File size: 9,368 Bytes
837c7b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The DrugProt corpus consists of a) expert-labelled chemical and gene mentions, and (b) all binary relationships
between them corresponding to a specific set of biologically relevant relation types. The corpus was introduced
in context of the BioCreative VII Track 1 (Text mining drug and chemical-protein interactions).
For further information see:
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/
"""
import collections
from pathlib import Path
from typing import Dict, Iterator, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{miranda2021overview,
title={Overview of DrugProt BioCreative VII track: quality evaluation and large scale text mining of \
drug-gene/protein relations},
author={Miranda, Antonio and Mehryary, Farrokh and Luoma, Jouni and Pyysalo, Sampo and Valencia, Alfonso \
and Krallinger, Martin},
booktitle={Proceedings of the seventh BioCreative challenge evaluation workshop},
year={2021}
}
"""
_DATASETNAME = "drugprot"
_DISPLAYNAME = "DrugProt"
_DESCRIPTION = """\
The DrugProt corpus consists of a) expert-labelled chemical and gene mentions, and (b) all binary relationships \
between them corresponding to a specific set of biologically relevant relation types.
"""
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/"
_LICENSE = 'Creative Commons Attribution 4.0 International'
_URLS = {_DATASETNAME: "https://zenodo.org/record/5119892/files/drugprot-training-development-test-background.zip?download=1"}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.2"
_BIGBIO_VERSION = "1.0.0"
class DrugProtDataset(datasets.GeneratorBasedBuilder):
"""
The DrugProt corpus consists of a) expert-labelled chemical and gene mentions, and \
(b) all binary relationships between them.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="drugprot_source",
version=SOURCE_VERSION,
description="DrugProt source schema",
schema="source",
subset_id="drugprot",
),
BigBioConfig(
name="drugprot_bigbio_kb",
version=BIGBIO_VERSION,
description="DrugProt BigBio schema",
schema="bigbio_kb",
subset_id="drugprot",
),
]
DEFAULT_CONFIG_NAME = "drugprot_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"offset": datasets.Sequence(datasets.Value("int32")),
}
],
"relations": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arg1_id": datasets.Value("string"),
"arg2_id": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[_DATASETNAME]
data_dir = Path(dl_manager.download_and_extract(urls))
data_dir = data_dir / "drugprot-gs-training-development"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_dir": data_dir, "split": "training"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_dir": data_dir, "split": "development"},
),
]
def _generate_examples(self, data_dir: Path, split: str) -> Iterator[Tuple[str, Dict]]:
if self.config.name == "drugprot_source":
documents = self._read_source_examples(data_dir, split)
for document_id, document in documents.items():
yield document_id, document
elif self.config.name == "drugprot_bigbio_kb":
documents = self._read_source_examples(data_dir, split)
for document_id, document in documents.items():
yield document_id, self._transform_source_to_kb(document)
def _read_source_examples(self, input_dir: Path, split: str) -> Dict:
""" """
split_dir = input_dir / split
abstracts_file = split_dir / f"drugprot_{split}_abstracs.tsv"
entities_file = split_dir / f"drugprot_{split}_entities.tsv"
relations_file = split_dir / f"drugprot_{split}_relations.tsv"
document_to_entities = collections.defaultdict(list)
for line in entities_file.read_text().splitlines():
columns = line.split("\t")
document_id = columns[0]
document_to_entities[document_id].append(
{
"id": document_id + "_" + columns[1],
"type": columns[2],
"offset": [columns[3], columns[4]],
"text": columns[5],
}
)
document_to_relations = collections.defaultdict(list)
for line in relations_file.read_text().splitlines():
columns = line.split("\t")
document_id = columns[0]
document_relations = document_to_relations[document_id]
document_relations.append(
{
"id": document_id + "_" + str(len(document_relations)),
"type": columns[1],
"arg1_id": document_id + "_" + columns[2][5:],
"arg2_id": document_id + "_" + columns[3][5:],
}
)
document_to_source = {}
for line in abstracts_file.read_text().splitlines():
document_id, title, abstract = line.split("\t")
document_to_source[document_id] = {
"document_id": document_id,
"title": title,
"abstract": abstract,
"text": " ".join([title, abstract]),
"entities": document_to_entities[document_id],
"relations": document_to_relations[document_id],
}
return document_to_source
def _transform_source_to_kb(self, source_document: Dict) -> Dict:
document_id = source_document["document_id"]
offset = 0
passages = []
for text_field in ["title", "abstract"]:
text = source_document[text_field]
passages.append(
{
"id": document_id + "_" + text_field,
"type": text_field,
"text": [text],
"offsets": [[offset, offset + len(text)]],
}
)
offset += len(text) + 1
entities = [
{
"id": entity["id"],
"type": entity["type"],
"text": [entity["text"]],
"offsets": [entity["offset"]],
"normalized": [],
}
for entity in source_document["entities"]
]
relations = [
{
"id": relation["id"],
"type": relation["type"],
"arg1_id": relation["arg1_id"],
"arg2_id": relation["arg2_id"],
"normalized": [],
}
for relation in source_document["relations"]
]
return {
"id": document_id,
"document_id": document_id,
"passages": passages,
"entities": entities,
"relations": relations,
"events": [],
"coreferences": [],
}
|