|
import inspect |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import DiffusionPipeline |
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler |
|
from diffusers.utils import deprecate, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def prepare_mask_and_masked_image(image, mask): |
|
image = np.array(image.convert("RGB")) |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
mask = np.array(mask.convert("L")) |
|
mask = mask.astype(np.float32) / 255.0 |
|
mask = mask[None, None] |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask) |
|
|
|
masked_image = image * (mask < 0.5) |
|
|
|
return mask, masked_image |
|
|
|
|
|
def check_size(image, height, width): |
|
if isinstance(image, PIL.Image.Image): |
|
w, h = image.size |
|
elif isinstance(image, torch.Tensor): |
|
*_, h, w = image.shape |
|
|
|
if h != height or w != width: |
|
raise ValueError(f"Image size should be {height}x{width}, but got {h}x{w}") |
|
|
|
|
|
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int] = (0, 0)): |
|
inner_image = inner_image.convert("RGBA") |
|
image = image.convert("RGB") |
|
|
|
image.paste(inner_image, paste_offset, inner_image) |
|
image = image.convert("RGB") |
|
|
|
return image |
|
|
|
|
|
class ImageToImageInpaintingPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-guided image-to-image inpainting using Stable Diffusion. *This is an experimental feature*. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
|
|
Args: |
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, |
|
`attention_head_dim` must be a multiple of `slice_size`. |
|
""" |
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = self.unet.config.attention_head_dim // 2 |
|
self.unet.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
r""" |
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go |
|
back to computing attention in one step. |
|
""" |
|
|
|
self.enable_attention_slicing(None) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
inner_image: Union[torch.FloatTensor, PIL.Image.Image], |
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
image (`torch.Tensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will |
|
be masked out with `mask_image` and repainted according to `prompt`. |
|
inner_image (`torch.Tensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch which will be overlayed onto `image`. Non-transparent |
|
regions of `inner_image` must fit inside white pixels in `mask_image`. Expects four channels, with |
|
the last channel representing the alpha channel, which will be used to blend `inner_image` with |
|
`image`. If not provided, it will be forcibly cast to RGBA. |
|
mask_image (`PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted |
|
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) |
|
instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
check_size(image, height, width) |
|
check_size(inner_image, height, width) |
|
check_size(mask_image, height, width) |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
if text_input_ids.shape[-1] > self.tokenizer.model_max_length: |
|
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] |
|
|
|
|
|
bs_embed, seq_len, _ = text_embeddings.shape |
|
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) |
|
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1) |
|
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
|
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8) |
|
latents_dtype = text_embeddings.dtype |
|
if latents is None: |
|
if self.device.type == "mps": |
|
|
|
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( |
|
self.device |
|
) |
|
else: |
|
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
latents = latents.to(self.device) |
|
|
|
|
|
image = overlay_inner_image(image, inner_image) |
|
|
|
|
|
mask, masked_image = prepare_mask_and_masked_image(image, mask_image) |
|
mask = mask.to(device=self.device, dtype=text_embeddings.dtype) |
|
masked_image = masked_image.to(device=self.device, dtype=text_embeddings.dtype) |
|
|
|
|
|
mask = torch.nn.functional.interpolate(mask, size=(height // 8, width // 8)) |
|
|
|
|
|
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator) |
|
masked_image_latents = 0.18215 * masked_image_latents |
|
|
|
|
|
mask = mask.repeat(batch_size * num_images_per_prompt, 1, 1, 1) |
|
masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 1, 1, 1) |
|
|
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask |
|
masked_image_latents = ( |
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents |
|
) |
|
|
|
num_channels_mask = mask.shape[1] |
|
num_channels_masked_image = masked_image_latents.shape[1] |
|
|
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" |
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
|
|
timesteps_tensor = self.scheduler.timesteps.to(self.device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
|
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
latents = 1 / 0.18215 * latents |
|
image = self.vae.decode(latents).sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( |
|
self.device |
|
) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype) |
|
) |
|
else: |
|
has_nsfw_concept = None |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|