reference_masculine,
|
200 |
+
source_feminine_annotated, reference_feminine_annotated, source_masculine_annotated, reference_masculine_annotated,
|
201 |
+
source_feminine_keywords, reference_feminine_keywords, source_masculine_keywords, reference_masculine_keywords
|
202 |
+
)
|
203 |
+
):
|
204 |
+
yield i, {
|
205 |
+
"orig_id": i,
|
206 |
+
"source_feminine": sf,
|
207 |
+
"reference_feminine": rf,
|
208 |
+
"source_masculine": sm,
|
209 |
+
"reference_masculine": rm,
|
210 |
+
"source_feminine_annotated": sfa,
|
211 |
+
"reference_feminine_annotated": rfa,
|
212 |
+
"source_masculine_annotated": sma,
|
213 |
+
"reference_masculine_annotated": rma,
|
214 |
+
"source_feminine_keywords": sfk,
|
215 |
+
"reference_feminine_keywords": rfk,
|
216 |
+
"source_masculine_keywords": smk,
|
217 |
+
"reference_masculine_keywords": rmk
|
218 |
+
}
|
219 |
+
else:
|
220 |
+
with open(filepaths["2to1"]) as f:
|
221 |
+
context_and_source = f.read().splitlines()
|
222 |
+
with open(filepaths["original"]) as f:
|
223 |
+
orig_ref = f.read().splitlines()
|
224 |
+
with open(filepaths["flipped"]) as f:
|
225 |
+
flipped_ref = f.read().splitlines()
|
226 |
+
context = [s.split(" <sep> ")[0] for s in context_and_source]
|
227 |
+
source = [s.split(" <sep> ")[1] for s in context_and_source]
|
228 |
+
for i, (c, s, oref, fref) in enumerate(zip(context, source, orig_ref, flipped_ref)):
|
229 |
+
yield i, {
|
230 |
+
"orig_id": i,
|
231 |
+
"context": c,
|
232 |
+
"source": s,
|
233 |
+
"reference_original": oref,
|
234 |
+
"reference_flipped": fref
|
235 |
+
}
|