Upload P3GPT handler and TCM database modules
Browse files- demo/P3LIB/endpoints.py +565 -0
- demo/P3LIB/formula_picker.py +549 -0
demo/P3LIB/endpoints.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
import pandas as pd
|
6 |
+
import time
|
7 |
+
import numpy as np
|
8 |
+
from transformers import GenerationConfig
|
9 |
+
from P3LIB.precious3_gpt_multi_modal import Custom_MPTForCausalLM
|
10 |
+
|
11 |
+
|
12 |
+
class EndpointHandler:
|
13 |
+
def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'):
|
14 |
+
|
15 |
+
self.device = device
|
16 |
+
self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device)
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
18 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
19 |
+
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
20 |
+
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
21 |
+
|
22 |
+
unique_entities_p3 = pd.read_csv(
|
23 |
+
'https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
|
24 |
+
self.unique_compounds_p3 = [i.strip() for i in
|
25 |
+
unique_entities_p3[unique_entities_p3.type == 'compound'].entity.to_list()]
|
26 |
+
self.unique_genes_p3 = [i.strip() for i in
|
27 |
+
unique_entities_p3[unique_entities_p3.type == 'gene'].entity.to_list()]
|
28 |
+
|
29 |
+
def create_prompt(self, prompt_config):
|
30 |
+
|
31 |
+
prompt = "[BOS]"
|
32 |
+
|
33 |
+
multi_modal_prefix = ''
|
34 |
+
|
35 |
+
for k, v in prompt_config.items():
|
36 |
+
if k == 'instruction':
|
37 |
+
prompt += f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
|
38 |
+
elif k == 'up':
|
39 |
+
if v:
|
40 |
+
prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v,
|
41 |
+
str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
42 |
+
elif k == 'down':
|
43 |
+
if v:
|
44 |
+
prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v,
|
45 |
+
str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
46 |
+
elif k == 'age':
|
47 |
+
if isinstance(v, int):
|
48 |
+
if prompt_config['species'].strip() == 'human':
|
49 |
+
prompt += f'<{k}_individ>{v} </{k}_individ>'
|
50 |
+
elif prompt_config['species'].strip() == 'macaque':
|
51 |
+
prompt += f'<{k}_individ>Macaca-{int(v / 20)} </{k}_individ>'
|
52 |
+
else:
|
53 |
+
if v:
|
54 |
+
prompt += f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
55 |
+
else:
|
56 |
+
prompt += f'<{k}></{k}>'
|
57 |
+
return prompt
|
58 |
+
|
59 |
+
def generate_with_generation_config(self, input_ids, generation_config, max_new_tokens, random_seed=138):
|
60 |
+
torch.manual_seed(random_seed)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
generation_output = self.model.generate(
|
64 |
+
input_ids=input_ids,
|
65 |
+
generation_config=generation_config,
|
66 |
+
return_dict_in_generate=True,
|
67 |
+
output_scores=True,
|
68 |
+
max_new_tokens=max_new_tokens
|
69 |
+
)
|
70 |
+
return generation_output
|
71 |
+
|
72 |
+
def get_gene_probabilities(self, prompt_config, top_k=300, list_type='up', random_seed=138):
|
73 |
+
"""
|
74 |
+
Args:
|
75 |
+
top_k: how many top probable tokens to take
|
76 |
+
list_type: "up" / "down"
|
77 |
+
"""
|
78 |
+
prompt = self.create_prompt(prompt_config)
|
79 |
+
assert list_type in ["up", "down"]
|
80 |
+
|
81 |
+
if list_type == 'up':
|
82 |
+
prompt += "<up>"
|
83 |
+
|
84 |
+
print(prompt)
|
85 |
+
### Generation config https://huggingface.co/blog/how-to-generate
|
86 |
+
generation_config = GenerationConfig(temperature=0.8, num_beams=1, do_sample=True, top_p=None, top_k=3550,
|
87 |
+
pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1)
|
88 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
89 |
+
input_ids = inputs["input_ids"].to(self.device)
|
90 |
+
assert 3 not in input_ids[0]
|
91 |
+
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
|
92 |
+
|
93 |
+
generation_output = self.generate_with_generation_config(input_ids=input_ids,
|
94 |
+
generation_config=generation_config,
|
95 |
+
max_new_tokens=max_new_tokens,
|
96 |
+
random_seed=random_seed)
|
97 |
+
# print(generation_output)
|
98 |
+
id_4_gene_token = list(generation_output.sequences[0][len(input_ids[0]) - 1:]).index(
|
99 |
+
self.tokenizer.convert_tokens_to_ids([f'<{list_type}>'])[0])
|
100 |
+
id_4_gene_token += 1
|
101 |
+
print('This is token index where gene should be predicted: ', id_4_gene_token)
|
102 |
+
|
103 |
+
values, indices = torch.topk(generation_output["scores"][id_4_gene_token - 1].view(-1), k=top_k)
|
104 |
+
indices_decoded = self.tokenizer.decode(indices, skip_special_tokens=True)
|
105 |
+
indices_decoded_list = indices_decoded.split(' ')
|
106 |
+
|
107 |
+
generated_genes = sorted(set(indices_decoded_list) & set(self.unique_genes_p3), key=indices_decoded_list.index)
|
108 |
+
return generated_genes
|
109 |
+
|
110 |
+
|
111 |
+
class HFEndpointHandler:
|
112 |
+
def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'):
|
113 |
+
|
114 |
+
self.device = device
|
115 |
+
self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device)
|
116 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
117 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
118 |
+
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
119 |
+
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
120 |
+
|
121 |
+
unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
|
122 |
+
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
|
123 |
+
self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]
|
124 |
+
|
125 |
