|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The LAMA Dataset"""
|
|
|
|
|
|
import json
|
|
from fnmatch import fnmatch
|
|
|
|
import datasets
|
|
|
|
|
|
_CITATION = """@inproceedings{petroni2019language,
|
|
title={Language Models as Knowledge Bases?},
|
|
author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
|
|
booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},
|
|
year={2019}
|
|
}
|
|
@inproceedings{petroni2020how,
|
|
title={How Context Affects Language Models' Factual Predictions},
|
|
author={Fabio Petroni and Patrick Lewis and Aleksandra Piktus and Tim Rockt{\"a}schel and Yuxiang Wu and Alexander H. Miller and Sebastian Riedel},
|
|
booktitle={Automated Knowledge Base Construction},
|
|
year={2020},
|
|
url={https://openreview.net/forum?id=025X0zPfn}
|
|
}
|
|
"""
|
|
|
|
|
|
_DESCRIPTION = """LAMA is a dataset used to probe and analyze the factual and commonsense knowledge contained in pretrained language models. See https://github.com/facebookresearch/LAMA.
|
|
"""
|
|
|
|
_HOMEPAGE = "https://github.com/facebookresearch/LAMA"
|
|
|
|
_LICENSE = "The Creative Commons Attribution-Noncommercial 4.0 International License. see https://github.com/facebookresearch/LAMA/blob/master/LICENSE"
|
|
|
|
_RELATIONS_URL = "https://s3.amazonaws.com/datasets.huggingface.co/lama/relations.jsonl"
|
|
|
|
_DATA_URL = "https://dl.fbaipublicfiles.com/LAMA/negated_data.tar.gz"
|
|
|
|
|
|
class Lama(datasets.GeneratorBasedBuilder):
|
|
"""Lama Dataset"""
|
|
|
|
VERSION = datasets.Version("1.1.0")
|
|
|
|
BUILDER_CONFIGS = [
|
|
datasets.BuilderConfig(name="trex", version=VERSION, description="The TRex part of the Lama dataset"),
|
|
datasets.BuilderConfig(name="squad", version=VERSION, description="The Squad part of the Lama dataset"),
|
|
datasets.BuilderConfig(
|
|
name="google_re", version=VERSION, description="The Google_re part of the Lama dataset"
|
|
),
|
|
datasets.BuilderConfig(
|
|
name="conceptnet", version=VERSION, description="The Conceptnet part of the Lama dataset"
|
|
),
|
|
]
|
|
|
|
DEFAULT_CONFIG_NAME = "trex"
|
|
|
|
def _info(self):
|
|
if self.config.name == "trex":
|
|
features = datasets.Features(
|
|
{
|
|
"uuid": datasets.Value("string"),
|
|
"obj_uri": datasets.Value("string"),
|
|
"obj_label": datasets.Value("string"),
|
|
"sub_uri": datasets.Value("string"),
|
|
"sub_label": datasets.Value("string"),
|
|
"predicate_id": datasets.Value("string"),
|
|
"sub_surface": datasets.Value("string"),
|
|
"obj_surface": datasets.Value("string"),
|
|
"masked_sentence": datasets.Value("string"),
|
|
"template": datasets.Value("string"),
|
|
"template_negated": datasets.Value("string"),
|
|
"label": datasets.Value("string"),
|
|
"description": datasets.Value("string"),
|
|
"type": datasets.Value("string"),
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
elif self.config.name == "conceptnet":
|
|
features = datasets.Features(
|
|
{
|
|
"uuid": datasets.Value("string"),
|
|
"sub": datasets.Value("string"),
|
|
"obj": datasets.Value("string"),
|
|
"pred": datasets.Value("string"),
|
|
"obj_label": datasets.Value("string"),
|
|
"masked_sentence": datasets.Value("string"),
|
|
"negated": datasets.Value("string"),
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
elif self.config.name == "squad":
|
|
features = datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"sub_label": datasets.Value("string"),
|
|
"obj_label": datasets.Value("string"),
|
|
"negated": datasets.Value("string"),
|
|
"masked_sentence": datasets.Value("string"),
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
elif self.config.name == "google_re":
|
|
features = datasets.Features(
|
|
{
|
|
"pred": datasets.Value("string"),
|
|
"sub": datasets.Value("string"),
|
|
"obj": datasets.Value("string"),
|
|
"evidences": datasets.Value("string"),
|
|
"judgments": datasets.Value("string"),
|
|
"sub_w": datasets.Value("string"),
|
|
"sub_label": datasets.Value("string"),
|
|
"sub_aliases": datasets.Value("string"),
|
|
"obj_w": datasets.Value("string"),
|
|
"obj_label": datasets.Value("string"),
|
|
"obj_aliases": datasets.Value("string"),
|
|
"uuid": datasets.Value("string"),
|
|
"masked_sentence": datasets.Value("string"),
|
|
"template": datasets.Value("string"),
|
|
"template_negated": datasets.Value("string"),
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=features,
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""Returns SplitGenerators."""
