|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline |
|
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler |
|
|
|
|
|
def make_transparency_mask(size, overlap_pixels, remove_borders=[]): |
|
size_x = size[0] - overlap_pixels * 2 |
|
size_y = size[1] - overlap_pixels * 2 |
|
for letter in ["l", "r"]: |
|
if letter in remove_borders: |
|
size_x += overlap_pixels |
|
for letter in ["t", "b"]: |
|
if letter in remove_borders: |
|
size_y += overlap_pixels |
|
mask = np.ones((size_y, size_x), dtype=np.uint8) * 255 |
|
mask = np.pad(mask, mode="linear_ramp", pad_width=overlap_pixels, end_values=0) |
|
|
|
if "l" in remove_borders: |
|
mask = mask[:, overlap_pixels : mask.shape[1]] |
|
if "r" in remove_borders: |
|
mask = mask[:, 0 : mask.shape[1] - overlap_pixels] |
|
if "t" in remove_borders: |
|
mask = mask[overlap_pixels : mask.shape[0], :] |
|
if "b" in remove_borders: |
|
mask = mask[0 : mask.shape[0] - overlap_pixels, :] |
|
return mask |
|
|
|
|
|
def clamp(n, smallest, largest): |
|
return max(smallest, min(n, largest)) |
|
|
|
|
|
def clamp_rect(rect: [int], min: [int], max: [int]): |
|
return ( |
|
clamp(rect[0], min[0], max[0]), |
|
clamp(rect[1], min[1], max[1]), |
|
clamp(rect[2], min[0], max[0]), |
|
clamp(rect[3], min[1], max[1]), |
|
) |
|
|
|
|
|
def add_overlap_rect(rect: [int], overlap: int, image_size: [int]): |
|
rect = list(rect) |
|
rect[0] -= overlap |
|
rect[1] -= overlap |
|
rect[2] += overlap |
|
rect[3] += overlap |
|
rect = clamp_rect(rect, [0, 0], [image_size[0], image_size[1]]) |
|
return rect |
|
|
|
|
|
def squeeze_tile(tile, original_image, original_slice, slice_x): |
|
result = Image.new("RGB", (tile.size[0] + original_slice, tile.size[1])) |
|
result.paste( |
|
original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC).crop( |
|
(slice_x, 0, slice_x + original_slice, tile.size[1]) |
|
), |
|
(0, 0), |
|
) |
|
result.paste(tile, (original_slice, 0)) |
|
return result |
|
|
|
|
|
def unsqueeze_tile(tile, original_image_slice): |
|
crop_rect = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) |
|
tile = tile.crop(crop_rect) |
|
return tile |
|
|
|
|
|
def next_divisible(n, d): |
|
divisor = n % d |
|
return n - divisor |
|
|
|
|
|
class StableDiffusionTiledUpscalePipeline(StableDiffusionUpscalePipeline): |
|
r""" |
|
Pipeline for tile-based text-guided image super-resolution using Stable Diffusion 2, trading memory for compute |
|
to create gigantic images. |
|
|
|
This model inherits from [`StableDiffusionUpscalePipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
low_res_scheduler ([`SchedulerMixin`]): |
|
A scheduler used to add initial noise to the low res conditioning image. It must be an instance of |
|
[`DDPMScheduler`]. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
low_res_scheduler: DDPMScheduler, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
max_noise_level: int = 350, |
|
): |
|
super().__init__( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
low_res_scheduler=low_res_scheduler, |
|
scheduler=scheduler, |
|
max_noise_level=max_noise_level, |
|
) |
|
|
|
def _process_tile(self, original_image_slice, x, y, tile_size, tile_border, image, final_image, **kwargs): |
|
torch.manual_seed(0) |
|
crop_rect = ( |
|
min(image.size[0] - (tile_size + original_image_slice), x * tile_size), |
|
min(image.size[1] - (tile_size + original_image_slice), y * tile_size), |
|
min(image.size[0], (x + 1) * tile_size), |
|
min(image.size[1], (y + 1) * tile_size), |
|
) |
|
crop_rect_with_overlap = add_overlap_rect(crop_rect, tile_border, image.size) |
|
tile = image.crop(crop_rect_with_overlap) |
|
translated_slice_x = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] |
|
translated_slice_x = translated_slice_x - (original_image_slice / 2) |
|
