chintagunta85
commited on
Commit
•
35406a1
1
Parent(s):
8207e5a
Upload ncbi_disease.py
Browse files- ncbi_disease.py +148 -0
ncbi_disease.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""NCBI disease corpus: a resource for disease name recognition and concept normalization"""
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
logger = datasets.logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@article{dougan2014ncbi,
|
27 |
+
title={NCBI disease corpus: a resource for disease name recognition and concept normalization},
|
28 |
+
author={Dogan, Rezarta Islamaj and Leaman, Robert and Lu, Zhiyong},
|
29 |
+
journal={Journal of biomedical informatics},
|
30 |
+
volume={47},
|
31 |
+
pages={1--10},
|
32 |
+
year={2014},
|
33 |
+
publisher={Elsevier}
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection of 793 PubMed
|
39 |
+
abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural
|
40 |
+
language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions
|
41 |
+
and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®).
|
42 |
+
Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations.
|
43 |
+
Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two
|
44 |
+
annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked
|
45 |
+
against annotations of the rest of the corpus to assure corpus-wide consistency.
|
46 |
+
|
47 |
+
For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/
|
48 |
+
|
49 |
+
The original dataset can be downloaded from: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBI_corpus.zip
|
50 |
+
This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll
|
51 |
+
Note: there is a duplicate document (PMID 8528200) in the original data, and the duplicate is recreated in the converted data.
|
52 |
+
"""
|
53 |
+
|
54 |
+
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/"
|
55 |
+
_URL = "https://github.com/spyysalo/ncbi-disease/raw/master/conll/"
|
56 |
+
_TRAINING_FILE = "train.tsv"
|
57 |
+
_DEV_FILE = "devel.tsv"
|
58 |
+
_TEST_FILE = "test.tsv"
|
59 |
+
|
60 |
+
|
61 |
+
class NCBIDiseaseConfig(datasets.BuilderConfig):
|
62 |
+
"""BuilderConfig for NCBIDisease"""
|
63 |
+
|
64 |
+
def __init__(self, **kwargs):
|
65 |
+
"""BuilderConfig for NCBIDisease.
|
66 |
+
Args:
|
67 |
+
**kwargs: keyword arguments forwarded to super.
|
68 |
+
"""
|
69 |
+
super(NCBIDiseaseConfig, self).__init__(**kwargs)
|
70 |
+
|
71 |
+
|
72 |
+
class NCBIDisease(datasets.GeneratorBasedBuilder):
|
73 |
+
"""NCBIDisease dataset."""
|
74 |
+
|
75 |
+
BUILDER_CONFIGS = [
|
76 |
+
NCBIDiseaseConfig(name="ncbi_disease", version=datasets.Version("1.0.0"), description="NCBIDisease dataset"),
|
77 |
+
]
|
78 |
+
|
79 |
+
def _info(self):
|
80 |
+
custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE',
|
81 |
+
'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE',
|
82 |
+
'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES']
|
83 |
+
return datasets.DatasetInfo(
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
features=datasets.Features(
|
86 |
+
{
|
87 |
+
"id": datasets.Value("string"),
|
88 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
89 |
+
"ner_tags": datasets.Sequence(
|
90 |
+
datasets.features.ClassLabel(
|
91 |
+
names=custom_names
|
92 |
+
)
|
93 |
+
),
|
94 |
+
}
|
95 |
+
),
|
96 |
+
supervised_keys=None,
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
citation=_CITATION,
|
99 |
+
)
|
100 |
+
|
101 |
+
def _split_generators(self, dl_manager):
|
102 |
+
"""Returns SplitGenerators."""
|
103 |
+
urls_to_download = {
|
104 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
105 |
+
"dev": f"{_URL}{_DEV_FILE}",
|
106 |
+
"test": f"{_URL}{_TEST_FILE}",
|
107 |
+
}
|
108 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
109 |
+
|
110 |
+
return [
|
111 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
112 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
113 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
114 |
+
]
|
115 |
+
|
116 |
+
def _generate_examples(self, filepath):
|
117 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
118 |
+
with open(filepath, encoding="utf-8") as f:
|
119 |
+
guid = 0
|
120 |
+
tokens = []
|
121 |
+
ner_tags = []
|
122 |
+
for line in f:
|
123 |
+
if line == "" or line == "\n":
|
124 |
+
if tokens:
|
125 |
+
yield guid, {
|
126 |
+
"id": str(guid),
|
127 |
+
"tokens": tokens,
|
128 |
+
"ner_tags": ner_tags,
|
129 |
+
}
|
130 |
+
guid += 1
|
131 |
+
tokens = []
|
132 |
+
ner_tags = []
|
133 |
+
else:
|
134 |
+
# tokens are tab separated
|
135 |
+
splits = line.split("\t")
|
136 |
+
tokens.append(splits[0])
|
137 |
+
if(splits[1].rstrip()=="B-Disease"):
|
138 |
+
ner_tags.append("B-DISEASE")
|
139 |
+
elif(splits[1].rstrip()=="I-Disease"):
|
140 |
+
ner_tags.append("I-DISEASE")
|
141 |
+
else:
|
142 |
+
ner_tags.append(splits[1].rstrip())
|
143 |
+
# last example
|
144 |
+
yield guid, {
|
145 |
+
"id": str(guid),
|
146 |
+
"tokens": tokens,
|
147 |
+
"ner_tags": ner_tags,
|
148 |
+
}
|