+
|
126 |
+
def create_prompt(self, prompt_config):
|
127 |
+
|
128 |
+
prompt = "[BOS]"
|
129 |
+
|
130 |
+
multi_modal_prefix = ''
|
131 |
+
|
132 |
+
for k, v in prompt_config.items():
|
133 |
+
if k=='instruction':
|
134 |
+
prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
|
135 |
+
elif k=='up':
|
136 |
+
if v:
|
137 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
138 |
+
elif k=='down':
|
139 |
+
if v:
|
140 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
141 |
+
elif k=='age':
|
142 |
+
if isinstance(v, int):
|
143 |
+
if prompt_config['species'].strip() == 'human':
|
144 |
+
prompt+=f'<{k}_individ>{v} </{k}_individ>'
|
145 |
+
elif prompt_config['species'].strip() == 'macaque':
|
146 |
+
prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
|
147 |
+
else:
|
148 |
+
if v:
|
149 |
+
prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
150 |
+
else:
|
151 |
+
prompt+=f'<{k}></{k}>'
|
152 |
+
return prompt
|
153 |
+
|
154 |
+
def custom_generate(self,
|
155 |
+
input_ids,
|
156 |
+
device,
|
157 |
+
max_new_tokens,
|
158 |
+
mode,
|
159 |
+
temperature=0.8,
|
160 |
+
top_p=0.2, top_k=3550,
|
161 |
+
n_next_tokens=30, num_return_sequences=1, random_seed=138):
|
162 |
+
|
163 |
+
torch.manual_seed(random_seed)
|
164 |
+
|
165 |
+
# Set parameters
|
166 |
+
# temperature - Higher value for more randomness, lower for more control
|
167 |
+
# top_p - Probability threshold for nucleus sampling (aka top-p sampling)
|
168 |
+
# top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
|
169 |
+
# n_next_tokens - Number of top next tokens when predicting compounds
|
170 |
+
|
171 |
+
# Generate sequences
|
172 |
+
outputs = []
|
173 |
+
next_token_compounds = []
|
174 |
+
next_token_up_genes = []
|
175 |
+
next_token_down_genes = []
|
176 |
+
|
177 |
+
for _ in range(num_return_sequences):
|
178 |
+
start_time = time.time()
|
179 |
+
generated_sequence = []
|
180 |
+
current_token = input_ids.clone()
|
181 |
+
|
182 |
+
for _ in range(max_new_tokens): # Maximum length of generated sequence
|
183 |
+
# Forward pass through the model
|
184 |
+
logits = self.model.forward(
|
185 |
+
input_ids=current_token
|
186 |
+
)[0]
|
187 |
+
|
188 |
+
# Apply temperature to logits
|
189 |
+
if temperature != 1.0:
|
190 |
+
logits = logits / temperature
|
191 |
+
|
192 |
+
# Apply top-p sampling (nucleus sampling)
|
193 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
194 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
195 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
196 |
+
|
197 |
+
if top_k > 0:
|
198 |
+
sorted_indices_to_remove[..., top_k:] = 1
|
199 |
+
|
200 |
+
# Set the logit values of the removed indices to a very small negative value
|
201 |
+
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
|
202 |
+
|
203 |
+
logits = logits.where(sorted_indices_to_remove, inf_tensor)
|
204 |
+
|
205 |
+
# Sample the next token
|
206 |
+
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0:
|
207 |
+
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
208 |
+
|
209 |
+
# Sample the next token for UP genes
|
210 |
+
if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes)==0:
|
211 |
+
next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
212 |
+
|
213 |
+
# Sample the next token for DOWN genes
|
214 |
+
if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes)==0:
|
215 |
+
next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
216 |
+
|
217 |
+
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
|
218 |
+
|
219 |
+
|
220 |
+
# Append the sampled token to the generated sequence
|
221 |
+
generated_sequence.append(next_token.item())
|
222 |
+
|
223 |
+
# Stop generation if an end token is generated
|
224 |
+
if next_token == self.tokenizer.eos_token_id:
|
225 |
+
break
|
226 |
+
|
227 |
+
# Prepare input for the next iteration
|
228 |
+
current_token = torch.cat((current_token, next_token), dim=-1)
|
229 |
+
print(time.time()-start_time)
|
230 |
+
outputs.append(generated_sequence)
|
231 |
+
|
232 |
+
# Process generated up/down lists
|
233 |
+
processed_outputs = {"up": [], "down": []}
|
234 |
+
if mode in ['meta2diff', 'meta2diff2compound']:
|
235 |
+
|
236 |
+
|
237 |
+
predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes]
|
238 |
+
predicted_up_genes = []
|
239 |
+
for j in predicted_up_genes_tokens:
|
240 |
+
generated_up_sample = [i.strip() for i in j]
|
241 |
+
predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index))
|
242 |
+
processed_outputs['up'] = predicted_up_genes
|
243 |
+
|
244 |
+
predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes]
|
245 |
+
predicted_down_genes = []
|
246 |
+
for j in predicted_down_genes_tokens:
|
247 |
+
generated_down_sample = [i.strip() for i in j]
|
248 |
+
predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index))
|
249 |
+
processed_outputs['down'] = predicted_down_genes
|
250 |
+
|
251 |
+
else:
|
252 |
+
processed_outputs = outputs
|
253 |
+
|
254 |
+
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
|
255 |
+
predicted_compounds = []
|
256 |
+
for j in predicted_compounds_ids:
|
257 |
+
predicted_compounds.append([i.strip() for i in j])
|
258 |
+
|
259 |
+
return processed_outputs, predicted_compounds, random_seed
|
260 |
+
|
261 |
+
|
262 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
263 |
+
"""
|
264 |
+
Args:
|
265 |
+
data (:dict:):
|
266 |
+
The payload with the text prompt and generation parameters.
