xnli / dataset_infos.json
albertvillanova's picture
Add es data files
174f253
raw
history blame
48.3 kB
{
"ar": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"entailment",
"neutral",
"contradiction"
],
"_type": "ClassLabel"
}
},
"builder_name": "xnli",
"dataset_name": "xnli",
"config_name": "ar",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 107399614,
"num_examples": 392702,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 1294553,
"num_examples": 5010,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 633001,
"num_examples": 2490,
"dataset_name": null
}
},
"download_size": 59215902,
"dataset_size": 109327168,
"size_in_bytes": 168543070
},
"bg": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"entailment",
"neutral",
"contradiction"
],
"_type": "ClassLabel"
}
},
"builder_name": "xnli",
"dataset_name": "xnli",
"config_name": "bg",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 125973225,
"num_examples": 392702,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 1573034,
"num_examples": 5010,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 774061,
"num_examples": 2490,
"dataset_name": null
}
},
"download_size": 66117878,
"dataset_size": 128320320,
"size_in_bytes": 194438198
},
"de": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"entailment",
"neutral",
"contradiction"
],
"_type": "ClassLabel"
}
},
"builder_name": "xnli",
"dataset_name": "xnli",
"config_name": "de",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 84684140,
"num_examples": 392702,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 996488,
"num_examples": 5010,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 494604,
"num_examples": 2490,
"dataset_name": null
}
},
"download_size": 55973883,
"dataset_size": 86175232,
"size_in_bytes": 142149115
},
"el": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"entailment",
"neutral",
"contradiction"
],
"_type": "ClassLabel"
}
},
"builder_name": "xnli",
"dataset_name": "xnli",
"config_name": "el",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 139753358,
"num_examples": 392702,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 1704785,
"num_examples": 5010,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 841226,
"num_examples": 2490,
"dataset_name": null
}
},
"download_size": 74551247,
"dataset_size": 142299369,
"size_in_bytes": 216850616
},
"en": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"entailment",
"neutral",
"contradiction"
],
"_type": "ClassLabel"
}
},
"builder_name": "xnli",
"dataset_name": "xnli",
"config_name": "en",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 74444026,
"num_examples": 392702,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 875134,
"num_examples": 5010,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 433463,
"num_examples": 2490,
"dataset_name": null
}
},
"download_size": 50627367,
"dataset_size": 75752623,
"size_in_bytes": 126379990
},
"es": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"_type": "Value"
},
"label": {
"names": [
"entailment",
"neutral",
"contradiction"
],
"_type": "ClassLabel"
}
},
"builder_name": "xnli",
"dataset_name": "xnli",
"config_name": "es",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 81383284,
"num_examples": 392702,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 969813,
"num_examples": 5010,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 478422,
"num_examples": 2490,
"dataset_name": null
}
},
"download_size": 53677157,
"dataset_size": 82831519,
"size_in_bytes": 136508676
},
"fr": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "fr",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 85809099,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 1029247,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 510112,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 87348458,
"size_in_bytes": 571312170
},
"hi": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "hi",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 170594284,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 2073081,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 1023923,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 173691288,
"size_in_bytes": 657655000
},
"ru": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "ru",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 129859935,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 1603474,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 786450,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 132249859,
"size_in_bytes": 616213571
},
"sw": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "sw",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 69286045,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 871659,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 429858,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 70587562,
"size_in_bytes": 554551274
},
"th": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "th",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 176063212,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 2147023,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 1061168,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 179271403,
"size_in_bytes": 663235115
},
"tr": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "tr",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 71637460,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 934942,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 459316,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 73031718,
"size_in_bytes": 556995430
},
"ur": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "ur",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 96441806,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 1416249,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 699960,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 98558015,
"size_in_bytes": 582521727
},
"vi": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "vi",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 101417750,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 1190225,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 590688,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 103198663,
"size_in_bytes": 587162375
},
"zh": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"hypothesis": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "zh",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 72225161,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 777937,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 384859,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 73387957,
"size_in_bytes": 557351669
},
"all_languages": {
"description": "XNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n",
"citation": "@InProceedings{conneau2018xnli,\n author = {Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin},\n title = {XNLI: Evaluating Cross-lingual Sentence Representations},\n booktitle = {Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing},\n year = {2018},\n publisher = {Association for Computational Linguistics},\n location = {Brussels, Belgium},\n}",
"homepage": "https://www.nyu.edu/projects/bowman/xnli/",
"license": "",
"features": {
"premise": {
"languages": [
"ar",
"bg",
"de",
"el",
"en",
"es",
"fr",
"hi",
"ru",
"sw",
"th",
"tr",
"ur",
"vi",
"zh"
],
"id": null,
"_type": "Translation"
},
"hypothesis": {
"languages": [
"ar",
"bg",
"de",
"el",
"en",
"es",
"fr",
"hi",
"ru",
"sw",
"th",
"tr",
"ur",
"vi",
"zh"
],
"num_languages": 15,
"id": null,
"_type": "TranslationVariableLanguages"
},
"label": {
"num_classes": 3,
"names": [
"entailment",
"neutral",
"contradiction"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"post_processed": null,
"supervised_keys": null,
"builder_name": "xnli",
"config_name": "all_languages",
"version": {
"version_str": "1.1.0",
"description": "",
"major": 1,
"minor": 1,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 1581474731,
"num_examples": 392702,
"dataset_name": "xnli"
},
"test": {
"name": "test",
"num_bytes": 19387508,
"num_examples": 5010,
"dataset_name": "xnli"
},
"validation": {
"name": "validation",
"num_bytes": 9566255,
"num_examples": 2490,
"dataset_name": "xnli"
}
},
"download_checksums": {
"https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip": {
"num_bytes": 466098360,
"checksum": "f732517ba2fb1d550e9f3c2aabaef6017c91ee2dcec90e878f138764d224db05"
},
"https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip": {
"num_bytes": 17865352,
"checksum": "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1"
}
},
"download_size": 483963712,
"post_processing_size": null,
"dataset_size": 1610428494,
"size_in_bytes": 2094392206
}
}