kargaranamir
commited on
Commit
•
13ca861
1
Parent(s):
be00a03
Delete GlotSparse.py
Browse files- GlotSparse.py +0 -152
GlotSparse.py
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2023 The GlotSprase Authors.
|
3 |
-
# Lint as: python3
|
4 |
-
"""
|
5 |
-
GlotSprase
|
6 |
-
"""
|
7 |
-
|
8 |
-
""" This dataset loading script is built based on Hugging Face tutorial, OSCAR-2301's and CulturaX dataset script. """
|
9 |
-
|
10 |
-
import os
|
11 |
-
import collections
|
12 |
-
|
13 |
-
import pandas as pd
|
14 |
-
|
15 |
-
import datasets
|
16 |
-
|
17 |
-
logger = datasets.logging.get_logger(__name__)
|
18 |
-
|
19 |
-
_DESCRIPTION = """\
|
20 |
-
GlotSprase \
|
21 |
-
"""
|
22 |
-
|
23 |
-
_URL = "https://huggingface.co/datasets/kargaranamir/GlotSparse"
|
24 |
-
|
25 |
-
_LICENSE = """
|
26 |
-
We do not own any of the text from which these data has been extracted.
|
27 |
-
We license the actual packaging, the metadata and the annotations of these data under the cc0-1.0 (waiving all of the rights under copyright law).
|
28 |
-
|
29 |
-
If you are a website/dataset owner and do not want your data to be included in this corpra, please send us an email at [email protected] .
|
30 |
-
"""
|
31 |
-
|
32 |
-
_CITATION = r"""\
|
33 |
-
@misc{GlotSparse,
|
34 |
-
author = {Kargaran, Amir Hossein},
|
35 |
-
title = {GlotSparse Corpus},
|
36 |
-
year = {2023},
|
37 |
-
publisher = {Github},
|
38 |
-
journal = {Github Repository},
|
39 |
-
howpublished = {{\\url{https://huggingface.co/datasets/kargaranamir/GlotSparse}}},
|
40 |
-
}
|
41 |
-
"""
|
42 |
-
|
43 |
-
_BASE_DATA_PAT_FORMAT_STR = "{language}/{language}.csv"
|
44 |
-
|
45 |
-
|
46 |
-
def _languages():
|
47 |
-
"""Create the sorted dictionary of language codes, and language names.
|
48 |
-
Returns:
|
49 |
-
The sorted dictionary as an instance of `collections.OrderedDict`.
|
50 |
-
"""
|
51 |
-
langs = {
|
52 |
-
"Balochi_Arab": "bal_Arab",
|
53 |
-
"Twi_Latn": "twi_Latn",
|
54 |
-
"Fanti_Latn": "fat_Latn",
|
55 |
-
"South-Azerbaijani_Arab": "azb_Arab",
|
56 |
-
"Southern-Kurdish_Arab": "sdh_Arab",
|
57 |
-
"Gurani_Arab": "hac_Arab",
|
58 |
-
"Brahui_Arab": "brh_Arab",
|
59 |
-
"Southern-Uzbek_Arab": "uzs_Arab",
|
60 |
-
"Kirmanjki_Latn": "kiu_Latn",
|
61 |
-
"Southern-Uzbek_Arab": "uzs_Arab",
|
62 |
-
"Gilaki_Arab": "glk_Arab",
|
63 |
-
}
|
64 |
-
|
65 |
-
langs = {v: k for k, v in langs.items()}
|
66 |
-
return collections.OrderedDict(sorted(langs.items()))
|
67 |
-
|
68 |
-
|
69 |
-
class GlotConfig(datasets.BuilderConfig):
|
70 |
-
"""GlotSprase corpus."""
|
71 |
-
|
72 |
-
def __init__(self, language: str, **kwargs):
|
73 |
-
"""BuilderConfig for GlotSprase.
|
74 |
-
Args:
|
75 |
-
language (str): It has to contain 3-letter coded strings following the writing script with an underline in between. For example: "glk_Arab", "fat_Latn".
|
76 |
-
**kwargs: Keyword arguments forwarded to super.
|
77 |
-
"""
|
78 |
-
# Validate the language.
|
79 |
-
if language not in _languages():
|
80 |
-
raise ValueError("Invalid language: %s " % language)
|
81 |
-
|
82 |
-
name = f"{language}"
|
83 |
-
description = (
|
84 |
-
f"Original {_languages()[language]} GlotSprase dataset from 2023"
|
85 |
-
)
|
86 |
-
super(GlotConfig, self).__init__(
|
87 |
-
name=name, description=description, **kwargs
|
88 |
-
)
|
89 |
-
|
90 |
-
# Additional attributes
|
91 |
-
self.language = language
|
92 |
-
self.base_data_path = _BASE_DATA_PAT_FORMAT_STR.format(language=language)
|
93 |
-
|
94 |
-
|
95 |
-
class Glot(datasets.GeneratorBasedBuilder):
|
96 |
-
"""GlotSprase"""
|
97 |
-
|
98 |
-
BUILDER_CONFIGS = [
|
99 |
-
GlotConfig( # pylint: disable=g-complex-comprehension
|
100 |
-
language=language,
|
101 |
-
version=datasets.Version("1.0.0"),
|
102 |
-
)
|
103 |
-
for language in _languages()
|
104 |
-
]
|
105 |
-
BUILDER_CONFIG_CLASS = GlotConfig
|
106 |
-
|
107 |
-
def _info(self):
|
108 |
-
return datasets.DatasetInfo(
|
109 |
-
description=_DESCRIPTION,
|
110 |
-
features=datasets.Features(
|
111 |
-
{
|
112 |
-
"Source": datasets.Value("string"),
|
113 |
-
"Content": datasets.Value("string"),
|
114 |
-
"Length": datasets.Value("int64"),
|
115 |
-
"Script": datasets.Value("string"),
|
116 |
-
"ISO639-3": datasets.Value("string"),
|
117 |
-
"Language": datasets.Value("string"),
|
118 |
-
}
|
119 |
-
),
|
120 |
-
supervised_keys=None,
|
121 |
-
homepage=_URL,
|
122 |
-
citation=_CITATION,
|
123 |
-
license=_LICENSE,
|
124 |
-
)
|
125 |
-
|
126 |
-
def _split_generators(self, dl_manager):
|
127 |
-
|
128 |
-
data_urls = [self.config.base_data_path]
|
129 |
-
doc_files = dl_manager.download(
|
130 |
-
[url for url in data_urls if url.endswith(".csv")]
|
131 |
-
)
|
132 |
-
return [
|
133 |
-
datasets.SplitGenerator(
|
134 |
-
name=datasets.Split.TRAIN, gen_kwargs={"doc_files": doc_files}
|
135 |
-
),
|
136 |
-
]
|
137 |
-
|
138 |
-
|
139 |
-
def _generate_examples(self, doc_files):
|
140 |
-
"""This function returns the data by iterating on all the files."""
|
141 |
-
for doc_i, doc_path in enumerate(doc_files):
|
142 |
-
df = pd.read_csv(doc_path)
|
143 |
-
|
144 |
-
for index, row in df.iterrows():
|
145 |
-
yield f"{doc_i}_{index}", {
|
146 |
-
"ISO639-3": row["ISO639-3"],
|
147 |
-
"Language": row["Language"],
|
148 |
-
"Content": row["Content"],
|
149 |
-
"Script": row["Script"],
|
150 |
-
"Length": row["Length"],
|
151 |
-
"Source": row["Source"],
|
152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|