Datasets:
License:
import os | |
import json | |
import datasets | |
from PIL import Image | |
_DESCRIPTION = """ | |
The Arxiv Figure Table Database (AFTdb) facilitates the linking of documentary | |
objects, such as figures and tables, with their captions. This enables a | |
comprehensive description of document-oriented images (excluding images from | |
cameras). For the table component, the character structure is preserved in | |
addition to the image of the table and its caption. This database is ideal | |
for multimodal processing of documentary images. | |
""" | |
_LICENSE = "apache-2.0" | |
_CITATION = """ | |
@online{DeAFTdb, | |
AUTHOR = {Cyrile Delestre}, | |
URL = {https://huggingface.co/datasets/cmarkea/aftdb}, | |
YEAR = {2024}, | |
KEYWORDS = {NLP ; Multimodal} | |
} | |
""" | |
_NB_TAR_FIGURE = [158, 4] # train, test | |
_NB_TAR_TABLE = [17, 1] # train, test | |
def extract_files_tar(all_path, data_dir, nb_files): | |
paths_train = [ | |
os.path.join(data_dir, f"train-{ii:03d}.tar") | |
for ii in range(nb_files[0]) | |
] | |
paths_test = [ | |
os.path.join(data_dir, f"test-{ii:03d}.tar") | |
for ii in range(nb_files[1]) | |
] | |
all_path['train'] += paths_train | |
all_path['test'] += paths_test | |
class AFTConfig(datasets.BuilderConfig): | |
"""Builder Config for AFTdb""" | |
def __init__(self, nb_files_figure, nb_files_table, **kwargs): | |
super().__init__(version=datasets.__version__, **kwargs) | |
self.nb_files_figure = nb_files_figure | |
self.nb_files_table = nb_files_table | |
class AFT_Dataset(datasets.GeneratorBasedBuilder): | |
"""Arxiv Figure Table database (AFTdb)""" | |
BUILDER_CONFIGS = [ | |
AFTConfig( | |
name="figure", | |
description=( | |
"Dataset containing scientific article figures associated " | |
"with their caption, summary, and article title." | |
), | |
data_dir="{type}", # A modiféer sur Huggingface Hub => "./" supprimé | |
nb_files_figure=_NB_TAR_FIGURE, | |
nb_files_table=None | |
), | |
AFTConfig( | |
name="table", | |
description=( | |
"Dataset containing tables in JPG image format from " | |
"scientific articles, along with the corresponding textual " | |
"representation of the table, including its caption, summary, " | |
"and article title." | |
), | |
data_dir="{type}", # A modiféer sur Huggingface Hub => "./" supprimé | |
nb_files_figure=None, | |
nb_files_table=_NB_TAR_TABLE | |
), | |
AFTConfig( | |
name="figure+table", | |
description=( | |
"Dataset containing figure and tables in JPG image format " | |
"from scientific articles, along with the corresponding " | |
"textual representation of the table, including its caption, " | |
"summary, and article title." | |
), | |
data_dir="{type}", # A modiféer sur Huggingface Hub => "./" supprimé | |
nb_files_figure=_NB_TAR_FIGURE, | |
nb_files_table=_NB_TAR_TABLE | |
) | |
] | |
DEFAULT_CONFIG_NAME = "figure+table" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
'id': datasets.Value('string'), | |
'paper_id': datasets.Value('string'), | |
'type': datasets.Value('string'), | |
'authors': datasets.Value('string'), | |
'categories': datasets.Value('string'), | |
'title': { | |
'english': datasets.Value('string'), | |
'french': datasets.Value('string') | |
}, | |
'summary': { | |
'english': datasets.Value('string'), | |
'french': datasets.Value('string') | |
}, | |
'caption': { | |
'english': datasets.Value('string'), | |
'french': datasets.Value('string') | |
}, | |
'image': datasets.Image(), | |
'data': datasets.Value('string'), | |
'newcommands': datasets.Sequence(datasets.Value('string')) | |
} | |
), | |
citation=_CITATION, | |
license=_LICENSE | |
) | |
def _split_generators(self, dl_manager: datasets.DownloadManager): | |
all_path = dict(train=[], test=[]) | |
if self.config.nb_files_figure: | |
extract_files_tar( | |
all_path=all_path, | |
data_dir=self.config.data_dir.format(type='figure'), | |
nb_files=self.config.nb_files_figure | |
) | |
if self.config.nb_files_table: | |
extract_files_tar( | |
all_path=all_path, | |
data_dir=self.config.data_dir.format(type='table'), | |
nb_files=self.config.nb_files_table | |
) | |
if dl_manager.is_streaming: | |
downloaded_files = dl_manager.download(all_path) | |
downloaded_files['train'] = [ | |
dl_manager.iter_archive(ii) for ii in downloaded_files['train'] | |
] | |
downloaded_files['test'] = [ | |
dl_manager.iter_archive(ii) for ii in downloaded_files['test'] | |
] | |
else: | |
downloaded_files = dl_manager.download_and_extract(all_path) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
'filepaths': downloaded_files['train'], | |
'is_streaming': dl_manager.is_streaming | |
} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepaths": downloaded_files['test'], | |
'is_streaming': dl_manager.is_streaming | |
} | |
) | |
] | |
def _generate_examples(self, filepaths, is_streaming): | |
if is_streaming: | |
_json, _jpg, _id_json, _id_img = False, False, '', '' | |
for iter_tar in filepaths: | |
for path, file_obj in iter_tar: | |
if path.endswith('.json'): | |
metadata = json.load(file_obj) | |
_id_json = path.split('.')[0] | |
_json = True | |
if path.endswith('.jpg'): | |
img = Image.open(file_obj) | |
_id_img = path.split('.')[0] | |
_jpg = True | |
if _json and _jpg: | |
assert _id_json == _id_img | |
_json, _jpg = False, False | |
yield metadata['id'], { | |
'id': metadata['id'], | |
'paper_id': metadata['paper_id'], | |
'type': metadata['type'], | |
'authors': metadata['authors'], | |
'categories': metadata['categories'], | |
'title': metadata['title'], | |
'summary': metadata['summary'], | |
'caption': metadata['caption'], | |
'image': img, | |
'data': metadata['data'], | |
'newcommands': metadata['newcommands'] | |
} | |
else: | |
for path in filepaths: | |
all_file = os.listdir(path) | |
all_id_obs = sorted( | |
set(map(lambda x: x.split('.')[0], all_file)) | |
) | |
for id_obs in all_id_obs: | |
path_metadata = os.path.join( | |
path, | |
f"{id_obs}.metadata.json" | |
) | |
path_image = os.path.join(path, f"{id_obs}.image.jpg") | |
metadata = json.load(open(path_metadata, 'r')) | |
img = Image.open(path_image) | |
yield id_obs, { | |
'id': metadata['id'], | |
'paper_id': metadata['paper_id'], | |
'type': metadata['type'], | |
'authors': metadata['authors'], | |
'categories': metadata['categories'], | |
'title': metadata['title'], | |
'summary': metadata['summary'], | |
'caption': metadata['caption'], | |
'image': img, | |
'data': metadata['data'], | |
'newcommands': metadata['newcommands'] | |
} | |