Datasets:
ArXiv:
License:
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2024 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
import warnings | |
from typing import Any, List, Optional, Tuple, Union | |
import torch.utils.checkpoint | |
import transformers | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, | |
LlamaTokenizer) | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ModelOutput, logging | |
from .configuration_internvl_chat import InternVLChatConfig | |
from .conversation import get_conv_template | |
from .modeling_intern_vit import InternVisionModel | |
from .modeling_internlm2 import InternLM2ForCausalLM | |
logger = logging.get_logger(__name__) | |
def version_cmp(v1, v2, op='eq'): | |
import operator | |
from packaging import version | |
op_func = getattr(operator, op) | |
return op_func(version.parse(v1), version.parse(v2)) | |
class InternVLChatModel(PreTrainedModel): | |
config_class = InternVLChatConfig | |
main_input_name = 'pixel_values' | |
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer'] | |
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None): | |
super().__init__(config) | |
assert version_cmp(transformers.__version__, '4.36.2', 'ge') | |
image_size = config.force_image_size or config.vision_config.image_size | |
patch_size = config.vision_config.patch_size | |
self.patch_size = patch_size | |
self.select_layer = config.select_layer | |
self.template = config.template | |
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) | |
self.downsample_ratio = config.downsample_ratio | |
self.ps_version = config.ps_version | |
logger.info(f'num_image_token: {self.num_image_token}') | |
logger.info(f'ps_version: {self.ps_version}') | |
if vision_model is not None: | |
self.vision_model = vision_model | |
else: | |
self.vision_model = InternVisionModel(config.vision_config) | |
if language_model is not None: | |
self.language_model = language_model | |
else: | |
if config.llm_config.architectures[0] == 'LlamaForCausalLM': | |
self.language_model = LlamaForCausalLM(config.llm_config) | |
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': | |
self.language_model = InternLM2ForCausalLM(config.llm_config) | |
else: | |
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') | |
vit_hidden_size = config.vision_config.hidden_size | |
llm_hidden_size = config.llm_config.hidden_size | |
self.mlp1 = nn.Sequential( | |
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), | |
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), | |
nn.GELU(), | |
nn.Linear(llm_hidden_size, llm_hidden_size) | |
) | |
self.img_context_token_id = None | |
self.conv_template = get_conv_template(self.template) | |
self.system_message = self.conv_template.system_message | |
def forward( | |
self, | |
pixel_values: torch.FloatTensor, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
image_flags: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
image_flags = image_flags.squeeze(-1) | |
input_embeds = self.language_model.get_input_embeddings()(input_ids) | |
vit_embeds = self.extract_feature(pixel_values) | |
vit_embeds = vit_embeds[image_flags == 1] | |
vit_batch_size = pixel_values.shape[0] | |
B, N, C = input_embeds.shape | |
input_embeds = input_embeds.reshape(B * N, C) | |
if torch.distributed.get_rank() == 0: | |
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') | |
input_ids = input_ids.reshape(B * N) | |
selected = (input_ids == self.img_context_token_id) | |
try: | |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) | |
except Exception as e: | |
vit_embeds = vit_embeds.reshape(-1, C) | |
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' | |
f'vit_embeds.shape={vit_embeds.shape}') | |
n_token = selected.sum() | |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] | |
input_embeds = input_embeds.reshape(B, N, C) | |
outputs = self.language_model( | |
inputs_embeds=input_embeds, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
logits = outputs.logits | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def pixel_shuffle(self, x, scale_factor=0.5): | |
n, w, h, c = x.size() | |
# N, W, H, C --> N, W, H * scale, C // scale | |
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) | |
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale | |
x = x.permute(0, 2, 1, 3).contiguous() | |
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) | |
x = x.view(n, int(h * scale_factor), int(w * scale_factor), | |
int(c / (scale_factor * scale_factor))) | |
if self.ps_version == 'v1': | |
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " | |
'which results in a transposed image.') | |
else: | |
x = x.permute(0, 2, 1, 3).contiguous() | |
return x | |
def extract_feature(self, pixel_values): | |
if self.select_layer == -1: | |
vit_embeds = self.vision_model( | |
pixel_values=pixel_values, | |
output_hidden_states=False, | |
return_dict=True).last_hidden_state | |
else: | |
vit_embeds = self.vision_model( | |
pixel_values=pixel_values, | |
output_hidden_states=True, | |
return_dict=True).hidden_states[self.select_layer] | |
vit_embeds = vit_embeds[:, 1:, :] | |
h = w = int(vit_embeds.shape[1] ** 0.5) | |
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) | |
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) | |
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) | |
