File size: 6,282 Bytes
dc3ed65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
pretty_name: Chronos datasets (extra)
annotations_creators:
- no-annotation
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
license: apache-2.0
dataset_info:
- config_name: ETTh
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ns]
- name: HUFL
sequence: float64
- name: HULL
sequence: float64
- name: MUFL
sequence: float64
- name: MULL
sequence: float64
- name: LUFL
sequence: float64
- name: LULL
sequence: float64
- name: OT
sequence: float64
splits:
- name: train
num_bytes: 2229840
num_examples: 2
download_size: 0
dataset_size: 2229840
- config_name: ETTm
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: HUFL
sequence: float64
- name: HULL
sequence: float64
- name: MUFL
sequence: float64
- name: MULL
sequence: float64
- name: LUFL
sequence: float64
- name: LULL
sequence: float64
- name: OT
sequence: float64
splits:
- name: train
num_bytes: 8919120
num_examples: 2
download_size: 0
dataset_size: 8919120
- config_name: brazilian_cities_temperature
features:
- name: id
dtype: string
- name: timestamp
sequence: timestamp[ms]
- name: temperature
sequence: float32
splits:
- name: train
num_bytes: 109234
num_examples: 12
download_size: 0
dataset_size: 109234
- config_name: spanish_energy_and_weather
features:
- name: timestamp
sequence: timestamp[ms]
- name: generation_biomass
sequence: float64
- name: generation_fossil_brown_coal/lignite
sequence: float64
- name: generation_fossil_gas
sequence: float64
- name: generation_fossil_hard_coal
sequence: float64
- name: generation_fossil_oil
sequence: float64
- name: generation_hydro_pumped_storage_consumption
sequence: float64
- name: generation_hydro_run-of-river_and_poundage
sequence: float64
- name: generation_hydro_water_reservoir
sequence: float64
- name: generation_nuclear
sequence: float64
- name: generation_other
sequence: float64
- name: generation_other_renewable
sequence: float64
- name: generation_solar
sequence: float64
- name: generation_waste
sequence: float64
- name: generation_wind_onshore
sequence: float64
- name: total_load_actual
sequence: float64
- name: price_actual
sequence: float64
- name: Barcelona_temp
sequence: float64
- name: Bilbao_temp
sequence: float64
- name: Madrid_temp
sequence: float64
- name: Seville_temp
sequence: float64
- name: Valencia_temp
sequence: float64
- name: Barcelona_temp_min
sequence: float64
- name: Bilbao_temp_min
sequence: float64
- name: Madrid_temp_min
sequence: float64
- name: Seville_temp_min
sequence: float64
- name: Valencia_temp_min
sequence: float64
- name: Barcelona_temp_max
sequence: float64
- name: Bilbao_temp_max
sequence: float64
- name: Madrid_temp_max
sequence: float64
- name: Seville_temp_max
sequence: float64
- name: Valencia_temp_max
sequence: float64
- name: Barcelona_pressure
sequence: float64
- name: Bilbao_pressure
sequence: float64
- name: Madrid_pressure
sequence: float64
- name: Seville_pressure
sequence: float64
- name: Valencia_pressure
sequence: float64
- name: Barcelona_humidity
sequence: float64
- name: Bilbao_humidity
sequence: float64
- name: Madrid_humidity
sequence: float64
- name: Seville_humidity
sequence: float64
- name: Valencia_humidity
sequence: float64
- name: Barcelona_wind_speed
sequence: float64
- name: Bilbao_wind_speed
sequence: float64
- name: Madrid_wind_speed
sequence: float64
- name: Seville_wind_speed
sequence: float64
- name: Valencia_wind_speed
sequence: float64
- name: Barcelona_wind_deg
sequence: float64
- name: Bilbao_wind_deg
sequence: float64
- name: Madrid_wind_deg
sequence: float64
- name: Seville_wind_deg
sequence: float64
- name: Valencia_wind_deg
sequence: float64
- name: Barcelona_rain_1h
sequence: float64
- name: Bilbao_rain_1h
sequence: float64
- name: Madrid_rain_1h
sequence: float64
- name: Seville_rain_1h
sequence: float64
- name: Valencia_rain_1h
sequence: float64
- name: Barcelona_snow_3h
sequence: float64
- name: Bilbao_snow_3h
sequence: float64
- name: Madrid_snow_3h
sequence: float64
- name: Seville_snow_3h
sequence: float64
- name: Valencia_snow_3h
sequence: float64
- name: Barcelona_clouds_all
sequence: float64
- name: Bilbao_clouds_all
sequence: float64
- name: Madrid_clouds_all
sequence: float64
- name: Seville_clouds_all
sequence: float64
- name: Valencia_clouds_all
sequence: float64
splits:
- name: train
num_bytes: 18794572
num_examples: 1
download_size: 0
dataset_size: 18794572
---
# Chronos datasets
Time series datasets used for training and evaluation of the [Chronos](https://github.com/amazon-science/chronos-forecasting) forecasting models.
This repository contains scripts for constructing datasets that cannot be hosted in the [main Chronos datasets repository](https://huggingface.co/datasets/autogluon/chronos_datasets) due to license restrictions.
## Usage
Datasets can be loaded using the 🤗 [`datasets`](https://huggingface.co/docs/datasets/en/index) library
```python
import datasets
ds = datasets.load_dataset("autogluon/chronos_datasets_extra", "ETTh", split="train", trust_remote_code=True)
ds.set_format("numpy") # sequences returned as numpy arrays
```
For more information about the data format and usage please refer to [`autogluon/chronos_datasets`](https://huggingface.co/datasets/autogluon/chronos_datasets).
## License
Different datasets available in this collection are distributed under different open source licenses. Please see `ds.info.license` and `ds.info.homepage` for each individual dataset.
The dataset script provided in this repository (`chronos_datasets_extra.py`) is available under the Apache 2.0 License.
|