|
267 |
+
"""
|
268 |
+
|
269 |
+
data = data.copy()
|
270 |
+
|
271 |
+
parameters = data.pop("parameters", None)
|
272 |
+
config_data = data.pop("inputs", None)
|
273 |
+
mode = data.pop('mode', 'Not specified')
|
274 |
+
|
275 |
+
prompt = self.create_prompt(config_data)
|
276 |
+
if mode != "diff2compound":
|
277 |
+
prompt+="<up>"
|
278 |
+
|
279 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
280 |
+
input_ids = inputs["input_ids"].to(self.device)
|
281 |
+
|
282 |
+
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
|
283 |
+
try:
|
284 |
+
|
285 |
+
generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids,
|
286 |
+
max_new_tokens=max_new_tokens, mode=mode,
|
287 |
+
device=self.device, **parameters)
|
288 |
+
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]
|
289 |
+
|
290 |
+
if mode == "meta2diff":
|
291 |
+
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
292 |
+
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
|
293 |
+
elif mode == "meta2diff2compound":
|
294 |
+
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
295 |
+
out = {
|
296 |
+
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
297 |
+
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
298 |
+
elif mode == "diff2compound":
|
299 |
+
outputs = generated_sequence
|
300 |
+
out = {
|
301 |
+
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
302 |
+
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
303 |
+
else:
|
304 |
+
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}
|
305 |
+
|
306 |
+
except Exception as e:
|
307 |
+
print(e)
|
308 |
+
outputs, next_token_generation = [None], [None]
|
309 |
+
out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138}
|
310 |
+
|
311 |
+
return out
|
312 |
+
|
313 |
+
class MMEndpointHandler:
|
314 |
+
def __init__(self, path="insilicomedicine/precious3-gpt-multi-modal", device='cuda:3'):
|
315 |
+
|
316 |
+
self.device = device
|
317 |
+
self.path = path
|
318 |
+
# load model and processor from path
|
319 |
+
self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device)
|
320 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
321 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
322 |
+
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
323 |
+
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
324 |
+
unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
|
325 |
+
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
|
326 |
+
self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]
|
327 |
+
|
328 |
+
self.emb_gpt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_gpt_genes.pickle')
|
329 |
+
self.emb_hgt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_hgt_genes.pickle')
|
330 |
+
|
331 |
+
|
332 |
+
def create_prompt(self, prompt_config):
|
333 |
+
|
334 |
+
prompt = "[BOS]"
|
335 |
+
|
336 |
+
multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3
|
337 |
+
|
338 |
+
for k, v in prompt_config.items():
|
339 |
+
if k=='instruction':
|
340 |
+
prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
|
341 |
+
elif k=='up':
|
342 |
+
if v:
|
343 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
344 |
+
elif k=='down':
|
345 |
+
if v:
|
346 |
+
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
347 |
+
elif k=='age':
|
348 |
+
if isinstance(v, int):
|
349 |
+
if prompt_config['species'].strip() == 'human':
|
350 |
+
prompt+=f'<{k}_individ>{v} </{k}_individ>'
|
351 |
+
elif prompt_config['species'].strip() == 'macaque':
|
352 |
+
prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
|
353 |
+
else:
|
354 |
+
if v:
|
355 |
+
prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
356 |
+
else:
|
357 |
+
prompt+=f'<{k}></{k}>'
|
358 |
+
return prompt
|
359 |
+
|
360 |
+
def custom_generate(self,
|
361 |
+
input_ids,
|
362 |
+
acc_embs_up_kg_mean,
|
363 |
+
acc_embs_down_kg_mean,
|
364 |
+
acc_embs_up_txt_mean,
|
365 |
+
acc_embs_down_txt_mean,
|
366 |
+
device,
|
367 |
+
max_new_tokens,
|
368 |
+
mode,
|
369 |
+
temperature=0.8,
|
370 |
+
top_p=0.2, top_k=3550,
|
371 |
+
n_next_tokens=50, num_return_sequences=1, random_seed=138):
|
372 |
+
|
373 |
+
torch.manual_seed(random_seed)
|
374 |
+
|
375 |
+
# Set parameters
|
376 |
+
# temperature - Higher value for more randomness, lower for more control
|
377 |
+
# top_p - Probability threshold for nucleus sampling (aka top-p sampling)
|
378 |
+
# top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
|
379 |
+
# n_next_tokens - Number of top next tokens when predicting compounds
|
380 |
+
|
381 |
+
modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) if isinstance(acc_embs_up_kg_mean, np.ndarray) else None
|
382 |
+
modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device) if isinstance(acc_embs_down_kg_mean, np.ndarray) else None
|
383 |
+
modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) if isinstance(acc_embs_up_txt_mean, np.ndarray) else None
|
384 |
+
modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device) if isinstance(acc_embs_down_txt_mean, np.ndarray) else None
|
385 |
+
|
386 |
+
|
387 |
+
# Generate sequences
|
388 |
+
outputs = []
|
389 |
+
next_token_compounds = []
|
390 |
+
next_token_up_genes = []
|
391 |
+
next_token_down_genes = []
|
392 |
+
|
393 |
+
for _ in range(num_return_sequences):
|
394 |
+
start_time = time.time()
|
395 |
+
generated_sequence = []
|
396 |
+
current_token = input_ids.clone()
|
397 |
+
|
398 |
+
for _ in range(max_new_tokens): # Maximum length of generated sequence
|
399 |
+
# Forward pass through the model
|
400 |
+
logits = self.model.forward(
|
401 |
+
input_ids=current_token,
|
402 |
+
modality0_emb=modality0_emb,
|
403 |
+
modality0_token_id=self.tokenizer.encode('<modality0>')[0], # 62191,
|
404 |
+
modality1_emb=modality1_emb,
|
405 |
+
modality1_token_id=self.tokenizer.encode('<modality1>')[0], # 62192,
|
406 |
+
modality2_emb=modality2_emb,
|
407 |
+
modality2_token_id=self.tokenizer.encode('<modality2>')[0], # 62193,
|
408 |
+
modality3_emb=modality3_emb,
|
409 |
+
modality3_token_id=self.tokenizer.encode('<modality3>')[0], # 62194
|
410 |
+
)[0]
|
411 |
+
|
412 |
+
# Apply temperature to logits
|
413 |
+
if temperature != 1.0:
|
414 |
+
logits = logits / temperature
|
415 |
+
|
416 |
+
# Apply top-p sampling (nucleus sampling)
|
417 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
418 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
419 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
420 |
+
|
421 |
+
if top_k > 0:
|
422 |
+
sorted_indices_to_remove[..., top_k:] = 1
|
423 |
+
|
424 |
+
# Set the logit values of the removed indices to a very small negative value
|
425 |
+
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
|
426 |
+
|
427 |
+
logits = logits.where(sorted_indices_to_remove, inf_tensor)
|
428 |
+
|
429 |
+
|
430 |
+
# Sample the next token
|
431 |
+
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0:
|
432 |
+
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
433 |
+
|
434 |
+
# Sample the next token for UP genes
|
435 |
+
if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes)==0:
|
436 |
+
next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
437 |
+
|
438 |
+
# Sample the next token for DOWN genes
|
439 |
+
if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes)==0:
|
440 |
+
next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
441 |
+
|
442 |
+
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
|
443 |
+
|
444 |
+
|
445 |
+
# Append the sampled token to the generated sequence
|
446 |
+
generated_sequence.append(next_token.item())
|
447 |
+
|
448 |
+
# Stop generation if an end token is generated
|
449 |
+
if next_token == self.tokenizer.eos_token_id:
|
450 |
+
break
|
451 |
+
|
452 |
+
# Prepare input for the next iteration
|
453 |
+
current_token = torch.cat((current_token, next_token), dim=-1)
|
454 |
+
print(time.time()-start_time)
|
455 |
+
outputs.append(generated_sequence)
|
456 |
+
|
457 |
+
# Process generated up/down lists
|
458 |
+
processed_outputs = {"up": [], "down": []}
|
459 |
+
if mode in ['meta2diff', 'meta2diff2compound']:
|
460 |
+
predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes]
|
461 |
+
predicted_up_genes = []
|
462 |
+
for j in predicted_up_genes_tokens:
|
463 |
+
generated_up_sample = [i.strip() for i in j]
|
464 |
+
predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index))
|
465 |
+
processed_outputs['up'] = predicted_up_genes
|
466 |
+
|
467 |
+
predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes]
|
468 |
+
predicted_down_genes = []
|
469 |
+
for j in predicted_down_genes_tokens:
|
470 |
+
generated_down_sample = [i.strip() for i in j]
|
471 |
+
predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index))
|
472 |
+
processed_outputs['down'] = predicted_down_genes
|
473 |
+
|
474 |
+
else:
|
475 |
+
processed_outputs = outputs
|
476 |
+
|
477 |
+
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
|
478 |
+
predicted_compounds = []
|
479 |
+
for j in predicted_compounds_ids:
|
480 |
+
predicted_compounds.append([i.strip() for i in j])
|
481 |
+
|
482 |
+
return processed_outputs, predicted_compounds, random_seed
|
483 |
+
|
484 |
+
|
485 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
486 |
+
"""
|
487 |
+
Args:
|
488 |
+
data (:dict:):
|
489 |
+
The payload with the text prompt and generation parameters.
