# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension""" from __future__ import absolute_import, division, print_function import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{sundream2018, title={{DREAM}: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension}, author={Sun, Kai and Yu, Dian and Chen, Jianshu and Yu, Dong and Choi, Yejin and Cardie, Claire}, journal={Transactions of the Association for Computational Linguistics}, year={2019}, url={https://arxiv.org/abs/1902.00164v1} } """ _DESCRIPTION = """\ DREAM is a multiple-choice Dialogue-based REAding comprehension exaMination dataset. \ In contrast to existing reading comprehension datasets, DREAM is the first to focus on \ in-depth multi-turn multi-party dialogue understanding. """ _URL = "https://raw.githubusercontent.com/nlpdata/dream/master/data/" _URLS = { "train": _URL + "train.json", "dev": _URL + "dev.json", "test": _URL + "test.json", } class DreamConfig(datasets.BuilderConfig): """BuilderConfig for Dream.""" def __init__(self, **kwargs): """BuilderConfig for Dream. Args: **kwargs: keyword arguments forwarded to super. """ super(DreamConfig, self).__init__(**kwargs) class Dream(datasets.GeneratorBasedBuilder): """DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ DreamConfig( name="plain_text", version=datasets.Version("1.0.0"), description="plain_text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "dialogue_id": datasets.Value("string"), "dialogue": datasets.Sequence(datasets.Value("string")), "question": datasets.Value("string"), "choice": datasets.features.Sequence(datasets.Value("string")), "answer": datasets.Value("string"), } ), supervised_keys=None, homepage="https://dataset.org/dream/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: dialogues = json.load(f) counter = 0 for dialogue in dialogues: dialogue_text = dialogue[0] questions = dialogue[1] dialogue_id = dialogue[2] for que in questions: yield counter, { "id": counter, "dialogue_id": dialogue_id, "dialogue": dialogue_text, "question": que["question"], "choice": que["choice"], "answer": que["answer"], } counter += 1