Datasets:

ArXiv:
File size: 104,454 Bytes
3d01aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
## ----------------------------------------------------------
# A SDXL pipeline can take unlimited weighted prompt
#
# Author: Andrew Zhu
# Github: https://github.com/xhinker
# Medium: https://medium.com/@xhinker
## -----------------------------------------------------------

import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
from PIL import Image
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
    AttnProcessor2_0,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    deprecate,
    is_accelerate_available,
    is_accelerate_version,
    is_invisible_watermark_available,
    logging,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor


if is_invisible_watermark_available():
    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker


def parse_prompt_attention(text):
    """
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
      \\( - literal character '('
      \\[ - literal character '['
      \\) - literal character ')'
      \\] - literal character ']'
      \\ - literal character '\'
      anything else - just text

    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
    >>> parse_prompt_attention('\\(literal\\]')
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """
    import re

    re_attention = re.compile(
        r"""
            \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
            \)|]|[^\\()\[\]:]+|:
        """,
        re.X,
    )

    re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            parts = re.split(re_break, text)
            for i, part in enumerate(parts):
                if i > 0:
                    res.append(["BREAK", -1])
                res.append([part, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str):
    """
    Get prompt token ids and weights, this function works for both prompt and negative prompt

    Args:
        pipe (CLIPTokenizer)
            A CLIPTokenizer
        prompt (str)
            A prompt string with weights

    Returns:
        text_tokens (list)
            A list contains token ids
        text_weight (list)
            A list contains the correspondent weight of token ids

    Example:
        import torch
        from transformers import CLIPTokenizer

        clip_tokenizer = CLIPTokenizer.from_pretrained(
            "stablediffusionapi/deliberate-v2"
            , subfolder = "tokenizer"
            , dtype = torch.float16
        )

        token_id_list, token_weight_list = get_prompts_tokens_with_weights(
            clip_tokenizer = clip_tokenizer
            ,prompt = "a (red:1.5) cat"*70
        )
    """
    texts_and_weights = parse_prompt_attention(prompt)
    text_tokens, text_weights = [], []
    for word, weight in texts_and_weights:
        # tokenize and discard the starting and the ending token
        token = clip_tokenizer(word, truncation=False).input_ids[1:-1]  # so that tokenize whatever length prompt
        # the returned token is a 1d list: [320, 1125, 539, 320]

        # merge the new tokens to the all tokens holder: text_tokens
        text_tokens = [*text_tokens, *token]

        # each token chunk will come with one weight, like ['red cat', 2.0]
        # need to expand weight for each token.
        chunk_weights = [weight] * len(token)

        # append the weight back to the weight holder: text_weights
        text_weights = [*text_weights, *chunk_weights]
    return text_tokens, text_weights


def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False):
    """
    Produce tokens and weights in groups and pad the missing tokens

    Args:
        token_ids (list)
            The token ids from tokenizer
        weights (list)
            The weights list from function get_prompts_tokens_with_weights
        pad_last_block (bool)
            Control if fill the last token list to 75 tokens with eos
    Returns:
        new_token_ids (2d list)
        new_weights (2d list)

    Example:
        token_groups,weight_groups = group_tokens_and_weights(
            token_ids = token_id_list
            , weights = token_weight_list
        )
    """
    bos, eos = 49406, 49407

    # this will be a 2d list
    new_token_ids = []
    new_weights = []
    while len(token_ids) >= 75:
        # get the first 75 tokens
        head_75_tokens = [token_ids.pop(0) for _ in range(75)]
        head_75_weights = [weights.pop(0) for _ in range(75)]

        # extract token ids and weights
        temp_77_token_ids = [bos] + head_75_tokens + [eos]
        temp_77_weights = [1.0] + head_75_weights + [1.0]

        # add 77 token and weights chunk to the holder list
        new_token_ids.append(temp_77_token_ids)
        new_weights.append(temp_77_weights)