|
490 |
+
"""
|
491 |
+
data = data.copy()
|
492 |
+
parameters = data.pop("parameters", None)
|
493 |
+
config_data = data.pop("inputs", None)
|
494 |
+
mode = data.pop('mode', 'Not specified')
|
495 |
+
|
496 |
+
prompt = self.create_prompt(config_data)
|
497 |
+
if mode != "diff2compound":
|
498 |
+
prompt+="<up>"
|
499 |
+
|
500 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
501 |
+
input_ids = inputs["input_ids"].to(self.device)
|
502 |
+
|
503 |
+
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
|
504 |
+
try:
|
505 |
+
if set(["up", "down"]) & set(config_data.keys()):
|
506 |
+
acc_embs_up1 = []
|
507 |
+
acc_embs_up2 = []
|
508 |
+
for gs in config_data['up']:
|
509 |
+
try:
|
510 |
+
acc_embs_up1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
|
511 |
+
acc_embs_up2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
|
512 |
+
except Exception as e:
|
513 |
+
pass
|
514 |
+
acc_embs_up1_mean = np.array(acc_embs_up1).mean(0) if acc_embs_up1 else None
|
515 |
+
acc_embs_up2_mean = np.array(acc_embs_up2).mean(0) if acc_embs_up2 else None
|
516 |
+
|
517 |
+
acc_embs_down1 = []
|
518 |
+
acc_embs_down2 = []
|
519 |
+
for gs in config_data['down']:
|
520 |
+
try:
|
521 |
+
acc_embs_down1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
|
522 |
+
acc_embs_down2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
|
523 |
+
except Exception as e:
|
524 |
+
pass
|
525 |
+
acc_embs_down1_mean = np.array(acc_embs_down1).mean(0) if acc_embs_down1 else None
|
526 |
+
acc_embs_down2_mean = np.array(acc_embs_down2).mean(0) if acc_embs_down2 else None
|
527 |
+
else:
|
528 |
+
acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean = None, None, None, None
|
529 |
+
|
530 |
+
generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids,
|
531 |
+
acc_embs_up_kg_mean=acc_embs_up1_mean,
|
532 |
+
acc_embs_down_kg_mean=acc_embs_down1_mean,
|
533 |
+
acc_embs_up_txt_mean=acc_embs_up2_mean,
|
534 |
+
acc_embs_down_txt_mean=acc_embs_down2_mean, max_new_tokens=max_new_tokens, mode=mode,
|
535 |
+
device=self.device, **parameters)
|
536 |
+
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]
|
537 |
+
|
538 |
+
if mode == "meta2diff":
|
539 |
+
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
540 |
+
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
|
541 |
+
elif mode == "meta2diff2compound":
|
542 |
+
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
543 |
+
out = {
|
544 |
+
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
545 |
+
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
546 |
+
elif mode == "diff2compound":
|
547 |
+
outputs = generated_sequence
|
548 |
+
out = {
|
549 |
+
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
550 |
+
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
551 |
+
else:
|
552 |
+
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}
|
553 |
+
|
554 |
+
except Exception as e:
|
555 |
+
print(e)
|
556 |
+
outputs, next_token_generation = [None], [None]
|
557 |
+
out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138}
|
558 |
+
|
559 |
+
return out
|
560 |
+
|
561 |
+
def main():
|
562 |
+
pass
|
563 |
+
|
564 |
+
if __name__=="__main__":
|
565 |
+
main()
|
demo/P3LIB/formula_picker.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pickle
|
3 |
+
from typing import List, Dict, Optional
|
4 |
+
from copy import copy as cp
|
5 |
+
import json
|
6 |
+
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
|
9 |
+
|
10 |
+
class TCMEntity(ABC):
|
11 |
+
empty_override = True
|
12 |
+
desc = ''
|
13 |
+
cid = -1
|
14 |
+
entity = 'superclass'
|
15 |
+
|
16 |
+
def __init__(self,
|
17 |
+
pref_name: str, desc: str = '',
|
18 |
+
synonyms: Optional[List[str]] = None,
|
19 |
+
**kwargs):
|
20 |
+
self.pref_name = pref_name
|
21 |
+
self.desc = desc
|
22 |
+
self.synonyms = [] if synonyms is None else [x for x in synonyms if str(x).strip() != 'NA']
|
23 |
+
|
24 |
+
self.targets = {"known": dict(), "predicted": dict()}
|
25 |
+
|
26 |
+
self.formulas = []
|
27 |
+
self.herbs = []
|
28 |
+
self.ingrs = []
|
29 |
+
|
30 |
+
for k, v in kwargs.items():
|
31 |
+
self.__dict__[k] = v
|
32 |
+
|
33 |
+
def serialize(self):
|
34 |
+
init_dict = dict(
|
35 |
+
cid=self.cid,
|
36 |
+
targets_known=self.targets['known'],
|
37 |
+
targets_pred=self.targets['predicted'],
|
38 |
+
pref_name=self.pref_name, desc=self.desc,
|
39 |
+
synonyms=cp(self.synonyms),
|
40 |
+
entity=self.entity
|
41 |
+
)
|
42 |
+
link_dict = self._get_link_dict()
|
43 |
+
out_dict = {"init": init_dict, "links": link_dict}
|
44 |
+
return out_dict
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def load(cls,
|
48 |
+
db: 'TCMDB', ser_dict: dict,
|
49 |
+
skip_links = True):
|
50 |
+
init_args = ser_dict['init']
|
51 |
+
|
52 |
+
if skip_links:
|
53 |
+
init_args.update({"empty_override":True})
|
54 |
+
else:
|
55 |
+
init_args.update({"empty_override": False})
|
56 |
+
|
57 |
+
new_entity = cls(**init_args)
|
58 |
+
if not skip_links:
|
59 |
