Upload folder using huggingface_hub
Browse files- furry/baobai/baobai6/D_0.pth +3 -0
- furry/baobai/baobai6/D_1600.pth +3 -0
- furry/baobai/baobai6/D_2400.pth +3 -0
- furry/baobai/baobai6/D_3200.pth +3 -0
- furry/baobai/baobai6/G_0.pth +3 -0
- furry/baobai/baobai6/G_1600.pth +3 -0
- furry/baobai/baobai6/G_2400.pth +3 -0
- furry/baobai/baobai6/G_3200.pth +3 -0
- furry/baobai/baobai6/config.json +96 -0
- furry/baobai/baobai6/diffusion/config.yaml +48 -0
- furry/baobai/baobai6/diffusion/log_info.txt +433 -0
- furry/baobai/baobai6/diffusion/logs/events.out.tfevents.1684649704.dabec9d50fc6.33951.0 +3 -0
- furry/baobai/baobai6/diffusion/model_0.pt +3 -0
- furry/baobai/baobai6/diffusion/model_4000.pt +3 -0
- furry/baobai/baobai6/eval/events.out.tfevents.1684644188.dabec9d50fc6.7497.1 +3 -0
- furry/baobai/baobai6/events.out.tfevents.1684644188.dabec9d50fc6.7497.0 +3 -0
- furry/baobai/baobai6/githash +1 -0
- furry/baobai/baobai6/train.log +206 -0
furry/baobai/baobai6/D_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:273a1da965da0f3b51c7f630c3aa1bf0ef4739da4ab367a9f063a6e12058e8ce
|
3 |
+
size 187027770
|
furry/baobai/baobai6/D_1600.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce3771c8687f274122e160ee4e54d321ac9addb1f3d21013eb163efc35baa5e0
|
3 |
+
size 561093259
|
furry/baobai/baobai6/D_2400.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db6dd7d4e3c4726b4948c2d1818051e9e56a99f8b55a86f09ec1b49126efd762
|
3 |
+
size 561093259
|
furry/baobai/baobai6/D_3200.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f9304b1b3799820eae02150d38b87feadfc88be5ae5a8e34efbe65d0cb17eee
|
3 |
+
size 561093259
|
furry/baobai/baobai6/G_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da86273856084312fcae6c6adc50f7149baab67693ea9f896117ad20c076dd2e
|
3 |
+
size 209268661
|
furry/baobai/baobai6/G_1600.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e292aefff9f9661004c096e1c771026c78ca1defb4a2a364963d28aa3a3cb0c
|
3 |
+
size 627897375
|
furry/baobai/baobai6/G_2400.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e54d4d139e98133c2b7084c2800d6c6385f18e24e8ae7147ad12f48bcae278a
|
3 |
+
size 627897375
|
furry/baobai/baobai6/G_3200.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cfd1b5096e1cdec20a16198701a018eceb41e581b351b9c5d04b564b43606cd
|
3 |
+
size 627897375
|
furry/baobai/baobai6/config.json
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 800,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 6,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 10240,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"use_sr": true,
|
22 |
+
"max_speclen": 512,
|
23 |
+
"port": "8001",
|
24 |
+
"keep_ckpts": 3,
|
25 |
+
"all_in_mem": false
|
26 |
+
},
|
27 |
+
"data": {
|
28 |
+
"training_files": "filelists/train.txt",
|
29 |
+
"validation_files": "filelists/val.txt",
|
30 |
+
"max_wav_value": 32768.0,
|
31 |
+
"sampling_rate": 44100,
|
32 |
+
"filter_length": 2048,
|
33 |
+
"hop_length": 512,
|
34 |
+
"win_length": 2048,
|
35 |
+
"n_mel_channels": 80,
|
36 |
+
"mel_fmin": 0.0,
|
37 |
+
"mel_fmax": 22050
|
38 |
+
},
|
39 |
+
"model": {
|
40 |
+
"inter_channels": 192,
|
41 |
+
"hidden_channels": 192,
|
42 |
+
"filter_channels": 768,
|
43 |
+
"n_heads": 2,
|
44 |
+
"n_layers": 6,
|
45 |
+
"kernel_size": 3,
|
46 |
+
"p_dropout": 0.1,
|
47 |
+
"resblock": "1",
|
48 |
+
"resblock_kernel_sizes": [
|
49 |
+
3,
|
50 |
+
7,
|
51 |
+
11
|
52 |
+
],
|
53 |
+
"resblock_dilation_sizes": [
|
54 |
+
[
|
55 |
+
1,
|
56 |
+
3,
|
57 |
+
5
|
58 |
+
],
|
59 |
+
[
|
60 |
+
1,
|
61 |
+
3,
|
62 |
+
5
|
63 |
+
],
|
64 |
+
[
|
65 |
+
1,
|
66 |
+
3,
|
67 |
+
5
|
68 |
+
]
|
69 |
+
],
|
70 |
+
"upsample_rates": [
|
71 |
+
8,
|
72 |
+
8,
|
73 |
+
2,
|
74 |
+
2,
|
75 |
+
2
|
76 |
+
],
|
77 |
+
"upsample_initial_channel": 512,
|
78 |
+
"upsample_kernel_sizes": [
|
79 |
+
16,
|
80 |
+
16,
