Update drugprot based on git version 64f6de0
Browse files- drugprot.py +44 -28
drugprot.py
CHANGED
@@ -22,7 +22,7 @@ https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/
|
|
22 |
"""
|
23 |
import collections
|
24 |
from pathlib import Path
|
25 |
-
from typing import Dict, Iterator, Tuple
|
26 |
|
27 |
import datasets
|
28 |
|
@@ -30,7 +30,7 @@ from .bigbiohub import kb_features
|
|
30 |
from .bigbiohub import BigBioConfig
|
31 |
from .bigbiohub import Tasks
|
32 |
|
33 |
-
_LANGUAGES = [
|
34 |
_PUBMED = True
|
35 |
_LOCAL = False
|
36 |
_CITATION = """\
|
@@ -55,9 +55,11 @@ between them corresponding to a specific set of biologically relevant relation t
|
|
55 |
|
56 |
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/"
|
57 |
|
58 |
-
_LICENSE =
|
59 |
|
60 |
-
_URLS = {
|
|
|
|
|
61 |
|
62 |
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
63 |
|
@@ -139,32 +141,44 @@ class DrugProtDataset(datasets.GeneratorBasedBuilder):
|
|
139 |
return [
|
140 |
datasets.SplitGenerator(
|
141 |
name=datasets.Split.TRAIN,
|
142 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
143 |
),
|
144 |
datasets.SplitGenerator(
|
145 |
name=datasets.Split.VALIDATION,
|
146 |
-
gen_kwargs={
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
),
|
148 |
]
|
149 |
|
150 |
-
def _generate_examples(self,
|
151 |
if self.config.name == "drugprot_source":
|
152 |
-
documents = self._read_source_examples(
|
153 |
for document_id, document in documents.items():
|
154 |
yield document_id, document
|
155 |
|
156 |
elif self.config.name == "drugprot_bigbio_kb":
|
157 |
-
documents = self._read_source_examples(
|
158 |
for document_id, document in documents.items():
|
159 |
yield document_id, self._transform_source_to_kb(document)
|
160 |
|
161 |
-
def _read_source_examples(self,
|
162 |
""" """
|
163 |
-
|
164 |
-
abstracts_file = split_dir / f"drugprot_{split}_abstracs.tsv"
|
165 |
-
entities_file = split_dir / f"drugprot_{split}_entities.tsv"
|
166 |
-
relations_file = split_dir / f"drugprot_{split}_relations.tsv"
|
167 |
-
|
168 |
document_to_entities = collections.defaultdict(list)
|
169 |
for line in entities_file.read_text().splitlines():
|
170 |
columns = line.split("\t")
|
@@ -180,20 +194,22 @@ class DrugProtDataset(datasets.GeneratorBasedBuilder):
|
|
180 |
)
|
181 |
|
182 |
document_to_relations = collections.defaultdict(list)
|
183 |
-
for line in relations_file.read_text().splitlines():
|
184 |
-
columns = line.split("\t")
|
185 |
-
document_id = columns[0]
|
186 |
-
|
187 |
-
document_relations = document_to_relations[document_id]
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
document_to_source = {}
|
199 |
for line in abstracts_file.read_text().splitlines():
|
|
|
22 |
"""
|
23 |
import collections
|
24 |
from pathlib import Path
|
25 |
+
from typing import Dict, Iterator, Tuple, Optional
|
26 |
|
27 |
import datasets
|
28 |
|
|
|
30 |
from .bigbiohub import BigBioConfig
|
31 |
from .bigbiohub import Tasks
|
32 |
|
33 |
+
_LANGUAGES = ["English"]
|
34 |
_PUBMED = True
|
35 |
_LOCAL = False
|
36 |
_CITATION = """\
|
|
|
55 |
|
56 |
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/"
|
57 |
|
58 |
+
_LICENSE = "CC_BY_4p0"
|
59 |
|
60 |
+
_URLS = {
|
61 |
+
_DATASETNAME: "https://zenodo.org/record/5119892/files/drugprot-training-development-test-background.zip?download=1"
|
62 |
+
}
|
63 |
|
64 |
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
65 |
|
|
|
141 |
return [
|
142 |
datasets.SplitGenerator(
|
143 |
name=datasets.Split.TRAIN,
|
144 |
+
gen_kwargs={
|
145 |
+
"abstracts_file": data_dir / "training" / "drugprot_training_abstracs.tsv",
|
146 |
+
"entities_file": data_dir / "training" / "drugprot_training_entities.tsv",
|
147 |
+
"relations_file": data_dir / "training" / "drugprot_training_relations.tsv",
|
148 |
+
},
|
149 |
),
|
150 |
datasets.SplitGenerator(
|
151 |
name=datasets.Split.VALIDATION,
|
152 |
+
gen_kwargs={
|
153 |
+
"abstracts_file": data_dir / "development" / "drugprot_development_abstracs.tsv",
|
154 |
+
"entities_file": data_dir / "development" / "drugprot_development_entities.tsv",
|
155 |
+
"relations_file": data_dir / "development" / "drugprot_development_relations.tsv",
|
156 |
+
},
|
157 |
+
),
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split("test_background"),
|
160 |
+
gen_kwargs={
|
161 |
+
"abstracts_file": data_dir / "test-background" / "test_background_abstracts.tsv",
|
162 |
+
"entities_file": data_dir / "test-background" / "test_background_entities.tsv",
|
163 |
+
"relations_file": None,
|
164 |
+
},
|
165 |
),
|
166 |
]
|
167 |
|
168 |
+
def _generate_examples(self, **kwargs) -> Iterator[Tuple[str, Dict]]:
|
169 |
if self.config.name == "drugprot_source":
|
170 |
+
documents = self._read_source_examples(**kwargs)
|
171 |
for document_id, document in documents.items():
|
172 |
yield document_id, document
|
173 |
|
174 |
elif self.config.name == "drugprot_bigbio_kb":
|
175 |
+
documents = self._read_source_examples(**kwargs)
|
176 |
for document_id, document in documents.items():
|
177 |
yield document_id, self._transform_source_to_kb(document)
|
178 |
|
179 |
+
def _read_source_examples(self, abstracts_file: Path, entities_file: Path, relations_file: Optional[Path]) -> Dict:
|
180 |
""" """
|
181 |
+
# Note: The split "test-background" does not contain any relations
|
|
|
|
|
|
|
|
|
182 |
document_to_entities = collections.defaultdict(list)
|
183 |
for line in entities_file.read_text().splitlines():
|
184 |
columns = line.split("\t")
|
|
|
194 |
)
|
195 |
|
196 |
document_to_relations = collections.defaultdict(list)
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
if relations_file is not None:
|
199 |
+
for line in relations_file.read_text().splitlines():
|
200 |
+
columns = line.split("\t")
|
201 |
+
document_id = columns[0]
|
202 |
+
|
203 |
+
document_relations = document_to_relations[document_id]
|
204 |
+
|
205 |
+
document_relations.append(
|
206 |
+
{
|
207 |
+
"id": document_id + "_" + str(len(document_relations)),
|
208 |
+
"type": columns[1],
|
209 |
+
"arg1_id": document_id + "_" + columns[2][5:],
|
210 |
+
"arg2_id": document_id + "_" + columns[3][5:],
|
211 |
+
}
|
212 |
+
)
|
213 |
|
214 |
document_to_source = {}
|
215 |
for line in abstracts_file.read_text().splitlines():
|