    # padding the left
    if len(token_ids) > 0:
        padding_len = 75 - len(token_ids) if pad_last_block else 0

        temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
        new_token_ids.append(temp_77_token_ids)

        temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
        new_weights.append(temp_77_weights)

    return new_token_ids, new_weights


def get_weighted_text_embeddings_sdxl(
    pipe: StableDiffusionXLPipeline,
    prompt: str = "",
    prompt_2: str = None,
    neg_prompt: str = "",
    neg_prompt_2: str = None,
    num_images_per_prompt: int = 1,
    device: Optional[torch.device] = None,
    clip_skip: Optional[int] = None,
):
    """
    This function can process long prompt with weights, no length limitation
    for Stable Diffusion XL

    Args:
        pipe (StableDiffusionPipeline)
        prompt (str)
        prompt_2 (str)
        neg_prompt (str)
        neg_prompt_2 (str)
        num_images_per_prompt (int)
        device (torch.device)
        clip_skip (int)
    Returns:
        prompt_embeds (torch.Tensor)
        neg_prompt_embeds (torch.Tensor)
    """
    device = device or pipe._execution_device

    if prompt_2:
        prompt = f"{prompt} {prompt_2}"

    if neg_prompt_2:
        neg_prompt = f"{neg_prompt} {neg_prompt_2}"

    prompt_t1 = prompt_t2 = prompt
    neg_prompt_t1 = neg_prompt_t2 = neg_prompt

    if isinstance(pipe, TextualInversionLoaderMixin):
        prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer)
        neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer)
        prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2)
        neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2)

    eos = pipe.tokenizer.eos_token_id

    # tokenizer 1
    prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1)
    neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1)

    # tokenizer 2
    prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2)
    neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2)

    # padding the shorter one for prompt set 1
    prompt_token_len = len(prompt_tokens)
    neg_prompt_token_len = len(neg_prompt_tokens)

    if prompt_token_len > neg_prompt_token_len:
        # padding the neg_prompt with eos token
        neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
        neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
    else:
        # padding the prompt
        prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
        prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)

    # padding the shorter one for token set 2
    prompt_token_len_2 = len(prompt_tokens_2)
    neg_prompt_token_len_2 = len(neg_prompt_tokens_2)

    if prompt_token_len_2 > neg_prompt_token_len_2:
        # padding the neg_prompt with eos token
        neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
        neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
    else:
        # padding the prompt
        prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
        prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)

    embeds = []
    neg_embeds = []

    prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())

    neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights(
        neg_prompt_tokens.copy(), neg_prompt_weights.copy()
    )

    prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights(
        prompt_tokens_2.copy(), prompt_weights_2.copy()
    )

    neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights(
        neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
    )

    # get prompt embeddings one by one is not working.
    for i in range(len(prompt_token_groups)):
        # get positive prompt embeddings with weights
        token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device)
        weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device)

        token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device)

        # use first text encoder
        prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True)

        # use second text encoder
        prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True)
        pooled_prompt_embeds = prompt_embeds_2[0]

        if clip_skip is None:
            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
        else:
            # "2" because SDXL always indexes from the penultimate layer.
            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)]
            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)]

        prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
        token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)

        for j in range(len(weight_tensor)):
            if weight_tensor[j] != 1.0:
                token_embedding[j] = (
                    token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
                )

        token_embedding = token_embedding.unsqueeze(0)
        embeds.append(token_embedding)

        # get negative prompt embeddings with weights
        neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device)
        neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device)
        neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device)

        # use first text encoder
        neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True)
        neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]

        # use second text encoder
        neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True)
        neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
        negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]

        neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
        neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)

        for z in range(len(neg_weight_tensor)):
            if neg_weight_tensor[z] != 1.0:
                neg_token_embedding[z] = (
                    neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
                )

        neg_token_embedding = neg_token_embedding.unsqueeze(0)
        neg_embeds.append(neg_token_embedding)

    prompt_embeds = torch.cat(embeds, dim=1)
    negative_prompt_embeds = torch.cat(neg_embeds, dim=1)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    seq_len = negative_prompt_embeds.shape[1]
    negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
    negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
        bs_embed * num_images_per_prompt, -1
    )
    negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
        bs_embed * num_images_per_prompt, -1
    )

    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds


# -------------------------------------------------------------------------------------------------------------------------------
# reuse the backbone code from StableDiffusionXLPipeline
# -------------------------------------------------------------------------------------------------------------------------------

