import datasets import gzip import os from typing import List _URL = "http://nl.ijs.si/nikola/dedup_hbs/" _URLS = { "macocu_hbs": _URL + "macocu.hbs.translit.dedup.lines.gz", "hr_news": _URL + "hr_news.translit.dedup.lines.gz", "bswac": _URL + "bswac.translit.dedup.lines.gz", "cc100_hr": _URL + "cc100-hr.translit.dedup.lines.gz", "cc100_sr": _URL + "cc100-sr.translit.dedup.lines.gz", "classla_sr": _URL + "classla-sr.translit.dedup.lines.gz", "classla_hr": _URL + "classla-hr.translit.dedup.lines.gz", "classla_bs": _URL + "classla-bs.translit.dedup.lines.gz", "cnrwac": _URL + "cnrwac.translit.dedup.lines.gz", "hrwac": _URL + "hrwac.translit.dedup.lines.gz", "mC4": _URL + "mC4.sr.translit.dedup.lines.gz", "riznica": _URL + "riznica.translit.dedup.lines.gz", "srwac": _URL + "srwac.translit.dedup.lines.gz", } _HOMEPAGE = _URL _DESCRIPTION = """\ Data used to train XLM-Roberta-Bertić. """ _CITATION = r""" To be added soon.""" class BerticData(datasets.GeneratorBasedBuilder): """Bertic dataset, used for training Bertic model.""" VERSION = datasets.Version("1.0.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from BerticDataConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') def _info(self): features = datasets.Features( { "text": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=url, gen_kwargs={"filepath": downloaded_files[url]}, ) for url in _URLS ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath): key = 0 for name in [filepath]: # with gzip.open(name, "rb") as f: with open(name, "r") as f: for line in f.readlines(): yield key, {"text": line.rstrip()} key += 1