|
81 |
+
4,
|
82 |
+
4,
|
83 |
+
4
|
84 |
+
],
|
85 |
+
"n_layers_q": 3,
|
86 |
+
"use_spectral_norm": false,
|
87 |
+
"gin_channels": 768,
|
88 |
+
"ssl_dim": 768,
|
89 |
+
"n_speakers": 1,
|
90 |
+
"speech_encoder": "vec768l12",
|
91 |
+
"speaker_embedding": false
|
92 |
+
},
|
93 |
+
"spk": {
|
94 |
+
"baobai": 0
|
95 |
+
}
|
96 |
+
}
|
furry/baobai/baobai6/diffusion/config.yaml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data:
|
2 |
+
block_size: 512
|
3 |
+
cnhubertsoft_gate: 10
|
4 |
+
duration: 1
|
5 |
+
encoder: vec768l12
|
6 |
+
encoder_hop_size: 320
|
7 |
+
encoder_out_channels: 768
|
8 |
+
encoder_sample_rate: 16000
|
9 |
+
extensions:
|
10 |
+
- wav
|
11 |
+
sampling_rate: 44100
|
12 |
+
training_files: filelists/train.txt
|
13 |
+
validation_files: filelists/val.txt
|
14 |
+
device: cuda
|
15 |
+
env:
|
16 |
+
expdir: logs/44k/diffusion
|
17 |
+
gpu_id: 0
|
18 |
+
infer:
|
19 |
+
method: dpm-solver
|
20 |
+
speedup: 10
|
21 |
+
model:
|
22 |
+
n_chans: 512
|
23 |
+
n_hidden: 256
|
24 |
+
n_layers: 20
|
25 |
+
n_spk: 1
|
26 |
+
type: Diffusion
|
27 |
+
use_pitch_aug: true
|
28 |
+
spk:
|
29 |
+
baobai: 0
|
30 |
+
train:
|
31 |
+
amp_dtype: fp32
|
32 |
+
batch_size: 48
|
33 |
+
cache_all_data: true
|
34 |
+
cache_device: cpu
|
35 |
+
cache_fp16: true
|
36 |
+
decay_step: 100000
|
37 |
+
epochs: 100000
|
38 |
+
gamma: 0.5
|
39 |
+
interval_force_save: 10000
|
40 |
+
interval_log: 10
|
41 |
+
interval_val: 2000
|
42 |
+
lr: 0.0002
|
43 |
+
num_workers: 2
|
44 |
+
save_opt: false
|
45 |
+
weight_decay: 0
|
46 |
+
vocoder:
|
47 |
+
ckpt: pretrain/nsf_hifigan/model
|
48 |
+
type: nsf-hifigan
|
furry/baobai/baobai6/diffusion/log_info.txt
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--- model size ---
|
2 |
+
model: 55,192,704
|
3 |
+
======= start training =======
|
4 |
+
epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step
|
5 |
+
epoch: 3 | 0/ 3 | logs/44k/diffusion | batch/s: 1.30 | lr: 0.0002 | loss: 0.032 | time: 0:00:07.9 | step: 10
|
6 |
+
epoch: 6 | 1/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.018 | time: 0:00:12.1 | step: 20
|
7 |
+
epoch: 9 | 2/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.061 | time: 0:00:16.1 | step: 30
|
8 |
+
epoch: 13 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.037 | time: 0:00:20.4 | step: 40
|
9 |
+
epoch: 16 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.008 | time: 0:00:24.8 | step: 50
|
10 |
+
epoch: 19 | 2/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.037 | time: 0:00:29.0 | step: 60
|
11 |
+
epoch: 23 | 0/ 3 | logs/44k/diffusion | batch/s: 2.29 | lr: 0.0002 | loss: 0.038 | time: 0:00:33.4 | step: 70
|
12 |
+
epoch: 26 | 1/ 3 | logs/44k/diffusion | batch/s: 2.25 | lr: 0.0002 | loss: 0.011 | time: 0:00:37.9 | step: 80
|
13 |
+
epoch: 29 | 2/ 3 | logs/44k/diffusion | batch/s: 2.25 | lr: 0.0002 | loss: 0.006 | time: 0:00:42.2 | step: 90
|
14 |
+
epoch: 33 | 0/ 3 | logs/44k/diffusion | batch/s: 2.27 | lr: 0.0002 | loss: 0.022 | time: 0:00:46.7 | step: 100
|
15 |
+
epoch: 36 | 1/ 3 | logs/44k/diffusion | batch/s: 2.25 | lr: 0.0002 | loss: 0.020 | time: 0:00:51.2 | step: 110
|
16 |
+
epoch: 39 | 2/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.022 | time: 0:00:55.3 | step: 120
|
17 |
+
epoch: 43 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:00:59.7 | step: 130
|
18 |
+
epoch: 46 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.014 | time: 0:01:04.0 | step: 140
|
19 |
+
epoch: 49 | 2/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.030 | time: 0:01:08.0 | step: 150
|
20 |
+
epoch: 53 | 0/ 3 | logs/44k/diffusion | batch/s: 2.42 | lr: 0.0002 | loss: 0.054 | time: 0:01:12.3 | step: 160
|
21 |
+
epoch: 56 | 1/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.011 | time: 0:01:16.5 | step: 170
|
22 |
+