+
links = ser_dict['links']
|
60 |
+
new_entity._set_links(db, links)
|
61 |
+
return (new_entity)
|
62 |
+
|
63 |
+
def _get_link_dict(self):
|
64 |
+
return dict(
|
65 |
+
ingrs=[x.cid for x in self.ingrs],
|
66 |
+
herbs=[x.pref_name for x in self.herbs],
|
67 |
+
formulas=[x.pref_name for x in self.formulas]
|
68 |
+
)
|
69 |
+
|
70 |
+
def _set_links(self, db: 'TCMDB', links: dict):
|
71 |
+
for ent_type in links:
|
72 |
+
self.__dict__[ent_type] = [db.__dict__[ent_type].get(x) for x in links[ent_type]]
|
73 |
+
self.__dict__[ent_type] = [x for x in self.__dict__[ent_type] if x is not None]
|
74 |
+
|
75 |
+
|
76 |
+
class Ingredient(TCMEntity):
|
77 |
+
entity: str = 'ingredient'
|
78 |
+
|
79 |
+
def __init__(self, cid: int,
|
80 |
+
targets_pred: Optional[Dict] = None,
|
81 |
+
targets_known: Optional[Dict] = None,
|
82 |
+
synonyms: Optional[List[str]] = None,
|
83 |
+
pref_name: str = '', desc: str = '',
|
84 |
+
empty_override: bool = True, **kwargs):
|
85 |
+
|
86 |
+
if not empty_override:
|
87 |
+
assert targets_known is not None or targets_pred is not None, \
|
88 |
+
f"Cant submit a compound with no targets at all (CID:{cid})"
|
89 |
+
|
90 |
+
super().__init__(pref_name, synonyms, desc, **kwargs)
|
91 |
+
|
92 |
+
self.cid = cid
|
93 |
+
self.targets = {
|
94 |
+
'known': targets_known if targets_known is not None else {"symbols": [], 'entrez_ids': []},
|
95 |
+
'predicted': targets_pred if targets_pred is not None else {"symbols": [], 'entrez_ids': []}
|
96 |
+
}
|
97 |
+
|
98 |
+
|
99 |
+
class Herb(TCMEntity):
|
100 |
+
entity: str = 'herb'
|
101 |
+
|
102 |
+
def __init__(self, pref_name: str,
|
103 |
+
ingrs: Optional[List[Ingredient]] = None,
|
104 |
+
synonyms: Optional[List[str]] = None,
|
105 |
+
desc: str = '',
|
106 |
+
empty_override: bool = True, **kwargs):
|
107 |
+
|
108 |
+
if ingrs is None:
|
109 |
+
ingrs = []
|
110 |
+
|
111 |
+
if not ingrs and not empty_override:
|
112 |
+
raise ValueError(f"No ingredients provided for {pref_name}")
|
113 |
+
|
114 |
+
super().__init__(pref_name, synonyms, desc, **kwargs)
|
115 |
+
|
116 |
+
self.ingrs = ingrs
|
117 |
+
|
118 |
+
def is_same(self, other: 'Herb') -> bool:
|
119 |
+
if len(self.ingrs) != len(other.ingrs):
|
120 |
+
return False
|
121 |
+
this_ingrs = set(x.cid for x in self.ingrs)
|
122 |
+
other_ingrs = set(x.cid for x in other.ingrs)
|
123 |
+
return this_ingrs == other_ingrs
|
124 |
+
|
125 |
+
|
126 |
+
class Formula(TCMEntity):
|
127 |
+
entity: str = 'formula'
|
128 |
+
|
129 |
+
def __init__(self, pref_name: str,
|
130 |
+
herbs: Optional[List[Herb]] = None,
|
131 |
+
synonyms: Optional[List[str]] = None,
|
132 |
+
desc: str = '',
|
133 |
+
empty_override: bool = False, **kwargs):
|
134 |
+
|
135 |
+
if herbs is None:
|
136 |
+
herbs = []
|
137 |
+
|
138 |
+
if not herbs and not empty_override:
|
139 |
+
raise ValueError(f"No herbs provided for {pref_name}")
|
140 |
+
|
141 |
+
super().__init__(pref_name, synonyms, desc, **kwargs)
|
142 |
+
self.herbs = herbs
|
143 |
+
|
144 |
+
def is_same(self, other: 'Formula') -> bool:
|
145 |
+
if len(self.herbs) != len(other.herbs):
|
146 |
+
return False
|
147 |
+
this_herbs = set(x.pref_name for x in self.herbs)
|
148 |
+
other_herbs = set(x.pref_name for x in other.herbs)
|
149 |
+
return this_herbs == other_herbs
|
150 |
+
|
151 |
+
|
152 |
+
class TCMDB:
|
153 |
+
hf_repo: str = "f-galkin/batman2"
|
154 |
+
hf_subsets: Dict[str, str] = {'formulas': 'batman_formulas',
|
155 |
+
'herbs': 'batman_herbs',
|
156 |
+
'ingredients': 'batman_ingredients'}
|
157 |
+
|
158 |
+
def __init__(self, p_batman: str):
|
159 |
+
p_batman = p_batman.removesuffix("/") + "/"
|
160 |
+
|
161 |
+
self.batman_files = dict(p_formulas='formula_browse.txt',
|
162 |
+
p_herbs='herb_browse.txt',
|
163 |
+
p_pred_by_tg='predicted_browse_by_targets.txt',
|
164 |
+
p_known_by_tg='known_browse_by_targets.txt',
|
165 |
+
p_pred_by_ingr='predicted_browse_by_ingredinets.txt',
|
166 |
+
p_known_by_ingr='known_browse_by_ingredients.txt')
|
167 |
+
|
168 |
+
self.batman_files = {x: p_batman + y for x, y in self.batman_files.items()}
|
169 |
+
|
170 |
+
self.ingrs = None
|
171 |
+
self.herbs = None
|
172 |
+
self.formulas = None
|
173 |
+
|
174 |
+
@classmethod
|
175 |
+
def make_new_db(cls, p_batman: str):
|
176 |
+
new_db = cls(p_batman)
|
177 |
+
|
178 |
+
new_db.parse_ingredients()
|
179 |
+
new_db.parse_herbs()
|
180 |
+
new_db.parse_formulas()
|
181 |
+
|
182 |
+
return (new_db)
|
183 |
+
|
184 |
+
def parse_ingredients(self):
|
185 |
+
|
186 |
+
pred_tgs = pd.read_csv(self.batman_files['p_pred_by_tg'],
|
187 |
+
sep='\t', index_col=None, header=0,
|
188 |
+
na_filter=False)
|
189 |
+
known_tgs = pd.read_csv(self.batman_files['p_known_by_tg'],
|
190 |
+
sep='\t', index_col=None, header=0,
|
191 |
+
na_filter=False)
|
192 |
+
entrez_to_symb = {int(pred_tgs.loc[x, 'entrez_gene_id']): pred_tgs.loc[x, 'entrez_gene_symbol'] for x in
|
193 |
+
pred_tgs.index}
|
194 |
+
# 9927 gene targets
|