|
|
archive = dl_manager.download(_DATA_URL)
|
|
if self.config.name == "trex":
|
|
relations_path = dl_manager.download(_RELATIONS_URL)
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"filepaths": ["TREx/*"],
|
|
"files": dl_manager.iter_archive(archive),
|
|
"relations_path": relations_path,
|
|
},
|
|
),
|
|
]
|
|
elif self.config.name == "google_re":
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"filepaths": [
|
|
"Google_RE/date_of_birth_test.jsonl",
|
|
"Google_RE/place_of_birth_test.jsonl",
|
|
"Google_RE/place_of_death_test.jsonl",
|
|
],
|
|
"files": dl_manager.iter_archive(archive),
|
|
},
|
|
),
|
|
]
|
|
elif self.config.name == "conceptnet":
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"filepaths": ["ConceptNet/test.jsonl"],
|
|
"files": dl_manager.iter_archive(archive),
|
|
},
|
|
),
|
|
]
|
|
elif self.config.name == "squad":
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"filepaths": ["Squad/test.jsonl"],
|
|
"files": dl_manager.iter_archive(archive),
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, filepaths, files, relations_path=None):
|
|
"""Yields examples from the LAMA dataset."""
|
|
filepaths = list(filepaths)
|
|
if self.config.name == "trex":
|
|
all_rels = {}
|
|
with open(relations_path, encoding="utf-8") as f:
|
|
for row in f:
|
|
data = json.loads(row)
|
|
all_rels[data["relation"]] = data
|
|
id_ = -1
|
|
inside_trec_directory = False
|
|
for path, f in files:
|
|
if any(fnmatch(path, pattern) for pattern in filepaths):
|
|
inside_trec_directory = True
|
|
for row in f:
|
|
data = json.loads(row)
|
|
pred = all_rels.get(data["predicate_id"], {})
|
|
for evidences in data["evidences"]:
|
|
id_ += 1
|
|
yield id_, {
|
|
"uuid": str(data["uuid"]),
|
|
"obj_uri": str(data["obj_uri"]),
|
|
"obj_label": str(data["obj_label"]),
|
|
"sub_uri": str(data["sub_uri"]),
|
|
"sub_label": str(data["sub_label"]),
|
|
"predicate_id": str(data["predicate_id"]),
|
|
"sub_surface": str(evidences["sub_surface"]),
|
|
"obj_surface": str(evidences["obj_surface"]),
|
|
"masked_sentence": str(evidences["masked_sentence"]),
|
|
"template": str(pred.get("template", "")),
|
|
"template_negated": str(pred.get("template_negated", "")),
|
|
"label": str(pred.get("label", "")),
|
|
"description": str(pred.get("description", "")),
|
|
"type": str(pred.get("type", "")),
|
|
}
|
|
elif inside_trec_directory:
|
|
break
|
|
elif self.config.name == "conceptnet":
|
|
id_ = -1
|
|
for path, f in files:
|
|
if not filepaths:
|
|
break
|
|
if path in list(filepaths):
|
|
for row in f:
|
|
data = json.loads(row)
|
|
if data.get("negated") is not None:
|
|
