|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import ast |
|
import gc |
|
import inspect |
|
import math |
|
import warnings |
|
from collections.abc import Iterable |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.models.attention import Attention, GatedSelfAttentionDense |
|
from diffusers.models.attention_processor import AttnProcessor2_0 |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.pipelines import DiffusionPipeline |
|
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin |
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import DiffusionPipeline |
|
|
|
>>> pipe = DiffusionPipeline.from_pretrained( |
|
... "longlian/lmd_plus", |
|
... custom_pipeline="llm_grounded_diffusion", |
|
... custom_revision="main", |
|
... variant="fp16", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> # Generate an image described by the prompt and |
|
>>> # insert objects described by text at the region defined by bounding boxes |
|
>>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage" |
|
>>> boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]] |
|
>>> phrases = ["a waterfall", "a modern high speed train"] |
|
|
|
>>> images = pipe( |
|
... prompt=prompt, |
|
... phrases=phrases, |
|
... boxes=boxes, |
|
... gligen_scheduled_sampling_beta=0.4, |
|
... output_type="pil", |
|
... num_inference_steps=50, |
|
... lmd_guidance_kwargs={} |
|
... ).images |
|
|
|
>>> images[0].save("./lmd_plus_generation.jpg") |
|
|
|
>>> # Generate directly from a text prompt and an LLM response |
|
>>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage" |
|
>>> phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response(\""" |
|
[('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])] |
|
Background prompt: A beautiful forest with fall foliage |
|
Negative prompt: |
|
\""") |
|
|
|
>> images = pipe( |
|
... prompt=prompt, |
|
... negative_prompt=neg_prompt, |
|
... phrases=phrases, |
|
... boxes=boxes, |
|
... gligen_scheduled_sampling_beta=0.4, |
|
... output_type="pil", |
|
... num_inference_steps=50, |
|
... lmd_guidance_kwargs={} |
|
... ).images |
|
|
|
>>> images[0].save("./lmd_plus_generation.jpg") |
|
|
|
images[0] |
|
|
|
``` |
|
""" |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
DEFAULT_GUIDANCE_ATTN_KEYS = [ |
|
("mid", 0, 0, 0), |
|
("up", 1, 0, 0), |
|
("up", 1, 1, 0), |
|
("up", 1, 2, 0), |
|
] |
|
|
|
|
|
def convert_attn_keys(key): |
|
"""Convert the attention key from tuple format to the torch state format""" |
|
|
|
if key[0] == "mid": |
|
assert key[1] == 0, f"mid block only has one block but the index is {key[1]}" |
|
return f"{key[0]}_block.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor" |
|
|
|
return f"{key[0]}_blocks.{key[1]}.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor" |
|
|
|
|
|
DEFAULT_GUIDANCE_ATTN_KEYS = [convert_attn_keys(key) for key in DEFAULT_GUIDANCE_ATTN_KEYS] |
|
|
|
|
|
def scale_proportion(obj_box, H, W): |
|
|
|
x_min, y_min = round(obj_box[0] * W), round(obj_box[1] * H) |
|
box_w, box_h = round((obj_box[2] - obj_box[0]) * W), round((obj_box[3] - obj_box[1]) * H) |
|
x_max, y_max = x_min + box_w, y_min + box_h |
|
|
|
x_min, y_min = max(x_min, 0), max(y_min, 0) |
|
x_max, y_max = min(x_max, W), min(y_max, H) |
|
|
|
return x_min, y_min, x_max, y_max |
|
|
|
|
|
|
|
class AttnProcessorWithHook(AttnProcessor2_0): |
|
def __init__( |
|
self, |
|
attn_processor_key, |
|
hidden_size, |
|
cross_attention_dim, |
|
hook=None, |
|
fast_attn=True, |
|
enabled=True, |
|
): |
|
super().__init__() |
|
self.attn_processor_key = attn_processor_key |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.hook = hook |
|
self.fast_attn = fast_attn |
|
self.enabled = enabled |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