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipe = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0"
            , torch_dtype       = torch.float16
            , use_safetensors   = True
            , variant           = "fp16"
            , custom_pipeline   = "lpw_stable_diffusion_xl",
        )

        prompt = "a white cat running on the grass"*20
        prompt2 = "play a football"*20
        prompt = f"{prompt},{prompt2}"
        neg_prompt = "blur, low quality"

        pipe.to("cuda")
        images = pipe(
            prompt                  = prompt
            , negative_prompt       = neg_prompt
        ).images[0]

        pipe.to("cpu")
        torch.cuda.empty_cache()
        images
        ```
"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
                must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class SDXLLongPromptWeightingPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    FromSingleFileMixin,
    IPAdapterMixin,
    LoraLoaderMixin,
    TextualInversionLoaderMixin,
):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion XL.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion XL uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([` CLIPTextModelWithProjection`]):
            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`CLIPTokenizer`):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]):
            Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
        "image_encoder",
        "feature_extractor",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "add_text_embeds",
        "add_time_ids",
        "negative_pooled_prompt_embeds",
        "negative_add_time_ids",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        feature_extractor: Optional[CLIPImageProcessor] = None,
        image_encoder: Optional[CLIPVisionModelWithProjection] = None,
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: Optional[bool] = None,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
        self.default_sample_size = self.unet.config.sample_size

        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()

        if add_watermarker:
            self.watermark = StableDiffusionXLWatermarker()
        else:
            self.watermark = None

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        model_sequence = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )
        model_sequence.extend([self.unet, self.vae])

        hook = None
        for cpu_offloaded_model in model_sequence:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: str,
        prompt_2: Optional[str] = None,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            # textual inversion: process multi-vector tokens if necessary
            prompt_embeds_list = []
            prompts = [prompt, prompt_2]
            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                prompt_embeds = text_encoder(
                    text_input_ids.to(device),
                    output_hidden_states=True,
                )

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                prompt_embeds = prompt_embeds.hidden_states[-2]

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt, negative_prompt_2]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
                bs_embed * num_images_per_prompt, -1
            )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        prompt_2,
        height,
        width,
        strength,
        callback_steps,
        negative_prompt=None,
        negative_prompt_2=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        pooled_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )

        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
            )

    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
        # get the original timestep using init_timestep
        if denoising_start is None:
            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
            t_start = max(num_inference_steps - init_timestep, 0)
        else:
            t_start = 0

        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]

        # Strength is irrelevant if we directly request a timestep to start at;
        # that is, strength is determined by the denoising_start instead.
        if denoising_start is not None:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_start * self.scheduler.config.num_train_timesteps)
                )
            )

            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
            if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
                # if the scheduler is a 2nd order scheduler we might have to do +1
                # because `num_inference_steps` might be even given that every timestep
                # (except the highest one) is duplicated. If `num_inference_steps` is even it would
                # mean that we cut the timesteps in the middle of the denoising step
                # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
                # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
                num_inference_steps = num_inference_steps + 1

            # because t_n+1 >= t_n, we slice the timesteps starting from the end
            timesteps = timesteps[-num_inference_steps:]
            return timesteps, num_inference_steps

        return timesteps, num_inference_steps - t_start

    def prepare_latents(
        self,
        image,
        mask,
        width,
        height,
        num_channels_latents,
        timestep,
        batch_size,
        num_images_per_prompt,
        dtype,
        device,
        generator=None,
        add_noise=True,
        latents=None,
        is_strength_max=True,
        return_noise=False,
        return_image_latents=False,
    ):
        batch_size *= num_images_per_prompt

        if image is None:
            shape = (
                batch_size,
                num_channels_latents,
                int(height) // self.vae_scale_factor,
                int(width) // self.vae_scale_factor,
            )
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            if latents is None:
                latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            else:
                latents = latents.to(device)

            # scale the initial noise by the standard deviation required by the scheduler
            latents = latents * self.scheduler.init_noise_sigma
            return latents

        elif mask is None:
            if not isinstance(image, (torch.Tensor, Image.Image, list)):
                raise ValueError(
                    f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
                )

