{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## ⚠️ For now, do not use this script as there is one minor problem! ⚠️\n", "### Instead just run `create_meta_data_csv_md.py` once and copy & paste the entire content of `meta_data.md` between `### Catalogue` and `### Example`.\n", "\n", "This is a jupyter notebook with two cells/scripts. However, both have the same flaw: `\\n` new line handling is messy as the table does contain entries like `...| test | \\nArticle | test data | ...` that are parsed as line breaks destroying the markdown table. \n", "\n", "If you read this and have a quick solution, please share it! I'm currently working on other features and don't have time to investigate further." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1) Read the meta_data file and update readme" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import re\n", "\n", "def update_readme_with_metadata(readme_path='README.md', metadata_path='meta_data.md'):\n", " # Step 1: Read the readme.md file\n", " with open(readme_path, 'r') as file:\n", " readme_content = file.read()\n", " \n", " # Step 2: Identify the section to replace\n", " pattern = r\"### Catalogue(.*?)### Example\"\n", " match = re.search(pattern, readme_content, re.DOTALL)\n", " \n", " if match:\n", " # Step 3: Read the metadata.md file\n", " with open(metadata_path, 'r') as file:\n", " metadata_content = file.read()\n", " \n", " # Step 4: Replace the section\n", " updated_content = re.sub(pattern, f\"### Catalogue\\n{metadata_content}\\n### Example\", readme_content, flags=re.DOTALL)\n", " \n", " # Step 5: Write the updated content back to readme.md\n", " with open(readme_path, 'w') as file:\n", " file.write(updated_content)\n", " else:\n", " print(\"The specified section was not found in the readme.md file.\")\n", "\n", "# Call the function\n", "update_readme_with_metadata()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2) Do everything in one go: parse all json.gz files, create the meta_data file and update readme. Note that this cell might not run in Jupyter due to multiprocessing issues with ipykernel. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "import os\n", "import json\n", "import gzip\n", "import csv\n", "from multiprocessing import Pool, cpu_count\n", "import time\n", "\n", "def process_json_file(file_path):\n", " with gzip.open(file_path, 'rt', encoding='utf-8') as gz_file:\n", " data = json.load(gz_file)\n", " return data.get('meta', {})\n", "\n", "def get_file_size_mb(file_path):\n", " return round(os.path.getsize(file_path) / (1024 * 1024), 2)\n", "\n", "def write_to_csv_and_md(output_csv, output_md, headers, data):\n", " with open(output_csv, 'w', newline='', encoding='utf-8') as csv_file:\n", " writer = csv.DictWriter(csv_file, fieldnames=headers)\n", " writer.writeheader()\n", " writer.writerows(data)\n", "\n", " with open(output_md, 'w', encoding='utf-8') as md_file:\n", " md_file.write(\"| \" + \" | \".join(headers) + \" |\\n\")\n", " md_file.write(\"|\" + \"|\".join([\" --- \" for _ in headers]) + \"|\\n\")\n", "\n", " for row in data:\n", " md_file.write(\"| \" + \" | \".join([str(row[header]) for header in headers]) + \" |\\n\")\n", "\n", "def process_file(file_name, input_directory, base_url):\n", " file_path = os.path.join(input_directory, file_name)\n", " meta_data = process_json_file(file_path)\n", " file_size_mb = get_file_size_mb(file_path)\n", "\n", " row_data = {\n", " \"filesize\": file_size_mb,\n", " \"filename\": file_name,\n", " \"URL\": f\"{base_url}{file_name.replace('.json.gz', '')}\",\n", " **meta_data\n", " }\n", "\n", " return row_data\n", "\n", "def replace_section_in_readme(readme_path, meta_data_path):\n", " # Read README.md content\n", " with open(readme_path, 'r', encoding='utf-8') as readme_file:\n", " readme_content = readme_file.read()\n", " \n", " # Read meta_data.md content\n", " with open(meta_data_path, 'r', encoding='utf-8') as meta_data_file:\n", " meta_data_content = meta_data_file.read()\n", " \n", " # Pattern to identify the section to replace\n", " pattern = r\"### Catalogue(.*?)### Example\"\n", " # Use re.sub to replace the section with meta_data_content\n", " updated_readme_content = re.sub(pattern, f\"### Catalogue{meta_data_content}### Example\", readme_content, flags=re.DOTALL)\n", " \n", " # Write the updated content back to README.md\n", " with open(readme_path, 'w', encoding='utf-8') as readme_file:\n", " readme_file.write(updated_readme_content)\n", "\n", "def main(input_directory, output_csv, output_md, base_url=\"https://do-me.github.io/SemanticFinder/?hf=\"):\n", " headers = [\n", " \"filesize\", \"textTitle\", \"textAuthor\", \"textYear\", \"textLanguage\", \"URL\",\n", " \"modelName\", \"quantized\", \"splitParam\", \"splitType\", \"characters\", \"chunks\",\n", " \"wordsToAvoidAll\", \"wordsToCheckAll\", \"wordsToAvoidAny\", \"wordsToCheckAny\",\n", " \"exportDecimals\", \"lines\", \"textNotes\", \"textSourceURL\", \"filename\"\n", " ]\n", "\n", " all_data = []\n", " \n", " start_time = time.time()\n", "\n", " file_list = [file_name for file_name in os.listdir(input_directory) if file_name.endswith('.json.gz')]\n", "\n", " with Pool(cpu_count()) as pool:\n", " all_data = pool.starmap(process_file, [(file_name, input_directory, base_url) for file_name in file_list])\n", "\n", " write_to_csv_and_md(output_csv, output_md, headers, all_data)\n", " \n", " replace_section_in_readme(os.path.join(input_directory, 'README.md'), os.path.join(input_directory, output_md))\n", "\n", " end_time = time.time()\n", " processing_time = end_time - start_time\n", " print(f\"Processing time: {round(processing_time, 2)} seconds\")\n", "\n", "if __name__ == \"__main__\":\n", " input_directory = \".\"\n", " output_csv = \"meta_data.csv\"\n", " output_md = \"meta_data.md\"\n", "\n", " main(input_directory, output_csv, output_md)\n" ] } ], "metadata": { "kernelspec": { "display_name": "py3.11", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 2 }