scale: float = 1.0, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
args = () if USE_PEFT_BACKEND else (scale,) |
|
query = attn.to_q(hidden_states, *args) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states, *args) |
|
value = attn.to_v(encoder_hidden_states, *args) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
if (self.hook is not None and self.enabled) or not self.fast_attn: |
|
query_batch_dim = attn.head_to_batch_dim(query) |
|
key_batch_dim = attn.head_to_batch_dim(key) |
|
value_batch_dim = attn.head_to_batch_dim(value) |
|
attention_probs = attn.get_attention_scores(query_batch_dim, key_batch_dim, attention_mask) |
|
|
|
if self.hook is not None and self.enabled: |
|
|
|
self.hook( |
|
self.attn_processor_key, |
|
query_batch_dim, |
|
key_batch_dim, |
|
value_batch_dim, |
|
attention_probs, |
|
) |
|
|
|
if self.fast_attn: |
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
attn_mask=attention_mask, |
|
dropout_p=0.0, |
|
is_causal=False, |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class LLMGroundedDiffusionPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
TextualInversionLoaderMixin, |
|
LoraLoaderMixin, |
|
IPAdapterMixin, |
|
FromSingleFileMixin, |
|
): |
|
r""" |
|
Pipeline for layout-grounded text-to-image generation using LLM-grounded Diffusion (LMD+): https://arxiv.org/pdf/2305.13655.pdf. |
|
|
|
This model inherits from [`StableDiffusionPipeline`] and aims at implementing the pipeline with minimal modifications. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
This is a simplified implementation that does not perform latent or attention transfer from single object generation to overall generation. The final image is generated directly with attention and adapters control. |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
requires_safety_checker (bool): |
|
Whether a safety checker is needed for this pipeline. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae" |
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
objects_text = "Objects: " |
|
bg_prompt_text = "Background prompt: " |
|
bg_prompt_text_no_trailing_space = bg_prompt_text.rstrip() |
|
neg_prompt_text = "Negative prompt: " |
|
neg_prompt_text_no_trailing_space = neg_prompt_text.rstrip() |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
requires_safety_checker: bool = True, |
|
): |
|
|
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["clip_sample"] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
self.register_attn_hooks(unet) |
|
self._saved_attn = None |
|
|
|
def attn_hook(self, name, query, key, value, attention_probs): |
|
if name in DEFAULT_GUIDANCE_ATTN_KEYS: |
|
self._saved_attn[name] = attention_probs |
|
|
|
@classmethod |
|
def convert_box(cls, box, height, width): |
|
|
|
x_min, y_min = box[0] / width, box[1] / height |
|
w_box, h_box = box[2] / width, box[3] / height |
|
|
|
x_max, y_max = x_min + w_box, y_min + h_box |
|
|
|
return x_min, y_min, x_max, y_max |
|
|
|
@classmethod |
|
def _parse_response_with_negative(cls, text): |
|
if not text: |
|
raise ValueError("LLM response is empty") |
|
|
|
if cls.objects_text in text: |
|
text = text.split(cls.objects_text)[1] |
|
|
|
text_split = text.split(cls.bg_prompt_text_no_trailing_space) |
|
if len(text_split) == 2: |
|
gen_boxes, text_rem = text_split |
|
else: |
|
raise ValueError(f"LLM response is incomplete: {text}") |
|
|
|
text_split = text_rem.split(cls.neg_prompt_text_no_trailing_space) |
|
|
|
if len(text_split) == 2: |
|
bg_prompt, neg_prompt = text_split |
|
else: |
|
raise ValueError(f"LLM response is incomplete: {text}") |
|
|
|
try: |
|
gen_boxes = ast.literal_eval(gen_boxes) |
|
except SyntaxError as e: |
|
|
|
if "No objects" in gen_boxes or gen_boxes.strip() == "": |
|
gen_boxes = [] |
|
else: |
|
raise e |