            # Offload text encoder if `enable_model_cpu_offload` was enabled
            if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
                self.text_encoder_2.to("cpu")
                torch.cuda.empty_cache()

            image = image.to(device=device, dtype=dtype)

            if image.shape[1] == 4:
                init_latents = image

            else:
                # make sure the VAE is in float32 mode, as it overflows in float16
                if self.vae.config.force_upcast:
                    image = image.float()
                    self.vae.to(dtype=torch.float32)

                if isinstance(generator, list) and len(generator) != batch_size:
                    raise ValueError(
                        f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                        f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                    )

                elif isinstance(generator, list):
                    init_latents = [
                        retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                        for i in range(batch_size)
                    ]
                    init_latents = torch.cat(init_latents, dim=0)
                else:
                    init_latents = retrieve_latents(self.vae.encode(image), generator=generator)

                if self.vae.config.force_upcast:
                    self.vae.to(dtype)

                init_latents = init_latents.to(dtype)
                init_latents = self.vae.config.scaling_factor * init_latents

            if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
                # expand init_latents for batch_size
                additional_image_per_prompt = batch_size // init_latents.shape[0]
                init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
            elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
                raise ValueError(
                    f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
                )
            else:
                init_latents = torch.cat([init_latents], dim=0)

            if add_noise:
                shape = init_latents.shape
                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
                # get latents
                init_latents = self.scheduler.add_noise(init_latents, noise, timestep)

            latents = init_latents
            return latents

        else:
            shape = (
                batch_size,
                num_channels_latents,
                int(height) // self.vae_scale_factor,
                int(width) // self.vae_scale_factor,
            )
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            if (image is None or timestep is None) and not is_strength_max:
                raise ValueError(
                    "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                    "However, either the image or the noise timestep has not been provided."
                )

            if image.shape[1] == 4:
                image_latents = image.to(device=device, dtype=dtype)
                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
            elif return_image_latents or (latents is None and not is_strength_max):
                image = image.to(device=device, dtype=dtype)
                image_latents = self._encode_vae_image(image=image, generator=generator)
                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)

            if latents is None and add_noise:
                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
                # if strength is 1. then initialise the latents to noise, else initial to image + noise
                latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
                # if pure noise then scale the initial latents by the  Scheduler's init sigma
                latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
            elif add_noise:
                noise = latents.to(device)
                latents = noise * self.scheduler.init_noise_sigma
            else:
                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
                latents = image_latents.to(device)

            outputs = (latents,)

            if return_noise:
                outputs += (noise,)

            if return_image_latents:
                outputs += (image_latents,)

            return outputs

    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        dtype = image.dtype
        if self.vae.config.force_upcast:
            image = image.float()
            self.vae.to(dtype=torch.float32)

        if isinstance(generator, list):
            image_latents = [
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)

        if self.vae.config.force_upcast:
            self.vae.to(dtype)

        image_latents = image_latents.to(dtype)
        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask

        if masked_image is not None and masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = None

        if masked_image is not None:
            if masked_image_latents is None:
                masked_image = masked_image.to(device=device, dtype=dtype)
                masked_image_latents = self._encode_vae_image(masked_image, generator=generator)

            if masked_image_latents.shape[0] < batch_size:
                if not batch_size % masked_image_latents.shape[0] == 0:
                    raise ValueError(
                        "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                        f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                        " Make sure the number of images that you pass is divisible by the total requested batch size."
                    )
                masked_image_latents = masked_image_latents.repeat(
                    batch_size // masked_image_latents.shape[0], 1, 1, 1
                )

            masked_image_latents = (
                torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
            )

            # aligning device to prevent device errors when concating it with the latent model input
            masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)

        return mask, masked_image_latents

    def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
        add_time_ids = list(original_size + crops_coords_top_left + target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        return add_time_ids

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
    def upcast_vae(self):
        dtype = self.vae.dtype
        self.vae.to(dtype=torch.float32)
        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
            (
                AttnProcessor2_0,
                XFormersAttnProcessor,
                LoRAXFormersAttnProcessor,
                LoRAAttnProcessor2_0,
            ),
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(dtype)
            self.vae.decoder.conv_in.to(dtype)
            self.vae.decoder.mid_block.to(dtype)