195 |
+
entrez_to_symb.update({int(known_tgs.loc[x, 'entrez_gene_id']): \
|
196 |
+
known_tgs.loc[x, 'entrez_gene_symbol'] for x in known_tgs.index})
|
197 |
+
|
198 |
+
known_ingreds = pd.read_csv(self.batman_files['p_known_by_ingr'],
|
199 |
+
index_col=0, header=0, sep='\t',
|
200 |
+
na_filter=False)
|
201 |
+
# this BATMAN table is badly formatted
|
202 |
+
# you cant just read it
|
203 |
+
# df_pred = pd.read_csv(p_pred, index_col=0, header=0, sep='\t')
|
204 |
+
pred_ingreds = dict()
|
205 |
+
with open(self.batman_files['p_pred_by_ingr'], 'r') as f:
|
206 |
+
# skip header
|
207 |
+
f.readline()
|
208 |
+
newline = f.readline()
|
209 |
+
while newline != '':
|
210 |
+
cid, other_line = newline.split(' ', 1)
|
211 |
+
name, entrez_ids = other_line.rsplit(' ', 1)
|
212 |
+
entrez_ids = [int(x.split("(")[0]) for x in entrez_ids.split("|") if not x == "\n"]
|
213 |
+
pred_ingreds[int(cid)] = {"targets": entrez_ids, 'name': name}
|
214 |
+
newline = f.readline()
|
215 |
+
|
216 |
+
all_BATMAN_CIDs = list(set(pred_ingreds.keys()) | set(known_ingreds.index))
|
217 |
+
all_BATMAN_CIDs = [int(x) for x in all_BATMAN_CIDs if str(x).strip() != 'NA']
|
218 |
+
|
219 |
+
# get targets for selected cpds
|
220 |
+
ingredients = dict()
|
221 |
+
for cid in all_BATMAN_CIDs:
|
222 |
+
known_name, pred_name, synonyms = None, None, []
|
223 |
+
if cid in known_ingreds.index:
|
224 |
+
known_name = known_ingreds.loc[cid, 'IUPAC_name']
|
225 |
+
known_symbs = known_ingreds.loc[cid, 'known_target_proteins'].split("|")
|
226 |
+
else:
|
227 |
+
known_symbs = []
|
228 |
+
|
229 |
+
pred_ids = pred_ingreds.get(cid, [])
|
230 |
+
if pred_ids:
|
231 |
+
pred_name = pred_ids.get('name')
|
232 |
+
if known_name is None:
|
233 |
+
cpd_name = pred_name
|
234 |
+
elif known_name != pred_name:
|
235 |
+
cpd_name = min([known_name, pred_name], key=lambda x: sum([x.count(y) for y in "'()-[]1234567890"]))
|
236 |
+
synonyms = [x for x in [known_name, pred_name] if x != cpd_name]
|
237 |
+
|
238 |
+
pred_ids = pred_ids.get('targets', [])
|
239 |
+
|
240 |
+
ingredients[cid] = dict(pref_name=cpd_name,
|
241 |
+
synonyms=synonyms,
|
242 |
+
targets_known={"symbols": known_symbs,
|
243 |
+
"entrez_ids": [int(x) for x, y in entrez_to_symb.items() if
|
244 |
+
y in known_symbs]},
|
245 |
+
targets_pred={"symbols": [entrez_to_symb.get(x) for x in pred_ids],
|
246 |
+
"entrez_ids": pred_ids})
|
247 |
+
ingredients_objs = {x: Ingredient(cid=x, **y) for x, y in ingredients.items()}
|
248 |
+
self.ingrs = ingredients_objs
|
249 |
+
|
250 |
+
def parse_herbs(self):
|
251 |
+
if self.ingrs is None:
|
252 |
+
raise ValueError("Herbs cannot be added before the ingredients")
|
253 |
+
# load the herbs file
|
254 |
+
name_cols = ['Pinyin.Name', 'Chinese.Name', 'English.Name', 'Latin.Name']
|
255 |
+
herbs_df = pd.read_csv(self.batman_files['p_herbs'],
|
256 |
+
index_col=None, header=0, sep='\t',
|
257 |
+
na_filter=False)
|
258 |
+
for i in herbs_df.index:
|
259 |
+
|
260 |
+
herb_name = herbs_df.loc[i, 'Pinyin.Name'].strip()
|
261 |
+
if herb_name == 'NA':
|
262 |
+
herb_name = [x.strip() for x in herbs_df.loc[i, name_cols].tolist() if not x == 'NA']
|
263 |
+
herb_name = [x for x in herb_name if x != '']
|
264 |
+
if not herb_name:
|
265 |
+
raise ValueError(f"LINE {i}: provided a herb with no names")
|
266 |
+
else:
|
267 |
+
herb_name = herb_name[-1]
|
268 |
+
|
269 |
+
herb_cids = herbs_df.loc[i, 'Ingredients'].split("|")
|
270 |
+
|
271 |
+
herb_cids = [x.split("(")[-1].removesuffix(")").strip() for x in herb_cids]
|
272 |
+
herb_cids = [int(x) for x in herb_cids if x.isnumeric()]
|
273 |
+
|
274 |
+
missed_ingrs = [x for x in herb_cids if self.ingrs.get(x) is None]
|
275 |
+
for cid in missed_ingrs:
|
276 |
+
self.add_ingredient(cid=int(cid), pref_name='',
|
277 |
+
empty_override=True)
|
278 |
+
herb_ingrs = [self.ingrs[int(x)] for x in herb_cids]
|
279 |
+
|
280 |
+
self.add_herb(pref_name=herb_name,
|
281 |
+
ingrs=herb_ingrs,
|
282 |
+
synonyms=[x for x in herbs_df.loc[i, name_cols].tolist() if not x == "NA"],
|
283 |
+
empty_override=True)
|
284 |
+
|
285 |
+
def parse_formulas(self):
|
286 |
+
if self.herbs is None:
|
287 |
+
raise ValueError("Formulas cannot be added before the herbs")
|
288 |
+
formulas_df = pd.read_csv(self.batman_files['p_formulas'], index_col=None, header=0,
|
289 |
+
sep='\t', na_filter=False)
|
290 |
+
for i in formulas_df.index:
|
291 |
+
|
292 |
+
composition = formulas_df.loc[i, 'Pinyin.composition'].split(",")
|
293 |
+
composition = [x.strip() for x in composition if not x.strip() == 'NA']
|
294 |
+
if not composition:
|
295 |
+
continue
|
296 |
+
|
297 |
+
missed_herbs = [x.strip() for x in composition if self.herbs.get(x) is None]
|
298 |
+
for herb in missed_herbs:
|
299 |
+
self.add_herb(pref_name=herb,
|
300 |
+
desc='Missing in the original herb catalog, but present among formula components',
|
301 |
+
ingrs=[], empty_override=True)
|
302 |
+
|
303 |
+
formula_herbs = [self.herbs[x] for x in composition]