|
bg_prompt = bg_prompt.strip() |
|
neg_prompt = neg_prompt.strip() |
|
|
|
|
|
if neg_prompt == "None": |
|
neg_prompt = "" |
|
|
|
return gen_boxes, bg_prompt, neg_prompt |
|
|
|
@classmethod |
|
def parse_llm_response(cls, response, canvas_height=512, canvas_width=512): |
|
|
|
gen_boxes, bg_prompt, neg_prompt = cls._parse_response_with_negative(text=response) |
|
|
|
gen_boxes = sorted(gen_boxes, key=lambda gen_box: gen_box[0]) |
|
|
|
phrases = [name for name, _ in gen_boxes] |
|
boxes = [cls.convert_box(box, height=canvas_height, width=canvas_width) for _, box in gen_boxes] |
|
|
|
return phrases, boxes, bg_prompt, neg_prompt |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
phrases, |
|
boxes, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
phrase_indices=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt is None and phrase_indices is None: |
|
raise ValueError("If the prompt is None, the phrase_indices cannot be None") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if len(phrases) != len(boxes): |
|
raise ValueError( |
|
"length of `phrases` and `boxes` has to be same, but" |
|
f" got: `phrases` {len(phrases)} != `boxes` {len(boxes)}" |
|
) |
|
|
|
def register_attn_hooks(self, unet): |
|
"""Registering hooks to obtain the attention maps for guidance""" |
|
|
|
attn_procs = {} |
|
|
|
for name in unet.attn_processors.keys(): |
|
|
|
if name.endswith("attn1.processor") or name.endswith("fuser.attn.processor"): |
|
|
|
attn_procs[name] = unet.attn_processors[name] |
|
continue |
|
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
|
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
|
|
attn_procs[name] = AttnProcessorWithHook( |
|
attn_processor_key=name, |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
hook=self.attn_hook, |
|
fast_attn=True, |
|
|
|
enabled=False, |
|
) |
|
|
|
unet.set_attn_processor(attn_procs) |
|
|
|
def enable_fuser(self, enabled=True): |
|
for module in self.unet.modules(): |
|
if isinstance(module, GatedSelfAttentionDense): |
|
module.enabled = enabled |
|
|
|
def enable_attn_hook(self, enabled=True): |
|
for module in self.unet.attn_processors.values(): |
|
if isinstance(module, AttnProcessorWithHook): |
|
module.enabled = enabled |
|
|
|
def get_token_map(self, prompt, padding="do_not_pad", verbose=False): |
|
"""Get a list of mapping: prompt index to str (prompt in a list of token str)""" |
|
fg_prompt_tokens = self.tokenizer([prompt], padding=padding, max_length=77, return_tensors="np") |
|
input_ids = fg_prompt_tokens["input_ids"][0] |
|
|
|
token_map = [] |
|
for ind, item in enumerate(input_ids.tolist()): |
|
token = self.tokenizer._convert_id_to_token(item) |
|
|
|
if verbose: |
|
logger.info(f"{ind}, {token} ({item})") |
|
|
|
token_map.append(token) |
|
|
|
return token_map |
|
|
|
def get_phrase_indices( |
|
self, |
|
prompt, |
|
phrases, |
|
token_map=None, |
|
add_suffix_if_not_found=False, |
|
verbose=False, |
|
): |
|
for obj in phrases: |
|
|
|
if obj not in prompt: |
|
prompt += "| " + obj |
|
|
|
if token_map is None: |
|
|
|
token_map = self.get_token_map(prompt=prompt, padding="do_not_pad", verbose=verbose) |
|
token_map_str = " ".join(token_map) |
|
|
|
phrase_indices = [] |
|
|
|
for obj in phrases: |
|
phrase_token_map = self.get_token_map(prompt=obj, padding="do_not_pad", verbose=verbose) |
|
|
|
phrase_token_map = phrase_token_map[1:-1] |
|
phrase_token_map_len = len(phrase_token_map) |
|
phrase_token_map_str = " ".join(phrase_token_map) |
|
|
|
if verbose: |
|
logger.info( |
|
"Full str:", |
|
token_map_str, |
|
"Substr:", |
|
phrase_token_map_str, |
|
"Phrase:", |
|
phrases, |
|
) |
|
|
|
|
|
|
|
obj_first_index = len(token_map_str[: token_map_str.index(phrase_token_map_str) - 1].split(" ")) |
|
|
|