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
            `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def denoising_start(self):
        return self._denoising_start

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
        image: Optional[PipelineImageInput] = None,
        mask_image: Optional[PipelineImageInput] = None,
        masked_image_latents: Optional[torch.Tensor] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.8,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str`):
                The prompt  to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str`):
                The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            image (`PipelineImageInput`, *optional*):
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            mask_image (`PipelineImageInput`, *optional*):
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            strength (`float`, *optional*, defaults to 0.8):
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            denoising_start (`float`, *optional*):
                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
                Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
                denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
                final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
                forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
                Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str`):
                The prompt not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str`):
                The prompt not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
                Guidance rescale factor should fix overexposure when using zero terminal SNR.
            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
                explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            strength,
            callback_steps,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end
        self._denoising_start = denoising_start

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        if ip_adapter_image is not None:
            output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
            image_embeds, negative_image_embeds = self.encode_image(
                ip_adapter_image, device, num_images_per_prompt, output_hidden_state
            )
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])

        # 3. Encode input prompt
        (self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None)

        negative_prompt = negative_prompt if negative_prompt is not None else ""

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = get_weighted_text_embeddings_sdxl(
            pipe=self,
            prompt=prompt,
            neg_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            clip_skip=clip_skip,
        )
        dtype = prompt_embeds.dtype

        if isinstance(image, Image.Image):
            image = self.image_processor.preprocess(image, height=height, width=width)
        if image is not None:
            image = image.to(device=self.device, dtype=dtype)

        if isinstance(mask_image, Image.Image):
            mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
        else:
            mask = mask_image
        if mask_image is not None:
            mask = mask.to(device=self.device, dtype=dtype)

            if masked_image_latents is not None:
                masked_image = masked_image_latents
            elif image.shape[1] == 4:
                # if image is in latent space, we can't mask it
                masked_image = None
            else:
                masked_image = image * (mask < 0.5)
        else:
            mask = None

        # 4. Prepare timesteps
        def denoising_value_valid(dnv):
            return isinstance(dnv, float) and 0 < dnv < 1

        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        if image is not None:
            timesteps, num_inference_steps = self.get_timesteps(
                num_inference_steps,
                strength,
                device,
                denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
            )

            # check that number of inference steps is not < 1 - as this doesn't make sense
            if num_inference_steps < 1:
                raise ValueError(
                    f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
                    f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
                )

        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        is_strength_max = strength == 1.0
        add_noise = True if self.denoising_start is None else False

        # 5. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4

        latents = self.prepare_latents(
            image=image,
            mask=mask,
            width=width,
            height=height,
            num_channels_latents=num_channels_unet,
            timestep=latent_timestep,
            batch_size=batch_size,
            num_images_per_prompt=num_images_per_prompt,
            dtype=prompt_embeds.dtype,
            device=device,
            generator=generator,
            add_noise=add_noise,
            latents=latents,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
        )

        if mask is not None:
            if return_image_latents:
                latents, noise, image_latents = latents
            else:
                latents, noise = latents

        # 5.1 Prepare mask latent variables
        if mask is not None:
            mask, masked_image_latents = self.prepare_mask_latents(
                mask=mask,
                masked_image=masked_image,
                batch_size=batch_size * num_images_per_prompt,
                height=height,
                width=width,
                dtype=prompt_embeds.dtype,
                device=device,
                generator=generator,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
            )

            # Check that sizes of mask, masked image and latents match
            if num_channels_unet == 9:
                # default case for runwayml/stable-diffusion-inpainting
                num_channels_mask = mask.shape[1]
                num_channels_masked_image = masked_image_latents.shape[1]
                if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
                    raise ValueError(
                        f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                        f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                        f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
                        f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
                        " `pipeline.unet` or your `mask_image` or `image` input."
                    )
            elif num_channels_unet != 4:
                raise ValueError(
                    f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
                )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else {}

        height, width = latents.shape[-2:]
        height = height * self.vae_scale_factor
        width = width * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 7. Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds
        add_time_ids = self._get_add_time_ids(
            original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
        )