for masked_sentence, negated in zip(data["masked_sentences"], data["negated"]):
|
|
id_ += 1
|
|
yield id_, {
|
|
"uuid": str(data["uuid"]),
|
|
"sub": str(data.get("sub", "")),
|
|
"obj": str(data.get("obj", "")),
|
|
"pred": str(data["pred"]),
|
|
"obj_label": str(data["obj_label"]),
|
|
"masked_sentence": str(masked_sentence),
|
|
"negated": str(negated),
|
|
}
|
|
else:
|
|
for masked_sentence in data["masked_sentences"]:
|
|
id_ += 1
|
|
yield id_, {
|
|
"uuid": str(data["uuid"]),
|
|
"sub": str(data.get("sub", "")),
|
|
"obj": str(data.get("obj", "")),
|
|
"pred": str(data["pred"]),
|
|
"obj_label": str(data["obj_label"]),
|
|
"masked_sentence": str(masked_sentence),
|
|
"negated": str(""),
|
|
}
|
|
filepaths.remove(path)
|
|
elif self.config.name == "squad":
|
|
id_ = -1
|
|
for path, f in files:
|
|
if not filepaths:
|
|
break
|
|
if path in filepaths:
|
|
for row in f:
|
|
data = json.loads(row)
|
|
for masked_sentence in data["masked_sentences"]:
|
|
id_ += 1
|
|
yield id_, {
|
|
"id": str(data["id"]),
|
|
"sub_label": str(data["sub_label"]),
|
|
"obj_label": str(data["obj_label"]),
|
|
"negated": str(data.get("negated", "")),
|
|
"masked_sentence": str(masked_sentence),
|
|
}
|
|
filepaths.remove(path)
|
|
elif self.config.name == "google_re":
|
|
id_ = -1
|
|
for path, f in files:
|
|
if path in filepaths:
|
|
if not filepaths:
|
|
break
|
|
if path in filepaths:
|
|
|
|
if "place_of_birth" in path:
|
|
pred = {
|
|
"relation": "place_of_birth",
|
|
"template": "[X] was born in [Y] .",
|
|
"template_negated": "[X] was not born in [Y] .",
|
|
}
|
|
elif "date_of_birth" in path:
|
|
pred = {
|
|
"relation": "date_of_birth",
|
|
"template": "[X] (born [Y]).",
|
|
"template_negated": "[X] (not born [Y]).",
|
|
}
|
|
else:
|
|
pred = {
|
|
"relation": "place_of_death",
|
|
"template": "[X] died in [Y] .",
|
|
"template_negated": "[X] did not die in [Y] .",
|
|
}
|
|
for row in f:
|
|
data = json.loads(row)
|
|
for masked_sentence in data["masked_sentences"]:
|
|
id_ += 1
|
|
yield id_, {
|
|
"pred": str(data["pred"]),
|
|
"sub": str(data["sub"]),
|
|
"obj": str(data["obj"]),
|
|
"evidences": str(data["evidences"]),
|
|
"judgments": str(data["judgments"]),
|
|
"sub_w": str(data["sub_w"]),
|
|
"sub_label": str(data["sub_label"]),
|
|
"sub_aliases": str(data["sub_aliases"]),
|
|
"obj_w": str(data["obj_w"]),
|
|
"obj_label": str(data["obj_label"]),
|
|
"obj_aliases": str(data["obj_aliases"]),
|
|
"uuid": str(data["uuid"]),
|
|
"masked_sentence": str(masked_sentence),
|
|
"template": str(pred["template"]),
|
|
"template_negated": str(pred["template_negated"]),
|
|
}
|
|
filepaths.remove(path)
|
|
|