obj_position = list(range(obj_first_index, obj_first_index + phrase_token_map_len)) |
|
phrase_indices.append(obj_position) |
|
|
|
if add_suffix_if_not_found: |
|
return phrase_indices, prompt |
|
|
|
return phrase_indices |
|
|
|
def add_ca_loss_per_attn_map_to_loss( |
|
self, |
|
loss, |
|
attn_map, |
|
object_number, |
|
bboxes, |
|
phrase_indices, |
|
fg_top_p=0.2, |
|
bg_top_p=0.2, |
|
fg_weight=1.0, |
|
bg_weight=1.0, |
|
): |
|
|
|
b, i, j = attn_map.shape |
|
H = W = int(math.sqrt(i)) |
|
for obj_idx in range(object_number): |
|
obj_loss = 0 |
|
mask = torch.zeros(size=(H, W), device="cuda") |
|
obj_boxes = bboxes[obj_idx] |
|
|
|
|
|
if not isinstance(obj_boxes[0], Iterable): |
|
obj_boxes = [obj_boxes] |
|
|
|
for obj_box in obj_boxes: |
|
|
|
x_min, y_min, x_max, y_max = scale_proportion(obj_box, H=H, W=W) |
|
mask[y_min:y_max, x_min:x_max] = 1 |
|
|
|
for obj_position in phrase_indices[obj_idx]: |
|
|
|
|
|
|
|
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W) |
|
|
|
|
|
ca_map_obj = attn_map[:, :, obj_position] |
|
k_fg = (mask.sum() * fg_top_p).long().clamp_(min=1) |
|
k_bg = ((1 - mask).sum() * bg_top_p).long().clamp_(min=1) |
|
|
|
mask_1d = mask.view(1, -1) |
|
|
|
|
|
|
|
|
|
|
|
obj_loss += (1 - (ca_map_obj * mask_1d).topk(k=k_fg).values.mean(dim=1)).sum(dim=0) * fg_weight |
|
obj_loss += ((ca_map_obj * (1 - mask_1d)).topk(k=k_bg).values.mean(dim=1)).sum(dim=0) * bg_weight |
|
|
|
loss += obj_loss / len(phrase_indices[obj_idx]) |
|
|
|
return loss |
|
|
|
def compute_ca_loss( |
|
self, |
|
saved_attn, |
|
bboxes, |
|
phrase_indices, |
|
guidance_attn_keys, |
|
verbose=False, |
|
**kwargs, |
|
): |
|
""" |
|
The `saved_attn` is supposed to be passed to `save_attn_to_dict` in `cross_attention_kwargs` prior to computing ths loss. |
|
`AttnProcessor` will put attention maps into the `save_attn_to_dict`. |
|
|
|
`index` is the timestep. |
|
`ref_ca_word_token_only`: This has precedence over `ref_ca_last_token_only` (i.e., if both are enabled, we take the token from word rather than the last token). |
|
`ref_ca_last_token_only`: `ref_ca_saved_attn` comes from the attention map of the last token of the phrase in single object generation, so we apply it only to the last token of the phrase in overall generation if this is set to True. If set to False, `ref_ca_saved_attn` will be applied to all the text tokens. |
|
""" |
|
loss = torch.tensor(0).float().cuda() |
|
object_number = len(bboxes) |
|
if object_number == 0: |
|
return loss |
|
|
|
for attn_key in guidance_attn_keys: |
|
|
|
|
|
attn_map_integrated = saved_attn[attn_key] |
|
if not attn_map_integrated.is_cuda: |
|
attn_map_integrated = attn_map_integrated.cuda() |
|
|
|
attn_map = attn_map_integrated.squeeze(dim=0) |
|
|
|
loss = self.add_ca_loss_per_attn_map_to_loss( |
|
loss, attn_map, object_number, bboxes, phrase_indices, **kwargs |
|
) |
|
|
|
num_attn = len(guidance_attn_keys) |
|
|
|
if num_attn > 0: |
|
loss = loss / (object_number * num_attn) |
|
|
|
return loss |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
gligen_scheduled_sampling_beta: float = 0.3, |
|
phrases: List[str] = None, |
|
boxes: List[List[float]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
lmd_guidance_kwargs: Optional[Dict[str, Any]] = {}, |
|
phrase_indices: Optional[List[int]] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
phrases (`List[str]`): |
|
The phrases to guide what to include in each of the regions defined by the corresponding |
|
`boxes`. There should only be one phrase per bounding box. |
|
boxes (`List[List[float]]`): |
|
The bounding boxes that identify rectangular regions of the image that are going to be filled with the |
|
content described by the corresponding `phrases`. Each rectangular box is defined as a |
|
