File size: 5,210 Bytes
bc885a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cc53e0
bc885a9
 
 
 
 
 
 
 
 
2cc53e0
bc885a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0728e41
c1afe0f
bc885a9
 
 
 
2cc53e0
bc885a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1afe0f
bc885a9
 
 
3ec9a62
bc885a9
 
 
 
 
 
 
 
8ea460c
bc885a9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import json
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\\r\n@InProceedings{huggingface:dataset,

title = {A great new dataset},

author={huggingface, Inc.

},

year={2020}

}

"""


# You can copy an official description
_DESCRIPTION = """\\r\nPig-latin machine and English parallel machine translation corpus. 



Based on 

The Project Gutenberg EBook of "De Bello Gallico" and Other Commentaries

https://www.gutenberg.org/ebooks/10657



Converted to pig-latin with https://github.com/bpabel/piglatin

"""

_HOMEPAGE = "cdleong.github.io"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "MIT License, derived from public domain text and converted with MIT-licensed software."

# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "train": "piglatin-mt-train.json",
    "dev": "piglatin-mt-dev.json",
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class PigLatinMT(datasets.GeneratorBasedBuilder):
    """Machine Translation dataset created with """

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="piglatin-mt", 
        version=VERSION, 
        description="This part of my dataset covers a first domain"),
    ]

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        features=datasets.Features({"translation": datasets.features.Translation(languages=("eng", "engyay"))})
   
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
        ]

    def _generate_examples(

        self, filepath# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`

    ):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                result = {"translation": {"eng": data["eng"], "engyay": data["engyay"]}}
                yield id_, result