|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
|
|
_CITATION = """\ |
|
@article{huang2023ceval, |
|
title={C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models}, |
|
author={Huang, Yuzhen and Bai, Yuzhuo and Zhu, Zhihao and Zhang, Junlei and Zhang, Jinghan and Su, Tangjun and Liu, Junteng and Lv, Chuancheng and Zhang, Yikai and Lei, Jiayi and Fu, Yao and Sun, Maosong and He, Junxian}, |
|
journal={arXiv preprint arXiv:2305.08322}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
C-Eval is a comprehensive Chinese evaluation suite for foundation models. It consists of 13948 multi-choice questions spanning 52 diverse disciplines and four difficulty levels. |
|
""" |
|
|
|
_HOMEPAGE = "https://cevalbenchmark.com" |
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" |
|
|
|
_URL = r"https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip" |
|
|
|
task_list = [ |
|
"computer_network", |
|
"operating_system", |
|
"computer_architecture", |
|
"college_programming", |
|
"college_physics", |
|
"college_chemistry", |
|
"advanced_mathematics", |
|
"probability_and_statistics", |
|
"discrete_mathematics", |
|
"electrical_engineer", |
|
"metrology_engineer", |
|
"high_school_mathematics", |
|
"high_school_physics", |
|
"high_school_chemistry", |
|
"high_school_biology", |
|
"middle_school_mathematics", |
|
"middle_school_biology", |
|
"middle_school_physics", |
|
"middle_school_chemistry", |
|
"veterinary_medicine", |
|
"college_economics", |
|
"business_administration", |
|
"marxism", |
|
"mao_zedong_thought", |
|
"education_science", |
|
"teacher_qualification", |
|
"high_school_politics", |
|
"high_school_geography", |
|
"middle_school_politics", |
|
"middle_school_geography", |
|
"modern_chinese_history", |
|
"ideological_and_moral_cultivation", |
|
"logic", |
|
"law", |
|
"chinese_language_and_literature", |
|
"art_studies", |
|
"professional_tour_guide", |
|
"legal_professional", |
|
"high_school_chinese", |
|
"high_school_history", |
|
"middle_school_history", |
|
"civil_servant", |
|
"sports_science", |
|
"plant_protection", |
|
"basic_medicine", |
|
"clinical_medicine", |
|
"urban_and_rural_planner", |
|
"accountant", |
|
"fire_engineer", |
|
"environmental_impact_assessment_engineer", |
|
"tax_accountant", |
|
"physician", |
|
] |
|
|
|
|
|
class CevalExamConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
|
|
|
|
class CevalExam(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
CevalExamConfig( |
|
name=task_name, |
|
) |
|
for task_name in task_list |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id":datasets.Value("int32"), |
|
"question": datasets.Value("string"), |
|
"A": datasets.Value("string"), |
|
"B": datasets.Value("string"), |
|
"C": datasets.Value("string"), |
|
"D": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"explanation":datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
task_name = self.config.name |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "test", f"{task_name}_test.csv" |
|
), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("val"), |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "val", f"{task_name}_val.csv" |
|
), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("dev"), |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "dev", f"{task_name}_dev.csv" |
|
), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_csv(filepath,encoding="utf-8") |
|
for i, instance in enumerate(df.to_dict(orient="records")): |
|
if "answer" not in instance.keys(): |
|
instance["answer"]="" |
|
if "explanation" not in instance.keys(): |
|
instance["explanation"]="" |
|
yield i, instance |