`List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1]. |
|
gligen_scheduled_sampling_beta (`float`, defaults to 0.3): |
|
Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image |
|
Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for |
|
scheduled sampling during inference for improved quality and controllability. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when |
|
using zero terminal SNR. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
lmd_guidance_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to `latent_lmd_guidance` function. Useful keys include `loss_scale` (the guidance strength), `loss_threshold` (when loss is lower than this value, the guidance is not applied anymore), `max_iter` (the number of iterations of guidance for each step), and `guidance_timesteps` (the number of diffusion timesteps to apply guidance on). See `latent_lmd_guidance` for implementation details. |
|
phrase_indices (`list` of `list`, *optional*): The indices of the tokens of each phrase in the overall prompt. If omitted, the pipeline will match the first token subsequence. The pipeline will append the missing phrases to the end of the prompt by default. |
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
phrases, |
|
boxes, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
phrase_indices, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
if phrase_indices is None: |
|
phrase_indices, prompt = self.get_phrase_indices(prompt, phrases, add_suffix_if_not_found=True) |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
if phrase_indices is None: |
|
phrase_indices = [] |
|
prompt_parsed = [] |
|
for prompt_item in prompt: |
|
( |
|
phrase_indices_parsed_item, |
|
prompt_parsed_item, |
|
) = self.get_phrase_indices(prompt_item, add_suffix_if_not_found=True) |
|
phrase_indices.append(phrase_indices_parsed_item) |
|
prompt_parsed.append(prompt_parsed_item) |
|
prompt = prompt_parsed |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
cond_prompt_embeds = prompt_embeds |
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None: |
|
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) |
|
if self.do_classifier_free_guidance: |
|
image_embeds = torch.cat([negative_image_embeds, image_embeds]) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
max_objs = 30 |
|
if len(boxes) > max_objs: |
|
warnings.warn( |
|
f"More that {max_objs} objects found. Only first {max_objs} objects will be processed.", |
|
FutureWarning, |
|
) |
|
phrases = phrases[:max_objs] |
|
boxes = boxes[:max_objs] |
|
|
|
n_objs = len(boxes) |
|
if n_objs: |
|
|
|
|
|
tokenizer_inputs = self.tokenizer(phrases, padding=True, return_tensors="pt").to(device) |
|
|
|
|
|
_text_embeddings = self.text_encoder(**tokenizer_inputs).pooler_output |
|
|
|
|
|
|
|
cond_boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) |
|
if n_objs: |
|
cond_boxes[:n_objs] = torch.tensor(boxes) |
|
text_embeddings = torch.zeros( |
|
max_objs, |
|
self.unet.config.cross_attention_dim, |
|
device=device, |
|
dtype=self.text_encoder.dtype, |
|
) |
|
if n_objs: |
|
text_embeddings[:n_objs] = _text_embeddings |
|
|
|
masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) |
|
masks[:n_objs] = 1 |
|
|
|
repeat_batch = batch_size * num_images_per_prompt |
|
cond_boxes = cond_boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone() |
|
text_embeddings = text_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone() |
|
masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone() |
|
if do_classifier_free_guidance: |
|
repeat_batch = repeat_batch * 2 |
|
cond_boxes = torch.cat([cond_boxes] * 2) |
|
text_embeddings = torch.cat([text_embeddings] * 2) |
|
masks = torch.cat([masks] * 2) |
|
masks[: repeat_batch // 2] = 0 |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