epoch: 59 | 2/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.016 | time: 0:01:20.5 | step: 180
|
23 |
+
epoch: 63 | 0/ 3 | logs/44k/diffusion | batch/s: 2.42 | lr: 0.0002 | loss: 0.018 | time: 0:01:24.7 | step: 190
|
24 |
+
epoch: 66 | 1/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.025 | time: 0:01:28.9 | step: 200
|
25 |
+
epoch: 69 | 2/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.036 | time: 0:01:33.0 | step: 210
|
26 |
+
epoch: 73 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.041 | time: 0:01:37.2 | step: 220
|
27 |
+
epoch: 76 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.024 | time: 0:01:41.5 | step: 230
|
28 |
+
epoch: 79 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:01:45.6 | step: 240
|
29 |
+
epoch: 83 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.005 | time: 0:01:49.9 | step: 250
|
30 |
+
epoch: 86 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.031 | time: 0:01:54.2 | step: 260
|
31 |
+
epoch: 89 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.019 | time: 0:01:58.4 | step: 270
|
32 |
+
epoch: 93 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.015 | time: 0:02:02.7 | step: 280
|
33 |
+
epoch: 96 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.017 | time: 0:02:07.0 | step: 290
|
34 |
+
epoch: 99 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.012 | time: 0:02:11.2 | step: 300
|
35 |
+
epoch: 103 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.019 | time: 0:02:15.5 | step: 310
|
36 |
+
epoch: 106 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.006 | time: 0:02:19.8 | step: 320
|
37 |
+
epoch: 109 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:02:23.9 | step: 330
|
38 |
+
epoch: 113 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.035 | time: 0:02:28.2 | step: 340
|
39 |
+
epoch: 116 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.008 | time: 0:02:32.5 | step: 350
|
40 |
+
epoch: 119 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.025 | time: 0:02:36.5 | step: 360
|
41 |
+
epoch: 123 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.010 | time: 0:02:40.8 | step: 370
|
42 |
+
epoch: 126 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.022 | time: 0:02:45.1 | step: 380
|
43 |
+
epoch: 129 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.046 | time: 0:02:49.1 | step: 390
|
44 |
+
epoch: 133 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.013 | time: 0:02:53.5 | step: 400
|
45 |
+
epoch: 136 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.023 | time: 0:02:57.7 | step: 410
|
46 |
+
epoch: 139 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:03:01.8 | step: 420
|
47 |
+
epoch: 143 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:03:06.2 | step: 430
|
48 |
+
epoch: 146 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.006 | time: 0:03:10.5 | step: 440
|
49 |
+
epoch: 149 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.012 | time: 0:03:14.6 | step: 450
|
50 |
+
epoch: 153 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.018 | time: 0:03:19.0 | step: 460
|
51 |
+
epoch: 156 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.017 | time: 0:03:23.3 | step: 470
|
52 |
+
epoch: 159 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.010 | time: 0:03:27.4 | step: 480
|
53 |
+
epoch: 163 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.021 | time: 0:03:31.7 | step: 490
|
54 |
+
epoch: 166 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.009 | time: 0:03:36.0 | step: 500
|
55 |
+
epoch: 169 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.005 | time: 0:03:40.1 | step: 510
|
56 |
+
epoch: 173 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.017 | time: 0:03:44.4 | step: 520
|
57 |
+
epoch: 176 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.016 | time: 0:03:48.7 | step: 530
|
58 |
+
