SemanticFinder / create_meta_data_csv_md.py
do-me's picture
Upload 13 files
844cd54
raw
history blame
2.49 kB
import os
import json
import gzip
import csv
from multiprocessing import Pool, cpu_count
import time
def process_json_file(file_path):
with gzip.open(file_path, 'rt', encoding='utf-8') as gz_file:
data = json.load(gz_file)
return data.get('meta', {})
def get_file_size_mb(file_path):
return round(os.path.getsize(file_path) / (1024 * 1024), 2)
def write_to_csv_and_md(output_csv, output_md, headers, data):
with open(output_csv, 'w', newline='', encoding='utf-8') as csv_file:
writer = csv.DictWriter(csv_file, fieldnames=headers)
writer.writeheader()
writer.writerows(data)
with open(output_md, 'w', encoding='utf-8') as md_file:
md_file.write("| " + " | ".join(headers) + " |\n")
md_file.write("|" + "|".join([" --- " for _ in headers]) + "|\n")
for row in data:
md_file.write("| " + " | ".join([str(row[header]) for header in headers]) + " |\n")
def process_file(file_name, input_directory, base_url):
file_path = os.path.join(input_directory, file_name)
meta_data = process_json_file(file_path)
file_size_mb = get_file_size_mb(file_path)
row_data = {
"filesize": file_size_mb,
"filename": file_name,
"URL": f"{base_url}{file_name.replace('.json.gz', '')}",
**meta_data
}
return row_data
def main(input_directory, output_csv, output_md, base_url="https://do-me.github.io/SemanticFinder/?hf="):
headers = [
"filesize", "textTitle", "textAuthor", "textYear", "textLanguage", "URL",
"modelName", "quantized", "splitParam", "splitType", "characters", "chunks",
"wordsToAvoidAll", "wordsToCheckAll", "wordsToAvoidAny", "wordsToCheckAny",
"exportDecimals", "lines", "textNotes", "textSourceURL", "filename"
]
all_data = []
start_time = time.time()
file_list = [file_name for file_name in os.listdir(input_directory) if file_name.endswith('.json.gz')]
with Pool(cpu_count()) as pool:
all_data = pool.starmap(process_file, [(file_name, input_directory, base_url) for file_name in file_list])
write_to_csv_and_md(output_csv, output_md, headers, all_data)
end_time = time.time()
processing_time = end_time - start_time
print(f"Processing time: {round(processing_time, 2)} seconds")
if __name__ == "__main__":
input_directory = "."
output_csv = "meta_data.csv"
output_md = "meta_data.md"
main(input_directory, output_csv, output_md)