|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The dataset for the variable-misuse task, described in the ICLR 2020 paper 'Global Relational Models of Source Code' [https://openreview.net/forum?id=B1lnbRNtwr] |
|
|
|
This is the public version of the dataset used in that paper. The original, used to produce the graphs in the paper, could not be open-sourced due to licensing issues. See the public associated code repository [https://github.com/VHellendoorn/ICLR20-Great] for results produced from this dataset. |
|
|
|
This dataset was generated synthetically from the corpus of Python code in the ETH Py150 Open dataset [https://github.com/google-research-datasets/eth_py150_open]. |
|
""" |
|
_HOMEPAGE_URL = "" |
|
_CITATION = """\ |
|
@inproceedings{DBLP:conf/iclr/HellendoornSSMB20, |
|
author = {Vincent J. Hellendoorn and |
|
Charles Sutton and |
|
Rishabh Singh and |
|
Petros Maniatis and |
|
David Bieber}, |
|
title = {Global Relational Models of Source Code}, |
|
booktitle = {8th International Conference on Learning Representations, {ICLR} 2020, |
|
Addis Ababa, Ethiopia, April 26-30, 2020}, |
|
publisher = {OpenReview.net}, |
|
year = {2020}, |
|
url = {https://openreview.net/forum?id=B1lnbRNtwr}, |
|
timestamp = {Thu, 07 May 2020 17:11:47 +0200}, |
|
biburl = {https://dblp.org/rec/conf/iclr/HellendoornSSMB20.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
_TRAIN_URLS = [ |
|
f"https://raw.githubusercontent.com/google-research-datasets/great/master/train/train__VARIABLE_MISUSE__SStuB.txt-{x:05d}-of-00300" |
|
for x in range(300) |
|
] |
|
_TEST_URLS = [ |
|
f"https://raw.githubusercontent.com/google-research-datasets/great/master/eval/eval__VARIABLE_MISUSE__SStuB.txt-{x:05d}-of-00300" |
|
for x in range(300) |
|
] |
|
_VALID_URLS = [ |
|
f"https://raw.githubusercontent.com/google-research-datasets/great/master/dev/dev__VARIABLE_MISUSE__SStuB.txt-{x:05d}-of-00300" |
|
for x in range(300) |
|
] |
|
|
|
|
|
class GreatCode(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"source_tokens": datasets.Sequence(datasets.Value("string")), |
|
"has_bug": datasets.Value("bool"), |
|
"error_location": datasets.Value("int32"), |
|
"repair_candidates": datasets.Sequence(datasets.Value("string")), |
|
"bug_kind": datasets.Value("int32"), |
|
"bug_kind_name": datasets.Value("string"), |
|
"repair_targets": datasets.Sequence(datasets.Value("int32")), |
|
"edges": [ |
|
[ |
|
{ |
|
"before_index": datasets.Value("int32"), |
|
"after_index": datasets.Value("int32"), |
|
"edge_type": datasets.Value("int32"), |
|
"edge_type_name": datasets.Value("string"), |
|
} |
|
] |
|
], |
|
"provenances": [ |
|
{ |
|
"datasetProvenance": { |
|
"datasetName": datasets.Value("string"), |
|
"filepath": datasets.Value("string"), |
|
"license": datasets.Value("string"), |
|
"note": datasets.Value("string"), |
|
} |
|
} |
|
], |
|
}, |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_TRAIN_URLS) |
|
valid_path = dl_manager.download_and_extract(_VALID_URLS) |
|
test_path = dl_manager.download_and_extract(_TEST_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"datapath": train_path, |
|
"datatype": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"datapath": valid_path, |
|
"datatype": "valid", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"datapath": test_path, |
|
"datatype": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, datapath, datatype): |
|
for file_idx, dp in enumerate(datapath): |
|
with open(dp, "r", encoding="utf-8") as json_file: |
|
for example_counter, json_str in enumerate(json_file): |
|
result = json.loads(json_str) |
|
response = { |
|
"id": example_counter, |
|
"source_tokens": result["source_tokens"], |
|
"has_bug": result["has_bug"], |
|
"error_location": result["error_location"], |
|
"repair_candidates": [str(x) for x in result["repair_candidates"]], |
|
"bug_kind": result["bug_kind"], |
|
"bug_kind_name": result["bug_kind_name"], |
|
"repair_targets": result["repair_targets"], |
|
"edges": [ |
|
[ |
|
{ |
|
"before_index": result["edges"][x][0], |
|
"after_index": result["edges"][x][1], |
|
"edge_type": result["edges"][x][2], |
|
"edge_type_name": result["edges"][x][3], |
|
} |
|
] |
|
for x in range(len(result["edges"])) |
|
], |
|
"provenances": result["provenances"], |
|
} |
|
yield f"{file_idx}_{example_counter}", response |
|
|