epoch: 179 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:03:52.8 | step: 540
|
59 |
+
epoch: 183 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.026 | time: 0:03:57.1 | step: 550
|
60 |
+
epoch: 186 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:04:01.3 | step: 560
|
61 |
+
epoch: 189 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.014 | time: 0:04:05.5 | step: 570
|
62 |
+
epoch: 193 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.010 | time: 0:04:09.8 | step: 580
|
63 |
+
epoch: 196 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:04:14.0 | step: 590
|
64 |
+
epoch: 199 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.039 | time: 0:04:18.1 | step: 600
|
65 |
+
epoch: 203 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.020 | time: 0:04:22.5 | step: 610
|
66 |
+
epoch: 206 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:04:26.7 | step: 620
|
67 |
+
epoch: 209 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:04:30.8 | step: 630
|
68 |
+
epoch: 213 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.022 | time: 0:04:35.1 | step: 640
|
69 |
+
epoch: 216 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:04:39.4 | step: 650
|
70 |
+
epoch: 219 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.026 | time: 0:04:43.5 | step: 660
|
71 |
+
epoch: 223 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.027 | time: 0:04:47.8 | step: 670
|
72 |
+
epoch: 226 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.038 | time: 0:04:52.1 | step: 680
|
73 |
+
epoch: 229 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.034 | time: 0:04:56.1 | step: 690
|
74 |
+
epoch: 233 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.012 | time: 0:05:00.4 | step: 700
|
75 |
+
epoch: 236 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.012 | time: 0:05:04.7 | step: 710
|
76 |
+
epoch: 239 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.026 | time: 0:05:08.8 | step: 720
|
77 |
+
epoch: 243 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.010 | time: 0:05:13.1 | step: 730
|
78 |
+
epoch: 246 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.029 | time: 0:05:17.3 | step: 740
|
79 |
+
epoch: 249 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.037 | time: 0:05:21.4 | step: 750
|
80 |
+
epoch: 253 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.016 | time: 0:05:25.7 | step: 760
|
81 |
+
epoch: 256 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.018 | time: 0:05:30.0 | step: 770
|
82 |
+
epoch: 259 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:05:34.1 | step: 780
|
83 |
+
epoch: 263 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.005 | time: 0:05:38.4 | step: 790
|
84 |
+
epoch: 266 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.018 | time: 0:05:42.7 | step: 800
|
85 |
+
epoch: 269 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.004 | time: 0:05:46.8 | step: 810
|
86 |
+
epoch: 273 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.013 | time: 0:05:51.1 | step: 820
|
87 |
+
epoch: 276 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:05:55.4 | step: 830
|
88 |
+
epoch: 279 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.010 | time: 0:05:59.5 | step: 840
|
89 |
+
epoch: 283 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.005 | time: 0:06:03.8 | step: 850
|
90 |
+
epoch: 286 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:06:08.0 | step: 860
|
91 |
+
epoch: 289 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:06:12.1 | step: 870
|
92 |
+
epoch: 293 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.011 | time: 0:06:16.5 | step: 880
|
93 |
+
epoch: 296 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:06:20.7 | step: 890
|
94 |
+
epoch: 299 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:06:24.8 | step: 900
|
95 |
+
