File size: 4,794 Bytes
dc04555 3b8d13c dc04555 f54784c dc04555 f54784c dc04555 004b943 dc04555 004b943 dc04555 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# coding=utf-8
# Copyright 2023 The GlotSprase Authors.
# Lint as: python3
"""
GlotSprase
"""
""" This dataset loading script is built based on Hugging Face tutorial, OSCAR-2301's and CulturaX dataset script. """
import os
import collections
import pandas as pd
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
GlotSprase \
"""
_URL = "https://huggingface.co/datasets/kargaranamir/GlotSparse"
_LICENSE = """
We do not own any of the text from which these data has been extracted.
We license the actual packaging, the metadata and the annotations of these data under the CC BY 4.0.
If you are a website/dataset owner and do not want your data to be included in this corpra, please send us an email at [email protected] .
"""
_CITATION = r"""\
@misc{GlotSparse,
author = {Kargaran, Amir Hossein},
title = {GlotSparse Corpus},
year = {2023},
publisher = {Github},
journal = {Github Repository},
howpublished = {{\\url{https://github.com/kargaranamir/GlotSparse}}},
}
"""
_BASE_DATA_PAT_FORMAT_STR = "{language}/{language}.csv"
def _languages():
"""Create the sorted dictionary of language codes, and language names.
Returns:
The sorted dictionary as an instance of `collections.OrderedDict`.
"""
langs = {
"Balochi_Arab": "bal_Arab",
"Twi_Latn": "twi_Latn",
"Fanti_Latn": "fat_Latn",
"South-Azerbaijani_Arab": "azb_Arab",
"Southern-Kurdish_Arab": "sdh_Arab",
"Gurani_Arab": "hac_Arab",
"Southern-Uzbek_Arab": "uzs_Arab",
"Kirmanjki_Latn": "kiu_Latn",
"Southern-Uzbek_Arab": "uzs_Arab",
"Gilaki_Arab": "glk_Arab",
}
langs = {v: k for k, v in langs.items()}
return collections.OrderedDict(sorted(langs.items()))
class GlotConfig(datasets.BuilderConfig):
"""GlotSprase corpus."""
def __init__(self, language: str, **kwargs):
"""BuilderConfig for GlotSprase.
Args:
language (str): It has to contain 3-letter coded strings following the writing script with an underline in between. For example: "glk_Arab", "fat_Latn".
**kwargs: Keyword arguments forwarded to super.
"""
# Validate the language.
if language not in _languages():
raise ValueError("Invalid language: %s " % language)
name = f"{language}"
description = (
f"Original {_languages()[language]} GlotSprase dataset from 2023"
)
super(GlotConfig, self).__init__(
name=name, description=description, **kwargs
)
# Additional attributes
self.language = language
self.base_data_path = _BASE_DATA_PAT_FORMAT_STR.format(language=language)
class Glot(datasets.GeneratorBasedBuilder):
"""GlotSprase"""
BUILDER_CONFIGS = [
GlotConfig( # pylint: disable=g-complex-comprehension
language=language,
version=datasets.Version("1.0.0"),
)
for language in _languages()
]
BUILDER_CONFIG_CLASS = GlotConfig
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"Source": datasets.Value("string"),
"Content": datasets.Value("string"),
"Length": datasets.Value("int64"),
"Script": datasets.Value("string"),
"ISO639-3": datasets.Value("string"),
"Language": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
data_urls = [self.config.base_data_path]
doc_files = dl_manager.download(
[url for url in data_urls if url.endswith(".csv")]
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"doc_files": doc_files}
),
]
def _generate_examples(self, doc_files):
"""This function returns the data by iterating on all the files."""
for doc_i, doc_path in enumerate(doc_files):
df = pd.read_csv(doc_path)
for index, row in df.iterrows():
yield f"{doc_i}_{index}", {
"ISO639-3": row["ISO639-3"],
"Language": row["Language"],
"Content": row["Content"],
"Script": row["Script"],
"Length": row["Length"],
"Source": row["Source"],
} |