Datasets:
File size: 8,103 Bytes
a0b5f40 b5a826e 534f038 b5a826e 534f038 b5a826e 534f038 b5a826e 534f038 b5a826e 972ccd2 b5a826e 534f038 a899692 b5a826e 534f038 b5a826e 534f038 b5a826e 534f038 b5a826e 534f038 b5a826e 534f038 b5a826e 534f038 b5a826e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright 2022 Frankie Robertson and The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This dataset is a quick-and-dirty benchmark for predicting ratings across
different domains and on different rating scales based on text. It pulls in a
bunch of rating datasets, takes at most 1000 instances from each and combines
them into a big dataset.
"""
import datasets
from dataclasses import dataclass
from typing import Callable, Any
import operator
import shutil
import os
import sys
from os.path import join as pjoin
from datasets import concatenate_datasets, load_dataset
@dataclass
class SubDataset:
source: Any
nick: str
scale_points: int
get_review: Callable[[Any], Any]
get_rating: Callable[[Any], Any]
def warn(msg):
print(file=sys.stderr)
print(f" ** Warning: {msg} **", file=sys.stderr)
print(file=sys.stderr)
@dataclass
class SplitHFSrc:
name: str
def load(self):
return load_dataset(self.name, streaming=True)
@dataclass
class TrainOnlyHFSrc:
name: str
def load(self):
if hasattr(self, "_cached"):
return self._cached
self._cached = load_dataset(self.name)["train"].train_test_split(test_size=0.5, seed=42)
return self._cached
_kaggle_api = None
def get_kaggle_api():
global _kaggle_api
if _kaggle_api is not None:
return _kaggle_api
from kaggle.api.kaggle_api_extended import KaggleApi
_kaggle_api = KaggleApi()
_kaggle_api.authenticate()
return _kaggle_api
@dataclass
class KaggleSrc:
name: str
file: str
def load(self):
if hasattr(self, "_cached"):
return self._cached
kaggle_api = get_kaggle_api()
dir_name = self.name.replace("/", "__")
if os.path.exists(dir_name):
shutil.rmtree(dir_name)
os.mkdir(dir_name)
try:
file_path = pjoin(dir_name, self.file.rsplit("/", 1)[-1])
kaggle_api.dataset_download_file(self.name, self.file, path=dir_name)
dataset = load_dataset("csv", data_files=file_path + ".zip")
return dataset["train"].train_test_split(test_size=0.5, seed=42)
finally:
shutil.rmtree(dir_name)
def int_or_drop(col):
def inner(row):
try:
n = float(row[col])
except ValueError:
return None
return round_near(n)
return inner
gi = operator.itemgetter
def round_near(x, eps=0.001):
x_rnd = int(x + 0.5)
if abs(x_rnd - x) > eps:
warn("got {x_rnd} when rounding {x}")
return x_rnd
def dec(inner):
def wrap(x):
y = inner(x)
if y is None:
return None
res = y - 1
if res < 0:
warn(
"tried to convert 1-based index to 0-based index "
"but ended up with negative"
)
return res
return wrap
DATASETS = [
SubDataset(SplitHFSrc("juliensimon/amazon-shoe-reviews"), "amazon-shoes", 5, gi("text"), gi("labels")),
# TODO: Appears to be corrupt
#SubDataset("florentgbelidji/edmunds-car-ratings", "car-ratings", 40, lambda row: row["Review"].strip(), lambda row: round_near(row["Rating"] * 8) - 7),
SubDataset(TrainOnlyHFSrc("florentgbelidji/car-reviews"), "car-ratings", 5, gi("Review"), dec(gi("Rating"))),
SubDataset(SplitHFSrc("codyburker/yelp_review_sampled"), "yelp", 5, gi("text"), dec(gi("stars"))),
SubDataset(SplitHFSrc("kkotkar1/course-reviews"), "course-reviews", 5, gi("review"), dec(gi("label"))),
SubDataset(TrainOnlyHFSrc("app_reviews"), "app-reviews", 5, gi("review"), dec(gi("star"))),
SubDataset(TrainOnlyHFSrc("LoganKells/amazon_product_reviews_video_games"), "amazon-games", 5, gi("reviewText"), lambda row: round_near(row["overall"])),
SubDataset(KaggleSrc("zynicide/wine-reviews", "winemag-data-130k-v2.csv"), "wine-reviews", 100, gi("description"), dec(gi("points"))),
SubDataset(KaggleSrc("sadmadlad/imdb-user-reviews", "Pulp Fiction/movieReviews.csv"), "imdb-user-reviews", 10, gi("Review"), dec(int_or_drop("User's Rating out of 10"))),
# TODO: Unicode decoding error
#SubDataset(KaggleSrc("arushchillar/disneyland-reviews", "DisneylandReviews.csv"), "disneyland-reviews", 5, gi("Review_Text"), gi("Rating")),
]
_DESCRIPTION = __doc__
_HOMEPAGE = ""
_LICENSE = "Mixed"
class CrossDomainReviews(datasets.GeneratorBasedBuilder):
_DESCRIPTION
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"rating": datasets.Value("uint8"),
"scale_points": datasets.Value("uint8"),
"dataset": datasets.ClassLabel(names=[ds.nick for ds in DATASETS])
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
supervised_keys=("text", "rating"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation="",
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split": "test"
},
),
]
def _generate_examples(self, split):
key = 0
for ds_info in DATASETS:
subdataset = ds_info.source.load()
lowest = float("inf")
highest = float("-inf")
got = 0
for row in subdataset[split]:
review = ds_info.get_review(row)
if review is None:
continue
rating = ds_info.get_rating(row)
if rating is None:
continue
assert 0 <= rating < ds_info.scale_points, f"Expected {rating} in half-open (Python-style) range [0, {ds_info.scale_points})"
lowest = min(lowest, rating)
highest = max(highest, rating)
yield key, {
"text": review,
"rating": rating,
"scale_points": ds_info.scale_points,
"dataset": ds_info.nick
}
key += 1
got += 1
if got >= 1000:
break
if lowest != 0:
warn(
f"Lowest rating in {ds_info.nick} was {lowest}, "
"would suppose it would be 0"
)
if highest != ds_info.scale_points - 1:
warn(
f"Highest rating in {ds_info.nick} was {highest}, "
f"would suppose it would be {ds_info.scale_points - 1}"
)
|