epoch: 303 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.017 | time: 0:06:29.1 | step: 910
|
96 |
+
epoch: 306 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.030 | time: 0:06:33.4 | step: 920
|
97 |
+
epoch: 309 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.015 | time: 0:06:37.5 | step: 930
|
98 |
+
epoch: 313 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.018 | time: 0:06:41.9 | step: 940
|
99 |
+
epoch: 316 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:06:46.1 | step: 950
|
100 |
+
epoch: 319 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.010 | time: 0:06:50.3 | step: 960
|
101 |
+
epoch: 323 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.011 | time: 0:06:54.6 | step: 970
|
102 |
+
epoch: 326 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.021 | time: 0:06:58.9 | step: 980
|
103 |
+
epoch: 329 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.014 | time: 0:07:03.0 | step: 990
|
104 |
+
epoch: 333 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:07:07.3 | step: 1000
|
105 |
+
epoch: 336 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.015 | time: 0:07:11.6 | step: 1010
|
106 |
+
epoch: 339 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.003 | time: 0:07:15.7 | step: 1020
|
107 |
+
epoch: 343 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.029 | time: 0:07:20.0 | step: 1030
|
108 |
+
epoch: 346 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:07:24.3 | step: 1040
|
109 |
+
epoch: 349 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.022 | time: 0:07:28.3 | step: 1050
|
110 |
+
epoch: 353 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.048 | time: 0:07:32.6 | step: 1060
|
111 |
+
epoch: 356 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.026 | time: 0:07:36.9 | step: 1070
|
112 |
+
epoch: 359 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:07:41.0 | step: 1080
|
113 |
+
epoch: 363 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.011 | time: 0:07:45.3 | step: 1090
|
114 |
+
epoch: 366 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.021 | time: 0:07:49.5 | step: 1100
|
115 |
+
epoch: 369 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.032 | time: 0:07:53.6 | step: 1110
|
116 |
+
epoch: 373 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.021 | time: 0:07:57.9 | step: 1120
|
117 |
+
epoch: 376 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:08:02.2 | step: 1130
|
118 |
+
epoch: 379 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.016 | time: 0:08:06.3 | step: 1140
|
119 |
+
epoch: 383 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.021 | time: 0:08:10.6 | step: 1150
|
120 |
+
epoch: 386 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:08:14.9 | step: 1160
|
121 |
+
epoch: 389 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:08:19.0 | step: 1170
|
122 |
+
epoch: 393 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.023 | time: 0:08:23.4 | step: 1180
|
123 |
+
epoch: 396 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.019 | time: 0:08:27.7 | step: 1190
|
124 |
+
epoch: 399 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:08:31.8 | step: 1200
|
125 |
+
epoch: 403 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.024 | time: 0:08:36.1 | step: 1210
|
126 |
+
epoch: 406 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.014 | time: 0:08:40.4 | step: 1220
|
127 |
+
epoch: 409 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.013 | time: 0:08:44.5 | step: 1230
|
128 |
+
epoch: 413 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.023 | time: 0:08:48.9 | step: 1240
|
129 |
+
epoch: 416 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.026 | time: 0:08:53.1 | step: 1250
|
130 |
+
epoch: 419 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:08:57.2 | step: 1260
|
131 |
+
