gsarti commited on
Commit
167d569
1 Parent(s): 8281df3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -23
README.md CHANGED
@@ -10,16 +10,7 @@ license:
10
  multilinguality:
11
  - monolingual
12
  size_categories:
13
- tiny:
14
- - 1M<n<10M
15
- small:
16
- - 10M<n<100M
17
- medium:
18
- - 10M<n<100M
19
- large:
20
- - 10M<n<100M
21
- full:
22
- - 100M<n<1B
23
  source_datasets:
24
  - extended
25
  task_categories:
@@ -58,7 +49,8 @@ pretty_name: mC4_it
58
  ## Dataset Description
59
 
60
  - **Original Homepage:** [HF Hub](https://huggingface.co/datasets/allenai/c4)
61
- - **Paper:** [ArXiv](https://arxiv.org/abs/1910.10683)
 
62
 
63
  ### Dataset Summary
64
 
@@ -172,13 +164,24 @@ AllenAI are releasing this dataset under the terms of ODC-BY. By using this, you
172
  If you use this dataset in your work, please cite us and the original mC4 authors as:
173
 
174
  ```
175
- @article{sarti-nissim-2022-it5,
176
- title={IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
177
- author={Sarti, Gabriele and Nissim, Malvina},
178
- journal={ArXiv preprint 2203.03759},
179
- url={https://arxiv.org/abs/2203.03759},
180
- year={2022},
181
- month={mar}
 
 
 
 
 
 
 
 
 
 
 
182
  }
183
 
184
  @inproceedings{xue-etal-2021-mt5,
@@ -200,8 +203,4 @@ If you use this dataset in your work, please cite us and the original mC4 author
200
  doi = "10.18653/v1/2021.naacl-main.41",
201
  pages = "483--498",
202
  }
203
- ```
204
-
205
- ### Contributions
206
-
207
- Thanks to [@dirkgr](https://github.com/dirkgr) and [@lhoestq](https://github.com/lhoestq) for adding this dataset.
 
10
  multilinguality:
11
  - monolingual
12
  size_categories:
13
+ - 100M<n<1B
 
 
 
 
 
 
 
 
 
14
  source_datasets:
15
  - extended
16
  task_categories:
 
49
  ## Dataset Description
50
 
51
  - **Original Homepage:** [HF Hub](https://huggingface.co/datasets/allenai/c4)
52
+ - **Paper:** [ACL Anthology](https://aclanthology.org/2024.lrec-main.823/)
53
+ - **Preprint:** [Arxiv](https://arxiv.org/abs/2203.03759)
54
 
55
  ### Dataset Summary
56
 
 
164
  If you use this dataset in your work, please cite us and the original mC4 authors as:
165
 
166
  ```
167
+ @inproceedings{sarti-nissim-2024-it5-text,
168
+ title = "{IT}5: Text-to-text Pretraining for {I}talian Language Understanding and Generation",
169
+ author = "Sarti, Gabriele and
170
+ Nissim, Malvina",
171
+ editor = "Calzolari, Nicoletta and
172
+ Kan, Min-Yen and
173
+ Hoste, Veronique and
174
+ Lenci, Alessandro and
175
+ Sakti, Sakriani and
176
+ Xue, Nianwen",
177
+ booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
178
+ month = may,
179
+ year = "2024",
180
+ address = "Torino, Italy",
181
+ publisher = "ELRA and ICCL",
182
+ url = "https://aclanthology.org/2024.lrec-main.823",
183
+ pages = "9422--9433",
184
+ abstract = "We introduce IT5, the first family of encoder-decoder transformer models pretrained specifically on Italian. We document and perform a thorough cleaning procedure for a large Italian corpus and use it to pretrain four IT5 model sizes. We then introduce the ItaGen benchmark, which includes a broad range of natural language understanding and generation tasks for Italian, and use it to evaluate the performance of IT5 models and multilingual baselines. We find monolingual IT5 models to provide the best scale-to-performance ratio across tested models, consistently outperforming their multilingual counterparts and setting a new state-of-the-art for Italian language generation.",
185
  }
186
 
187
  @inproceedings{xue-etal-2021-mt5,
 
203
  doi = "10.18653/v1/2021.naacl-main.41",
204
  pages = "483--498",
205
  }
206
+ ```