Datasets:
Tasks:
Other
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
Polish
Size:
10K - 100K
Tags:
structure-prediction
License:
# coding=utf-8 | |
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""NKJP-POS tagging dataset.""" | |
import json | |
from typing import List, Tuple, Dict, Generator | |
import datasets | |
_DESCRIPTION = """NKJP-POS tagging dataset.""" | |
_URLS = { | |
"train": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/train.jsonl", | |
"test": "https://huggingface.co/datasets/clarin-pl/nkjp-pos/resolve/main/data/test.jsonl", | |
} | |
_HOMEPAGE = "http://clip.ipipan.waw.pl/NationalCorpusOfPolish" | |
_POS_TAGS = { | |
"adj", | |
"adja", | |
"adjc", | |
"adjp", | |
"adv", | |
"aglt", | |
"bedzie", | |
"brev", | |
"burk", | |
"comp", | |
"conj", | |
"depr", | |
"fin", | |
"ger", | |
"imps", | |
"impt", | |
"inf", | |
"interj", | |
"interp", | |
"num", | |
"numcol", | |
"pact", | |
"pant", | |
"pcon", | |
"ppas", | |
"ppron12", | |
"ppron3", | |
"praet", | |
"pred", | |
"prep", | |
"qub", | |
"siebie", | |
"subst", | |
"winien", | |
"xxx", | |
} | |
class NKJPPOS(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.1.0") | |
def _info(self) -> datasets.DatasetInfo: | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=list(_POS_TAGS), num_classes=len(_POS_TAGS) | |
) | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
version=self.VERSION, | |
) | |
def _split_generators( | |
self, dl_manager: datasets.DownloadManager | |
) -> List[datasets.SplitGenerator]: | |
urls_to_download = _URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": downloaded_files["train"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": downloaded_files["test"]}, | |
), | |
] | |
def _clean_line(data_line: Dict): | |
new_tokens = [] | |
new_pos_tags = [] | |
for token, pos_tag in zip(data_line["tokens"], data_line["pos_tags"]): | |
if pos_tag in _POS_TAGS: | |
new_tokens.append(token) | |
new_pos_tags.append(pos_tag) | |
data_line["tokens"] = new_tokens | |
data_line["pos_tags"] = new_pos_tags | |
assert len(data_line["tokens"]) == len(data_line["pos_tags"]) | |
return data_line | |
def _generate_examples( | |
self, filepath: str | |
) -> Generator[Tuple[str, Dict[str, str]], None, None]: | |
with open(filepath, "r", encoding="utf-8") as f: | |
for line in f: | |
data_line = self._clean_line(json.loads(line)) | |
yield data_line["id"], data_line | |