vit_embeds = self.mlp1(vit_embeds) | |
return vit_embeds | |
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, | |
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', | |
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None): | |
if history is not None or return_history: | |
print('Now multi-turn chat is not supported in batch_chat.') | |
raise NotImplementedError | |
if image_counts is not None: | |
num_patches_list = image_counts | |
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') | |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) | |
self.img_context_token_id = img_context_token_id | |
if verbose and pixel_values is not None: | |
image_bs = pixel_values.shape[0] | |
print(f'dynamic ViT batch size: {image_bs}') | |
queries = [] | |
for idx, num_patches in enumerate(num_patches_list): | |
question = questions[idx] | |
if pixel_values is not None and '<image>' not in question: | |
question = '<image>\n' + question | |
template = get_conv_template(self.template) | |
template.append_message(template.roles[0], question) | |
template.append_message(template.roles[1], None) | |
query = template.get_prompt() | |
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN | |
query = query.replace('<image>', image_tokens, 1) | |
queries.append(query) | |
tokenizer.padding_side = 'left' | |
model_inputs = tokenizer(queries, return_tensors='pt', padding=True) | |
input_ids = model_inputs['input_ids'].cuda() | |
attention_mask = model_inputs['attention_mask'].cuda() | |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) | |
generation_config['eos_token_id'] = eos_token_id | |
generation_output = self.generate( | |
pixel_values=pixel_values, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
**generation_config | |
) | |
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) | |
responses = [response.split(template.sep)[0].strip() for response in responses] | |
return responses | |
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, | |
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', | |
verbose=False): | |
if history is None and pixel_values is not None and '<image>' not in question: | |
question = '<image>\n' + question | |
if num_patches_list is None: | |
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] | |
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) | |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) | |
self.img_context_token_id = img_context_token_id | |
template = get_conv_template(self.template) | |
template.system_message = self.system_message | |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) | |
history = [] if history is None else history | |
for (old_question, old_answer) in history: | |
template.append_message(template.roles[0], old_question) | |
template.append_message(template.roles[1], old_answer) | |
template.append_message(template.roles[0], question) | |
template.append_message(template.roles[1], None) | |
query = template.get_prompt() | |
if verbose and pixel_values is not None: | |
image_bs = pixel_values.shape[0] | |
print(f'dynamic ViT batch size: {image_bs}') | |
for num_patches in num_patches_list: | |
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN | |
query = query.replace('<image>', image_tokens, 1) | |
model_inputs = tokenizer(query, return_tensors='pt') | |
input_ids = model_inputs['input_ids'].cuda() | |
attention_mask = model_inputs['attention_mask'].cuda() | |
generation_config['eos_token_id'] = eos_token_id | |
generation_output = self.generate( | |
pixel_values=pixel_values, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
**generation_config | |
) | |
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] | |
response = response.split(template.sep)[0].strip() | |
history.append((question, response)) | |
if return_history: | |
return response, history | |
else: | |
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') | |
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') | |
if verbose: | |
print(query_to_print, response) | |
return response | |
def generate( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
input_ids: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
visual_features: Optional[torch.FloatTensor] = None, | |
generation_config: Optional[GenerationConfig] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**generate_kwargs, | |
) -> torch.LongTensor: | |
assert self.img_context_token_id is not None | |
if pixel_values is not None: | |
if visual_features is not None: | |
vit_embeds = visual_features | |
else: | |
vit_embeds = self.extract_feature(pixel_values) | |
input_embeds = self.language_model.get_input_embeddings()(input_ids) | |
B, N, C = input_embeds.shape | |
input_embeds = input_embeds.reshape(B * N, C) | |
input_ids = input_ids.reshape(B * N) | |
selected = (input_ids == self.img_context_token_id) | |
assert selected.sum() != 0 | |
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) | |
input_embeds = input_embeds.reshape(B, N, C) | |
else: | |
input_embeds = self.language_model.get_input_embeddings()(input_ids) | |
outputs = self.language_model.generate( | |
inputs_embeds=input_embeds, | |
attention_mask=attention_mask, | |
generation_config=generation_config, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
use_cache=True, | |
**generate_kwargs, | |
) | |
return outputs | |