see [read_pyarrow.py](https://gist.github.com/csarron/df712e53c9e0dcaad4eb6843e7a3d51c#file-read_pyarrow-py) for how to read one pyarrow file. example PyTorch dataset: ```python from torch.utils.data import Dataset class ImageCaptionArrowDataset(Dataset): def __init__( self, dataset_file, tokenizer, ): import pyarrow as pa data = [pa.ipc.open_file(pa.memory_map(f, "rb")).read_all() for f in glob.glob(dataset_file)] self.data = pa.concat_tables(data) # do other initialization, like init image preprocessing fn, def __getitem__(self, index): # item_id = self.data["id"][index].as_py() text = self.data["text"][index].as_py() # get text if isinstance(text, list): text = random.choice(text) img_bytes = self.data["image"][index].as_py() # get image bytes # do some processing with image and text, return the features # img_feat = self.image_bytes_to_tensor(img_bytes) # inputs = self.tokenizer( # text, # padding="max_length", # max_length=self.max_text_len, # truncation=True, # return_token_type_ids=True, # return_attention_mask=True, # add_special_tokens=True, # return_tensors="pt", # ) # input_ids = inputs.input_ids.squeeze(0) # attention_mask = inputs.attention_mask.squeeze(0) # return { # # "item_ids": item_id, # "text_ids": input_ids, # "input_ids": input_ids, # "text_masks": attention_mask, # "pixel_values": img_feat, # } def __len__(self): return len(self.data) ```