cross_attention_kwargs["gligen"] = { |
|
"boxes": cond_boxes, |
|
"positive_embeddings": text_embeddings, |
|
"masks": masks, |
|
} |
|
|
|
num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps)) |
|
self.enable_fuser(True) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None |
|
|
|
loss_attn = torch.tensor(10000.0) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
if i == num_grounding_steps: |
|
self.enable_fuser(False) |
|
|
|
if latents.shape[1] != 4: |
|
latents = torch.randn_like(latents[:, :4]) |
|
|
|
|
|
if boxes: |
|
latents, loss_attn = self.latent_lmd_guidance( |
|
cond_prompt_embeds, |
|
index=i, |
|
boxes=boxes, |
|
phrase_indices=phrase_indices, |
|
t=t, |
|
latents=latents, |
|
loss=loss_attn, |
|
**lmd_guidance_kwargs, |
|
) |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
@torch.set_grad_enabled(True) |
|
def latent_lmd_guidance( |
|
self, |
|
cond_embeddings, |
|
index, |
|
boxes, |
|
phrase_indices, |
|
t, |
|
latents, |
|
loss, |
|
*, |
|
loss_scale=20, |
|
loss_threshold=5.0, |
|
max_iter=[3] * 5 + [2] * 5 + [1] * 5, |
|
guidance_timesteps=15, |
|
cross_attention_kwargs=None, |
|
guidance_attn_keys=DEFAULT_GUIDANCE_ATTN_KEYS, |
|
verbose=False, |
|
clear_cache=False, |
|
unet_additional_kwargs={}, |
|
guidance_callback=None, |
|
**kwargs, |
|
): |
|
scheduler, unet = self.scheduler, self.unet |
|
|
|
iteration = 0 |
|
|
|
if index < guidance_timesteps: |
|
if isinstance(max_iter, list): |
|
max_iter = max_iter[index] |
|
|
|
if verbose: |
|
logger.info( |
|
f"time index {index}, loss: {loss.item()/loss_scale:.3f} (de-scaled with scale {loss_scale:.1f}), loss threshold: {loss_threshold:.3f}" |
|
) |
|
|
|
try: |
|
self.enable_attn_hook(enabled=True) |
|
|
|
while ( |
|
loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < guidance_timesteps |
|
): |
|
self._saved_attn = {} |
|
|
|
latents.requires_grad_(True) |
|
latent_model_input = latents |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=cond_embeddings, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
**unet_additional_kwargs, |
|
) |
|
|
|
|
|
loss = ( |
|
self.compute_ca_loss( |
|
saved_attn=self._saved_attn, |
|
bboxes=boxes, |
|
phrase_indices=phrase_indices, |
|
guidance_attn_keys=guidance_attn_keys, |
|
verbose=verbose, |
|
**kwargs, |
|
) |
|
* loss_scale |
|
) |
|
|
|
if torch.isnan(loss): |
|
raise RuntimeError("**Loss is NaN**") |
|
|
|
|
|
if guidance_callback is not None: |
|
guidance_callback(self, latents, loss, iteration, index) |
|
|
|
self._saved_attn = None |
|
|
|
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0] |
|
|
|
latents.requires_grad_(False) |
|
|
|
|
|
alpha_prod_t = scheduler.alphas_cumprod[t] |
|
|
|
|
|
scale = (1 - alpha_prod_t) ** (0.5) |
|
latents = latents - scale * grad_cond |
|
|
|
iteration += 1 |
|
|
|
if clear_cache: |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
if verbose: |
|
logger.info( |
|
f"time index {index}, loss: {loss.item()/loss_scale:.3f}, loss threshold: {loss_threshold:.3f}, iteration: {iteration}" |
|
) |
|
|
|
finally: |
|
self.enable_attn_hook(enabled=False) |
|
|
|
return latents, loss |
|
|
|
|
|
|
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
**kwargs, |
|
): |
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
**kwargs, |
|
) |
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def decode_latents(self, latents): |
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" |
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
timesteps (`torch.Tensor`): |
|
generate embedding vectors at these timesteps |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
dimension of the embeddings to generate |
|
dtype: |
|
data type of the generated embeddings |
|
|
|
Returns: |
|
`torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|