translated_slice_x = max(0, translated_slice_x) |
|
to_input = squeeze_tile(tile, image, original_image_slice, translated_slice_x) |
|
orig_input_size = to_input.size |
|
to_input = to_input.resize((tile_size, tile_size), Image.BICUBIC) |
|
upscaled_tile = super(StableDiffusionTiledUpscalePipeline, self).__call__(image=to_input, **kwargs).images[0] |
|
upscaled_tile = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC) |
|
upscaled_tile = unsqueeze_tile(upscaled_tile, original_image_slice) |
|
upscaled_tile = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC) |
|
remove_borders = [] |
|
if x == 0: |
|
remove_borders.append("l") |
|
elif crop_rect[2] == image.size[0]: |
|
remove_borders.append("r") |
|
if y == 0: |
|
remove_borders.append("t") |
|
elif crop_rect[3] == image.size[1]: |
|
remove_borders.append("b") |
|
transparency_mask = Image.fromarray( |
|
make_transparency_mask( |
|
(upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=remove_borders |
|
), |
|
mode="L", |
|
) |
|
final_image.paste( |
|
upscaled_tile, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), transparency_mask |
|
) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[PIL.Image.Image, List[PIL.Image.Image]], |
|
num_inference_steps: int = 75, |
|
guidance_scale: float = 9.0, |
|
noise_level: int = 50, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
tile_size: int = 128, |
|
tile_border: int = 32, |
|
original_image_slice: int = 32, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`): |
|
`Image`, or tensor representing an image batch which will be upscaled. * |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
tile_size (`int`, *optional*): |
|
The size of the tiles. Too big can result in an OOM-error. |
|
tile_border (`int`, *optional*): |
|
The number of pixels around a tile to consider (bigger means less seams, too big can lead to an OOM-error). |
|
original_image_slice (`int`, *optional*): |
|
The amount of pixels of the original image to calculate with the current tile (bigger means more depth |
|
is preserved, less blur occurs in the final image, too big can lead to an OOM-error or loss in detail). |
|
callback (`Callable`, *optional*): |
|
A function that take a callback function with a single argument, a dict, |
|
that contains the (partially) processed image under "image", |
|
as well as the progress (0 to 1, where 1 is completed) under "progress". |
|
|
|
Returns: A PIL.Image that is 4 times larger than the original input image. |
|
|
|
""" |
|
|
|
final_image = Image.new("RGB", (image.size[0] * 4, image.size[1] * 4)) |
|
tcx = math.ceil(image.size[0] / tile_size) |
|
tcy = math.ceil(image.size[1] / tile_size) |
|
total_tile_count = tcx * tcy |
|
current_count = 0 |
|
for y in range(tcy): |
|
for x in range(tcx): |
|
self._process_tile( |
|
original_image_slice, |
|
x, |
|
y, |
|
tile_size, |
|
tile_border, |
|
image, |
|
final_image, |
|
prompt=prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
noise_level=noise_level, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
) |
|
current_count += 1 |
|
if callback is not None: |
|
callback({"progress": current_count / total_tile_count, "image": final_image}) |
|
return final_image |
|
|
|
|
|
def main(): |
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
pipe = StableDiffusionTiledUpscalePipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
image = Image.open("../../docs/source/imgs/diffusers_library.jpg") |
|
|
|
def callback(obj): |
|
print(f"progress: {obj['progress']:.4f}") |
|
obj["image"].save("diffusers_library_progress.jpg") |
|
|
|
final_image = pipe(image=image, prompt="Black font, white background, vector", noise_level=40, callback=callback) |
|
final_image.save("diffusers_library.jpg") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|