|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import tempfile |
|
from pathlib import Path |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_VERSION = "1.0.0" |
|
|
|
_DESCRIPTION = "Chronos datasets" |
|
|
|
_CITATION = """ |
|
@article{ansari2024chronos, |
|
author = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan, and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Wang, Hao and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang}, |
|
title = {Chronos: Learning the Language of Time Series}, |
|
journal = {arXiv preprint arXiv:2403.07815}, |
|
year = {2024} |
|
} |
|
""" |
|
|
|
|
|
_ETTH = "ETTh" |
|
_ETTM = "ETTm" |
|
_SPANISH_ENERGY_AND_WEATHER = "spanish_energy_and_weather" |
|
_BRAZILIAN_TEMPERATURE = "brazilian_cities_temperature" |
|
|
|
|
|
class ChronosExtraConfig(datasets.BuilderConfig): |
|
def __init__( |
|
self, |
|
name: str, |
|
license: str = None, |
|
homepage: str = None, |
|
**kwargs, |
|
): |
|
super().__init__(name=name, **kwargs) |
|
self.license = license |
|
self.homepage = homepage |
|
|
|
|
|
class ChronosExtraBuilder(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIG_CLASS = ChronosExtraConfig |
|
BUILDER_CONFIGS = [ |
|
ChronosExtraConfig( |
|
name=_ETTH, |
|
license="CC BY-ND 4.0", |
|
homepage="https://github.com/zhouhaoyi/ETDataset", |
|
version=_VERSION, |
|
), |
|
ChronosExtraConfig( |
|
name=_ETTM, |
|
license="CC BY-ND 4.0", |
|
homepage="https://github.com/zhouhaoyi/ETDataset", |
|
version=_VERSION, |
|
), |
|
ChronosExtraConfig( |
|
name=_BRAZILIAN_TEMPERATURE, |
|
license="Database Contents License (DbCL) v1.0", |
|
homepage="https://www.kaggle.com/datasets/volpatto/temperature-timeseries-for-some-brazilian-cities", |
|
version=_VERSION, |
|
), |
|
ChronosExtraConfig( |
|
name=_SPANISH_ENERGY_AND_WEATHER, |
|
homepage="https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather", |
|
version=_VERSION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
version=self.config.version, |
|
license=self.config.license, |
|
homepage=self.config.homepage, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN), |
|
] |
|
|
|
def _generate_examples(self): |
|
if self.config.name in [_ETTH, _ETTM]: |
|
yield from _ett_generator(self.config.name) |
|
elif self.config.name == _SPANISH_ENERGY_AND_WEATHER: |
|
yield from _spanish_energy_generator() |
|
elif self.config.name == _BRAZILIAN_TEMPERATURE: |
|
yield from _brazilian_temperature_generator() |
|
|
|
|
|
def _ett_generator(name: str): |
|
for region in [1, 2]: |
|
url = f"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/{name}{region}.csv?download=1" |
|
df = pd.read_csv(url, parse_dates=["date"]) |
|
df = df.rename(columns={"date": "timestamp"}) |
|
entry = {"id": f"{name}{region}"} |
|
for col in df.columns: |
|
entry[col] = df[col].to_numpy() |
|
yield region, entry |
|
|
|
|
|
def _download_from_kaggle(dataset_name, download_path) -> None: |
|
from kaggle.api.kaggle_api_extended import KaggleApi |
|
|
|
api = KaggleApi() |
|
api.authenticate() |
|
api.dataset_download_files(dataset_name, path=download_path, unzip=True) |
|
|
|
|
|
def _spanish_energy_generator(): |
|
with tempfile.TemporaryDirectory() as download_path: |
|
_download_from_kaggle( |
|
"nicholasjhana/energy-consumption-generation-prices-and-weather", |
|
download_path, |
|
) |
|
download_path = Path(download_path) |
|
df_energy = pd.read_csv(download_path / "energy_dataset.csv") |
|
df_energy["time"] = pd.to_datetime(df_energy["time"], utc=True) |
|
df_energy.set_index("time", inplace=True) |
|
|
|
|
|
constant_columns = df_energy.columns[df_energy.nunique() <= 1].to_list() |
|
forecast_columns = [ |
|
col for col in df_energy.columns if "forecast" in col or "day ahead" in col |
|
] |
|
columns_to_drop = constant_columns + forecast_columns |
|
df_energy = df_energy.drop(columns_to_drop, axis=1) |
|
|
|
entry = {"id": "0", "timestamp": df_energy.index.to_numpy(dtype="datetime64[ms]")} |
|
for col in df_energy.columns: |
|
saved_name = col.replace(" ", "_") |
|
entry[saved_name] = df_energy[col].to_numpy(dtype="float64") |
|
|
|
|
|
df_weather = pd.read_csv(download_path / "weather_features.csv") |
|
df_weather["dt_iso"] = pd.to_datetime(df_weather["dt_iso"], utc=True) |
|
df_weather = ( |
|
df_weather.rename(columns={"dt_iso": "time"}) |
|
.drop_duplicates(subset=["time", "city_name"], keep="first") |
|
.set_index("time") |
|
) |
|
weather_features = [ |
|
"temp", |
|
"temp_min", |
|
"temp_max", |
|
"pressure", |
|
"humidity", |
|
"wind_speed", |
|
"wind_deg", |
|
"rain_1h", |
|
"snow_3h", |
|
"clouds_all", |
|
] |
|
for feature in weather_features: |
|
for city, df_for_city in df_weather.groupby("city_name"): |
|
saved_name = f"{city.lstrip()}_{feature}" |
|
entry[saved_name] = df_for_city[feature].to_numpy(dtype="float64") |
|
assert df_for_city.index.equals(df_energy.index) |
|
yield 0, entry |
|
|
|
|
|
def _brazilian_temperature_generator(): |
|
months = [ |
|
"JAN", |
|
"FEB", |
|
"MAR", |
|
"APR", |
|
"MAY", |
|
"JUN", |
|
"JUL", |
|
"AUG", |
|
"SEP", |
|
"OCT", |
|
"NOV", |
|
"DEC", |
|
] |
|
with tempfile.TemporaryDirectory() as download_path: |
|
_download_from_kaggle( |
|
"volpatto/temperature-timeseries-for-some-brazilian-cities", download_path |
|
) |
|
for filename in sorted(Path(download_path).iterdir()): |
|
city = filename.name.split("_", maxsplit=1)[1].split(".")[0] |
|
df = pd.read_csv(filename) |
|
df = df.set_index("YEAR")[months] |
|
first_timestamp = f"{df.index[0]}-01-01" |
|
df = df.stack() |
|
df[df == 999.9] = float("nan") |
|
entry = { |
|
"id": city, |
|
"timestamp": pd.date_range( |
|
first_timestamp, freq="MS", periods=len(df), unit="ms" |
|
).to_numpy(), |
|
"temperature": df.to_numpy("float32"), |
|
} |
|
yield city, entry |
|
|