|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the CoNLL-2000 Shared Task: Chunking""" |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{tksbuchholz2000conll, |
|
author = "Tjong Kim Sang, Erik F. and Sabine Buchholz", |
|
title = "Introduction to the CoNLL-2000 Shared Task: Chunking", |
|
editor = "Claire Cardie and Walter Daelemans and Claire |
|
Nedellec and Tjong Kim Sang, Erik", |
|
booktitle = "Proceedings of CoNLL-2000 and LLL-2000", |
|
publisher = "Lisbon, Portugal", |
|
pages = "127--132", |
|
year = "2000" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Text chunking consists of dividing a text in syntactically correlated parts of words. For example, the sentence |
|
He reckons the current account deficit will narrow to only # 1.8 billion in September . can be divided as follows: |
|
[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to ] [NP only # 1.8 billion ] |
|
[PP in ] [NP September ] . |
|
|
|
Text chunking is an intermediate step towards full parsing. It was the shared task for CoNLL-2000. Training and test |
|
data for this task is available. This data consists of the same partitions of the Wall Street Journal corpus (WSJ) |
|
as the widely used data for noun phrase chunking: sections 15-18 as training data (211727 tokens) and section 20 as |
|
test data (47377 tokens). The annotation of the data has been derived from the WSJ corpus by a program written by |
|
Sabine Buchholz from Tilburg University, The Netherlands. |
|
""" |
|
|
|
_URL = "https://github.com/teropa/nlp/raw/master/resources/corpora/conll2000/" |
|
_TRAINING_FILE = "train.txt" |
|
_TEST_FILE = "test.txt" |
|
|
|
|
|
class Conll2000(datasets.GeneratorBasedBuilder): |
|
"""Conll2000 dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"''", |
|
"#", |
|
"$", |
|
"(", |
|
")", |
|
",", |
|
".", |
|
":", |
|
"``", |
|
"CC", |
|
"CD", |
|
"DT", |
|
"EX", |
|
"FW", |
|
"IN", |
|
"JJ", |
|
"JJR", |
|
"JJS", |
|
"MD", |
|
"NN", |
|
"NNP", |
|
"NNPS", |
|
"NNS", |
|
"PDT", |
|
"POS", |
|
"PRP", |
|
"PRP$", |
|
"RB", |
|
"RBR", |
|
"RBS", |
|
"RP", |
|
"SYM", |
|
"TO", |
|
"UH", |
|
"VB", |
|
"VBD", |
|
"VBG", |
|
"VBN", |
|
"VBP", |
|
"VBZ", |
|
"WDT", |
|
"WP", |
|
"WP$", |
|
"WRB", |
|
] |
|
) |
|
), |
|
"chunk_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-ADJP", |
|
"I-ADJP", |
|
"B-ADVP", |
|
"I-ADVP", |
|
"B-CONJP", |
|
"I-CONJP", |
|
"B-INTJ", |
|
"I-INTJ", |
|
"B-LST", |
|
"I-LST", |
|
"B-NP", |
|
"I-NP", |
|
"B-PP", |
|
"I-PP", |
|
"B-PRT", |
|
"I-PRT", |
|
"B-SBAR", |
|
"I-SBAR", |
|
"B-UCP", |
|
"I-UCP", |
|
"B-VP", |
|
"I-VP", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://www.clips.uantwerpen.be/conll2000/chunking/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
pos_tags = [] |
|
chunk_tags = [] |
|
for line in f: |
|
if line == "" or line == "\n": |
|
if tokens: |
|
yield guid, {"id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "chunk_tags": chunk_tags} |
|
guid += 1 |
|
tokens = [] |
|
pos_tags = [] |
|
chunk_tags = [] |
|
else: |
|
|
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
pos_tags.append(splits[1]) |
|
chunk_tags.append(splits[2].rstrip()) |
|
|
|
yield guid, {"id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "chunk_tags": chunk_tags} |
|
|