|
304 |
+
self.add_formula(pref_name=formulas_df.loc[i, 'Pinyin.Name'].strip(),
|
305 |
+
synonyms=[formulas_df.loc[i, 'Chinese.Name']],
|
306 |
+
herbs=formula_herbs)
|
307 |
+
|
308 |
+
def add_ingredient(self, **kwargs):
|
309 |
+
if self.ingrs is None:
|
310 |
+
self.ingrs = dict()
|
311 |
+
|
312 |
+
new_ingr = Ingredient(**kwargs)
|
313 |
+
if not new_ingr.cid in self.ingrs:
|
314 |
+
self.ingrs.update({new_ingr.cid: new_ingr})
|
315 |
+
|
316 |
+
def add_herb(self, **kwargs):
|
317 |
+
if self.herbs is None:
|
318 |
+
self.herbs = dict()
|
319 |
+
|
320 |
+
new_herb = Herb(**kwargs)
|
321 |
+
old_herb = self.herbs.get(new_herb.pref_name)
|
322 |
+
if not old_herb is None:
|
323 |
+
if_same = new_herb.is_same(old_herb)
|
324 |
+
if if_same:
|
325 |
+
return
|
326 |
+
|
327 |
+
same_name = new_herb.pref_name
|
328 |
+
all_dupes = [self.herbs[x] for x in self.herbs if x.split('~')[0] == same_name] + [new_herb]
|
329 |
+
new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
|
330 |
+
for i, duped in enumerate(all_dupes):
|
331 |
+
duped.pref_name = new_names[i]
|
332 |
+
self.herbs.pop(same_name)
|
333 |
+
self.herbs.update({x.pref_name: x for x in all_dupes})
|
334 |
+
else:
|
335 |
+
self.herbs.update({new_herb.pref_name: new_herb})
|
336 |
+
|
337 |
+
for cpd in new_herb.ingrs:
|
338 |
+
cpd_herbs = [x.pref_name for x in cpd.herbs]
|
339 |
+
if not new_herb.pref_name in cpd_herbs:
|
340 |
+
cpd.herbs.append(new_herb)
|
341 |
+
|
342 |
+
def add_formula(self, **kwargs):
|
343 |
+
|
344 |
+
if self.formulas is None:
|
345 |
+
self.formulas = dict()
|
346 |
+
|
347 |
+
new_formula = Formula(**kwargs)
|
348 |
+
old_formula = self.formulas.get(new_formula.pref_name)
|
349 |
+
if not old_formula is None:
|
350 |
+
is_same = new_formula.is_same(old_formula)
|
351 |
+
if is_same:
|
352 |
+
return
|
353 |
+
same_name = new_formula.pref_name
|
354 |
+
all_dupes = [self.formulas[x] for x in self.formulas if x.split('~')[0] == same_name] + [new_formula]
|
355 |
+
new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
|
356 |
+
for i, duped in enumerate(all_dupes):
|
357 |
+
duped.pref_name = new_names[i]
|
358 |
+
self.formulas.pop(same_name)
|
359 |
+
self.formulas.update({x.pref_name: x for x in all_dupes})
|
360 |
+
else:
|
361 |
+
self.formulas.update({new_formula.pref_name: new_formula})
|
362 |
+
|
363 |
+
for herb in new_formula.herbs:
|
364 |
+
herb_formulas = [x.pref_name for x in herb.formulas]
|
365 |
+
if not new_formula.pref_name in herb_formulas:
|
366 |
+
herb.formulas.append(new_formula)
|
367 |
+
|
368 |
+
def link_ingredients_n_formulas(self):
|
369 |
+
for h in self.herbs.values():
|
370 |
+
for i in h.ingrs:
|
371 |
+
fla_names = set(x.pref_name for x in i.formulas)
|
372 |
+
i.formulas += [x for x in h.formulas if not x.pref_name in fla_names]
|
373 |
+
for f in h.formulas:
|
374 |
+
ingr_cids = set(x.cid for x in f.ingrs)
|
375 |
+
f.ingrs += [x for x in h.ingrs if not x.cid in ingr_cids]
|
376 |
+
|
377 |
+
def serialize(self):
|
378 |
+
out_dict = dict(
|
379 |
+
ingredients={cid: ingr.serialize() for cid, ingr in self.ingrs.items()},
|
380 |
+
herbs={name: herb.serialize() for name, herb in self.herbs.items()},
|
381 |
+
formulas={name: formula.serialize() for name, formula in self.formulas.items()}
|
382 |
+
)
|
383 |
+
return (out_dict)
|
384 |
+
|
385 |
+
def save_to_flat_json(self, p_out: str):
|
386 |
+
ser_db = db.serialize()
|
387 |
+
flat_db = dict()
|
388 |
+
for ent_type in ser_db:
|
389 |
+
for i, obj in ser_db[ent_type].items():
|
390 |
+
flat_db[f"{ent_type}:{i}"] = obj
|
391 |
+
with open(p_out, "w") as f:
|
392 |
+
f.write(json.dumps(flat_db))
|
393 |
+
|
394 |
+
def save_to_json(self, p_out: str):
|
395 |
+
with open(p_out, "w") as f:
|
396 |
+
json.dump(self.serialize(), f)
|
397 |
+
|
398 |
+
@classmethod
|
399 |
+
def load(cls, ser_dict: dict):
|
400 |
+
db = cls(p_batman="")
|
401 |
+
|
402 |
+
# make sure to create all entities before you link them together
|
403 |
+
db.ingrs = {int(cid): Ingredient.load(db, ingr, skip_links=True) for cid, ingr in
|
404 |
+
ser_dict['ingredients'].items()}
|
405 |
+
db.herbs = {name: Herb.load(db, herb, skip_links=True) for name, herb in ser_dict['herbs'].items()}
|
406 |
+
db.formulas = {name: Formula.load(db, formula, skip_links=True) for name, formula in
|
407 |
+
ser_dict['formulas'].items()}
|
408 |
+
|
409 |
+
# now set the links
|
410 |
+
for i in db.ingrs.values():
|
411 |
+
# NB: somehow gotta make it work w/out relying on str-int conversion
|
412 |
+
i._set_links(db, ser_dict['ingredients'][str(i.cid)]['links'])
|
413 |
+
for h in db.herbs.values():
|
414 |
+
h._set_links(db, ser_dict['herbs'][h.pref_name]['links'])
|
415 |
+
for f in db.formulas.values():
|
416 |
+
f._set_links(db, ser_dict['formulas'][f.pref_name]['links'])
|
417 |
+
return (db)
|
418 |
+
|
419 |
+
@classmethod
|
420 |
+
def read_from_json(cls, p_file: str):
|
421 |
+
with open(p_file, "r") as f:
|
422 |