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        # 7.1 Apply denoising_end
        if (
            self.denoising_end is not None
            and self.denoising_start is not None
            and denoising_value_valid(self.denoising_end)
            and denoising_value_valid(self.denoising_start)
            and self.denoising_start >= self.denoising_end
        ):
            raise ValueError(
                f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
                + f" {self.denoising_end} when using type float."
            )
        elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        # 8. Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        self._num_timesteps = len(timesteps)

        # 9. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                if mask is not None and num_channels_unet == 9:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

                # predict the noise residual
                added_cond_kwargs.update({"text_embeds": add_text_embeds, "time_ids": add_time_ids})
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if mask is not None and num_channels_unet == 4:
                    init_latents_proper = image_latents

                    if self.do_classifier_free_guidance:
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask

                    if i < len(timesteps) - 1:
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
        else:
            image = latents
            return StableDiffusionXLPipelineOutput(images=image)

        # apply watermark if available
        if self.watermark is not None:
            image = self.watermark.apply_watermark(image)

        image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)

    def text2img(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        Function invoked when calling pipeline for text-to-image.

        Refer to the documentation of the `__call__` method for parameter descriptions.
        """
        return self.__call__(
            prompt=prompt,
            prompt_2=prompt_2,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
            denoising_start=denoising_start,
            denoising_end=denoising_end,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            ip_adapter_image=ip_adapter_image,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            cross_attention_kwargs=cross_attention_kwargs,
            guidance_rescale=guidance_rescale,
            original_size=original_size,
            crops_coords_top_left=crops_coords_top_left,
            target_size=target_size,
            clip_skip=clip_skip,
            callback_on_step_end=callback_on_step_end,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            **kwargs,
        )

    def img2img(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
        image: Optional[PipelineImageInput] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.8,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        Function invoked when calling pipeline for image-to-image.

        Refer to the documentation of the `__call__` method for parameter descriptions.
        """
        return self.__call__(
            prompt=prompt,
            prompt_2=prompt_2,
            image=image,
            height=height,
            width=width,
            strength=strength,
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
            denoising_start=denoising_start,
            denoising_end=denoising_end,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            ip_adapter_image=ip_adapter_image,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            cross_attention_kwargs=cross_attention_kwargs,
            guidance_rescale=guidance_rescale,
            original_size=original_size,
            crops_coords_top_left=crops_coords_top_left,
            target_size=target_size,
            clip_skip=clip_skip,
            callback_on_step_end=callback_on_step_end,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            **kwargs,
        )

    def inpaint(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
        image: Optional[PipelineImageInput] = None,
        mask_image: Optional[PipelineImageInput] = None,
        masked_image_latents: Optional[torch.Tensor] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.8,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        Function invoked when calling pipeline for inpainting.

        Refer to the documentation of the `__call__` method for parameter descriptions.
        """
        return self.__call__(
            prompt=prompt,
            prompt_2=prompt_2,
            image=image,
            mask_image=mask_image,
            masked_image_latents=masked_image_latents,
            height=height,
            width=width,
            strength=strength,
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
            denoising_start=denoising_start,
            denoising_end=denoising_end,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            ip_adapter_image=ip_adapter_image,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            cross_attention_kwargs=cross_attention_kwargs,
            guidance_rescale=guidance_rescale,
            original_size=original_size,
            crops_coords_top_left=crops_coords_top_left,
            target_size=target_size,
            clip_skip=clip_skip,
            callback_on_step_end=callback_on_step_end,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            **kwargs,
        )

    # Override to properly handle the loading and unloading of the additional text encoder.
    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.
        state_dict, network_alphas = self.lora_state_dict(
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)

        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
        if len(text_encoder_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder,
                prefix="text_encoder",
                lora_scale=self.lora_scale,
            )

        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
        if len(text_encoder_2_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_2_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder_2,
                prefix="text_encoder_2",
                lora_scale=self.lora_scale,
            )

    @classmethod
    def save_lora_weights(
        self,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        state_dict = {}

        def pack_weights(layers, prefix):
            layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
            layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
            return layers_state_dict

        state_dict.update(pack_weights(unet_lora_layers, "unet"))

        if text_encoder_lora_layers and text_encoder_2_lora_layers:
            state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
            state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

        self.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def _remove_text_encoder_monkey_patch(self):
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)