|
|
|
|
|
|
|
""" |
|
GlotSprase |
|
""" |
|
|
|
""" This dataset loading script is built based on Hugging Face tutorial and OSCAR-2301's and CulturaX dataset script. """ |
|
|
|
import os |
|
import collections |
|
|
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
GlotSprase \ |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/kargaranamir/GlotSparse" |
|
|
|
_LICENSE = """ |
|
We do not own any of the text from which these data has been extracted. |
|
We license the actual packaging, the metadata and the annotations of these data under the CC BY 4.0. |
|
|
|
If you are a website/dataset owner and do not want your data to be included in this corpra, please send us an email at [email protected] . |
|
""" |
|
|
|
_CITATION = r"""\ |
|
@misc{GlotSparse, |
|
author = {Kargaran, Amir Hossein}, |
|
title = {GlotSparse Corpus}, |
|
year = {2023}, |
|
publisher = {Github}, |
|
journal = {Github Repository}, |
|
howpublished = {{\\url{https://github.com/kargaranamir/GlotSparse}}}, |
|
} |
|
""" |
|
|
|
_BASE_DATA_PAT_FORMAT_STR = "{language}/{language}.csv" |
|
_BASE_CHECKSUM_FILE_NAME = "checksum.sha256" |
|
|
|
|
|
def _languages(): |
|
"""Create the sorted dictionary of language codes, and language names. |
|
Returns: |
|
The sorted dictionary as an instance of `collections.OrderedDict`. |
|
""" |
|
langs = { |
|
"Balochi_Arab": "bal_Arab", |
|
"Twi_Latn": "twi_Latn", |
|
"Fanti_Latn": "fat_Latn", |
|
"South-Azerbaijani_Arab": "azb_Arab", |
|
"Southern-Kurdish_Arab": "sdh_Arab", |
|
"Gurani-Arab": "hac_Arab", |
|
"Southern-Uzbek": "uzs_Arab", |
|
"Kirmanjki-Latn": "kiu-Latn", |
|
"Southern-Uzbek_Arab": "uzs_Arab", |
|
"Gilaki": "glk_Arab", |
|
} |
|
|
|
langs = {v: k for k, v in langs.items()} |
|
return collections.OrderedDict(sorted(langs.items())) |
|
|
|
|
|
class GlotConfig(datasets.BuilderConfig): |
|
"""GlotSprase corpus.""" |
|
|
|
def __init__(self, language: str, **kwargs): |
|
"""BuilderConfig for GlotSprase. |
|
Args: |
|
language (str): It has to contain 3-letter coded strings following the writing script with an underline in between. For example: "glk_Arab", "fat_Latn". |
|
**kwargs: Keyword arguments forwarded to super. |
|
""" |
|
|
|
if language not in _languages(): |
|
raise ValueError("Invalid language: %s " % language) |
|
|
|
name = f"{language}" |
|
description = ( |
|
f"Original {_languages()[language]} GlotSprase dataset from 2023" |
|
) |
|
super(GlotConfig, self).__init__( |
|
name=name, description=description, **kwargs |
|
) |
|
|
|
|
|
self.language = language |
|
self.base_data_path = _BASE_DATA_PAT_FORMAT_STR.format(language=language) |
|
|
|
|
|
class Glot(datasets.ArrowBasedBuilder): |
|
"""GlotSprase""" |
|
|
|
BUILDER_CONFIGS = [ |
|
GlotConfig( |
|
language=language, |
|
version=datasets.Version("1.0.0"), |
|
) |
|
for language in _languages() |
|
] |
|
BUILDER_CONFIG_CLASS = GlotConfig |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"Source": datasets.Value("string"), |
|
"Content": datasets.Value("string"), |
|
"Length": datasets.Value("int64"), |
|
"Script": datasets.Value("string"), |
|
"ISO639-3": datasets.Value("string"), |
|
"Language": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_urls = [self.config.base_data_path] |
|
doc_files = dl_manager.download( |
|
[url for url in data_urls if url.endswith(".csv")] |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"doc_files": doc_files} |
|
), |
|
] |
|
|
|
|
|
def _generate_tables(self, doc_files): |
|
"""This function returns the data by iterating on all the files.""" |
|
for doc_i, doc_path in enumerate(doc_files): |
|
df = pd.read_csv(doc_path) |
|
|
|
for index, row in df.iterrows(): |
|
yield f"{doc_i}_{index}", { |
|
"ISO639-3": row["ISO639-3"], |
|
"Language": row["Language"], |
|
"Content": row["Content"], |
|
"Script": row["Script"], |
|
"Length": row["Length"], |
|
"Source": row["Source"], |
|
} |