|
""" |
|
modeled after the textual_inversion.py / train_dreambooth.py and the work |
|
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb |
|
""" |
|
import inspect |
|
import warnings |
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
import torch.nn.functional as F |
|
from accelerate import Accelerator |
|
|
|
|
|
from packaging import version |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import DiffusionPipeline |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler |
|
from diffusers.utils import logging |
|
|
|
|
|
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): |
|
PIL_INTERPOLATION = { |
|
"linear": PIL.Image.Resampling.BILINEAR, |
|
"bilinear": PIL.Image.Resampling.BILINEAR, |
|
"bicubic": PIL.Image.Resampling.BICUBIC, |
|
"lanczos": PIL.Image.Resampling.LANCZOS, |
|
"nearest": PIL.Image.Resampling.NEAREST, |
|
} |
|
else: |
|
PIL_INTERPOLATION = { |
|
"linear": PIL.Image.LINEAR, |
|
"bilinear": PIL.Image.BILINEAR, |
|
"bicubic": PIL.Image.BICUBIC, |
|
"lanczos": PIL.Image.LANCZOS, |
|
"nearest": PIL.Image.NEAREST, |
|
} |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def preprocess(image): |
|
w, h = image.size |
|
w, h = (x - x % 32 for x in (w, h)) |
|
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
return 2.0 * image - 1.0 |
|
|
|
|
|
class ImagicStableDiffusionPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for imagic image editing. |
|
See paper here: https://arxiv.org/pdf/2210.09276.pdf |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offsensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
): |
|
super().__init__() |
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
r""" |
|
Enable sliced attention computation. |
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
Args: |
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, |
|
`attention_head_dim` must be a multiple of `slice_size`. |
|
""" |
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = self.unet.config.attention_head_dim // 2 |
|
self.unet.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
r""" |
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go |
|
back to computing attention in one step. |
|
""" |
|
|
|
self.enable_attention_slicing(None) |
|
|
|
def train( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
generator: Optional[torch.Generator] = None, |
|
embedding_learning_rate: float = 0.001, |
|
diffusion_model_learning_rate: float = 2e-6, |
|
text_embedding_optimization_steps: int = 500, |
|
model_fine_tuning_optimization_steps: int = 1000, |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=1, |
|
mixed_precision="fp16", |
|
) |
|
|
|
if "torch_device" in kwargs: |
|
device = kwargs.pop("torch_device") |
|
warnings.warn( |
|
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." |
|
" Consider using `pipe.to(torch_device)` instead." |
|
) |
|
|
|
if device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.to(device) |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
|
|
self.vae.requires_grad_(False) |
|
self.unet.requires_grad_(False) |
|
self.text_encoder.requires_grad_(False) |
|
self.unet.eval() |
|
self.vae.eval() |
|
self.text_encoder.eval() |
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers( |
|
"imagic", |
|
config={ |
|
"embedding_learning_rate": embedding_learning_rate, |
|
"text_embedding_optimization_steps": text_embedding_optimization_steps, |
|
}, |
|
) |
|
|
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_embeddings = torch.nn.Parameter( |
|
self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True |
|
) |
|
text_embeddings = text_embeddings.detach() |
|
text_embeddings.requires_grad_() |
|
text_embeddings_orig = text_embeddings.clone() |
|
|
|
|
|
optimizer = torch.optim.Adam( |
|
[text_embeddings], |
|
lr=embedding_learning_rate, |
|
) |
|
|
|
if isinstance(image, PIL.Image.Image): |
|
image = preprocess(image) |
|
|
|
latents_dtype = text_embeddings.dtype |
|
image = image.to(device=self.device, dtype=latents_dtype) |
|
init_latent_image_dist = self.vae.encode(image).latent_dist |
|
image_latents = init_latent_image_dist.sample(generator=generator) |
|
image_latents = 0.18215 * image_latents |
|
|
|
progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description("Steps") |
|
|
|
global_step = 0 |
|
|
|
logger.info("First optimizing the text embedding to better reconstruct the init image") |
|
for _ in range(text_embedding_optimization_steps): |
|
with accelerator.accumulate(text_embeddings): |
|
|
|
noise = torch.randn(image_latents.shape).to(image_latents.device) |
|
timesteps = torch.randint(1000, (1,), device=image_latents.device) |
|
|
|
|
|
|
|
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps) |
|
|
|
|
|
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample |
|
|
|
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
|
accelerator.backward(loss) |
|
|
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
logs = {"loss": loss.detach().item()} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
text_embeddings.requires_grad_(False) |
|
|
|
|
|
self.unet.requires_grad_(True) |
|
self.unet.train() |
|
optimizer = torch.optim.Adam( |
|
self.unet.parameters(), |
|
lr=diffusion_model_learning_rate, |
|
) |
|
progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process) |
|
|
|
logger.info("Next fine tuning the entire model to better reconstruct the init image") |
|
for _ in range(model_fine_tuning_optimization_steps): |
|
with accelerator.accumulate(self.unet.parameters()): |
|
|
|
noise = torch.randn(image_latents.shape).to(image_latents.device) |
|
timesteps = torch.randint(1000, (1,), device=image_latents.device) |
|
|
|
|
|
|
|
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps) |
|
|
|
|
|
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample |
|
|
|
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
|
accelerator.backward(loss) |
|
|
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
logs = {"loss": loss.detach().item()} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
accelerator.wait_for_everyone() |
|
self.text_embeddings_orig = text_embeddings_orig |
|
self.text_embeddings = text_embeddings |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
alpha: float = 1.2, |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
num_inference_steps: Optional[int] = 50, |
|
generator: Optional[torch.Generator] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
guidance_scale: float = 7.5, |
|
eta: float = 0.0, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
if self.text_embeddings is None: |
|
raise ValueError("Please run the pipe.train() before trying to generate an image.") |
|
if self.text_embeddings_orig is None: |
|
raise ValueError("Please run the pipe.train() before trying to generate an image.") |
|
|
|
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [""] |
|
max_length = self.tokenizer.model_max_length |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
uncond_embeddings = uncond_embeddings.view(1, seq_len, -1) |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
latents_shape = (1, self.unet.config.in_channels, height // 8, width // 8) |
|
latents_dtype = text_embeddings.dtype |
|
if self.device.type == "mps": |
|
|
|
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( |
|
self.device |
|
) |
|
else: |
|
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
|
|
timesteps_tensor = self.scheduler.timesteps.to(self.device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
latents = 1 / 0.18215 * latents |
|
image = self.vae.decode(latents).sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( |
|
self.device |
|
) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype) |
|
) |
|
else: |
|
has_nsfw_concept = None |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|