+
json_db = json.load(f)
|
423 |
+
db = cls.load(json_db)
|
424 |
+
return (db)
|
425 |
+
|
426 |
+
@classmethod
|
427 |
+
def download_from_hf(cls):
|
428 |
+
from datasets import load_dataset
|
429 |
+
dsets = {x: load_dataset(cls.hf_repo, y) for x, y in cls.hf_subsets.items()}
|
430 |
+
|
431 |
+
# speed this up somehow
|
432 |
+
|
433 |
+
known_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_known'])] for x in dsets['ingredients']['train']}
|
434 |
+
known_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in known_tgs.items()}
|
435 |
+
pred_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_pred'])] for x in dsets['ingredients']['train']}
|
436 |
+
pred_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in pred_tgs.items()}
|
437 |
+
|
438 |
+
json_db = dict()
|
439 |
+
json_db['ingredients'] = {str(x['cid']): {'init': dict(cid=int(x['cid']),
|
440 |
+
targets_known=known_tgs[str(x['cid'])],
|
441 |
+
targets_pred=pred_tgs[str(x['cid'])],
|
442 |
+
pref_name=x['pref_name'],
|
443 |
+
synonyms=eval(x['synonyms']),
|
444 |
+
desc=x['description']
|
445 |
+
),
|
446 |
+
|
447 |
+
'links': dict(
|
448 |
+
herbs=eval(x['herbs']),
|
449 |
+
formulas=eval(x['formulas'])
|
450 |
+
)
|
451 |
+
}
|
452 |
+
for x in dsets['ingredients']['train']}
|
453 |
+
|
454 |
+
json_db['herbs'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
|
455 |
+
synonyms=eval(x['synonyms']),
|
456 |
+
desc=x['description']),
|
457 |
+
'links': dict(ingrs=eval(x['ingredients']),
|
458 |
+
formulas=eval(x['formulas']))} for x in
|
459 |
+
dsets['herbs']['train']}
|
460 |
+
|
461 |
+
json_db['formulas'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
|
462 |
+
synonyms=eval(x['synonyms']),
|
463 |
+
desc=x['description']),
|
464 |
+
'links': dict(ingrs=eval(x['ingredients']),
|
465 |
+
herbs=eval(x['herbs']))} for x in
|
466 |
+
dsets['formulas']['train']}
|
467 |
+
|
468 |
+
db = cls.load(json_db)
|
469 |
+
return (db)
|
470 |
+
|
471 |
+
def drop_isolated(self, how='any'):
|
472 |
+
match how:
|
473 |
+
case 'any':
|
474 |
+
self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs and y.formulas)}
|
475 |
+
self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs and y.herbs)}
|
476 |
+
self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas and y.herbs)}
|
477 |
+
case 'all':
|
478 |
+
self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs or y.formulas)}
|
479 |
+
self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs or y.herbs)}
|
480 |
+
self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas or y.herbs)}
|
481 |
+
case _:
|
482 |
+
raise ValueError(f'Unknown how parameter: {how}. Known parameters are "any" and "all"')
|
483 |
+
|
484 |
+
def select_formula_by_cpd(self, cids: List):
|
485 |
+
cids = set(x for x in cids if x in self.ingrs)
|
486 |
+
if not cids:
|
487 |
+
return
|
488 |
+
cpd_counts = {x: len(set([z.cid for z in y.ingrs]) & cids) for x, y in self.formulas.items()}
|
489 |
+
n_max = max(cpd_counts.values())
|
490 |
+
if n_max == 0:
|
491 |
+
return (n_max, [])
|
492 |
+
selected = [x for x, y in cpd_counts.items() if y == n_max]
|
493 |
+
return (n_max, selected)
|
494 |
+
|
495 |
+
def pick_formula_by_cpd(self, cids: List):
|
496 |
+
cids = [x for x in cids if x in self.ingrs]
|
497 |
+
if not cids:
|
498 |
+
return
|
499 |
+
raise NotImplementedError()
|
500 |
+
|
501 |
+
def select_formula_by_herb(self, herbs: List):
|
502 |
+
raise NotImplementedError()
|
503 |
+
|
504 |
+
def pick_formula_by_herb(self, herbs: List):
|
505 |
+
raise NotImplementedError()
|
506 |
+
|
507 |
+
|
508 |
+
def main(ab_initio=False,
|
509 |
+
p_BATMAN="./BATMAN/",
|
510 |
+
fname='BATMAN_DB.json'):
|
511 |
+
p_BATMAN = p_BATMAN.removesuffix("/") + "/"
|
512 |
+
# Use in case you want to recreate the TCMDB database of Chinese medicine from BATMAN files
|
513 |
+
if ab_initio:
|
514 |
+
db = TCMDB.make_new_db(p_BATMAN)
|
515 |
+
db.link_ingredients_n_formulas()
|
516 |
+
db.save_to_json(p_BATMAN + fname)
|
517 |
+
# db.save_to_json('../TCM screening/BATMAN_DB.json')
|
518 |
+
|
519 |
+
else:
|
520 |
+
db = TCMDB.read_from_json('../TCM screening/BATMAN_DB.json')
|
521 |
+
# db = TCMDB.read_from_json(p_BATMAN + fname)
|
522 |
+
|
523 |
+
cids = [969516, # curcumin
|
524 |
+
445154, # resveratrol
|
525 |
+
5280343, # quercetin
|
526 |
+
6167, # colchicine
|
527 |
+
5280443, # apigening
|
528 |
+
65064, # EGCG3
|
529 |
+
5757, # estradiol
|
530 |
+
5994, # progesterone
|
531 |
+
5280863, # kaempferol
|
532 |
+
107985, # triptolide
|
533 |
+
14985, # alpha-tocopherol
|
534 |
+
1548943, # Capsaicin
|
535 |
+
64982, # Baicalin
|
536 |
+
6013, # Testosterone
|
537 |
+
]
|
538 |
+
|
539 |
+
p3_formula = db.select_formula_by_cpd(cids)
|
540 |
+
# somehow save file if needed ↓
|
541 |
+
ser_db = db.serialize()
|
542 |
+
|
543 |
+
|
544 |
+
###
|
545 |
+
|
546 |
+
if __name__ == '__main__':
|
547 |
+
main(ab_initio=True, p_BATMAN="./BATMAN/", fname='BATMAN_DB.json')
|
548 |
+
|
549 |
+
|