epoch: 423 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.033 | time: 0:09:01.6 | step: 1270
|
132 |
+
epoch: 426 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.026 | time: 0:09:05.9 | step: 1280
|
133 |
+
epoch: 429 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:09:10.0 | step: 1290
|
134 |
+
epoch: 433 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.031 | time: 0:09:14.3 | step: 1300
|
135 |
+
epoch: 436 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:09:18.6 | step: 1310
|
136 |
+
epoch: 439 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.009 | time: 0:09:22.7 | step: 1320
|
137 |
+
epoch: 443 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:09:27.1 | step: 1330
|
138 |
+
epoch: 446 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.004 | time: 0:09:31.4 | step: 1340
|
139 |
+
epoch: 449 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.050 | time: 0:09:35.5 | step: 1350
|
140 |
+
epoch: 453 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.023 | time: 0:09:39.9 | step: 1360
|
141 |
+
epoch: 456 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:09:44.2 | step: 1370
|
142 |
+
epoch: 459 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.005 | time: 0:09:48.3 | step: 1380
|
143 |
+
epoch: 463 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:09:52.6 | step: 1390
|
144 |
+
epoch: 466 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.015 | time: 0:09:56.9 | step: 1400
|
145 |
+
epoch: 469 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:10:01.0 | step: 1410
|
146 |
+
epoch: 473 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.006 | time: 0:10:05.3 | step: 1420
|
147 |
+
epoch: 476 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.020 | time: 0:10:09.6 | step: 1430
|
148 |
+
epoch: 479 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.029 | time: 0:10:13.7 | step: 1440
|
149 |
+
epoch: 483 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.007 | time: 0:10:18.0 | step: 1450
|
150 |
+
epoch: 486 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.042 | time: 0:10:22.3 | step: 1460
|
151 |
+
epoch: 489 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.037 | time: 0:10:26.4 | step: 1470
|
152 |
+
epoch: 493 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.011 | time: 0:10:30.8 | step: 1480
|
153 |
+
epoch: 496 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.027 | time: 0:10:35.1 | step: 1490
|
154 |
+
epoch: 499 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:10:39.2 | step: 1500
|
155 |
+
epoch: 503 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:10:43.5 | step: 1510
|
156 |
+
epoch: 506 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.037 | time: 0:10:47.8 | step: 1520
|
157 |
+
epoch: 509 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:10:51.9 | step: 1530
|
158 |
+
epoch: 513 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:10:56.2 | step: 1540
|
159 |
+
epoch: 516 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.020 | time: 0:11:00.5 | step: 1550
|
160 |
+
epoch: 519 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:11:04.6 | step: 1560
|
161 |
+
epoch: 523 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.007 | time: 0:11:08.9 | step: 1570
|
162 |
+
epoch: 526 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.013 | time: 0:11:13.2 | step: 1580
|
163 |
+
epoch: 529 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.021 | time: 0:11:17.3 | step: 1590
|
164 |
+
epoch: 533 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:11:21.7 | step: 1600
|
165 |
+
epoch: 536 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.017 | time: 0:11:26.0 | step: 1610
|
166 |
+
epoch: 539 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:11:30.1 | step: 1620
|
167 |
+
epoch: 543 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.035 | time: 0:11:34.4 | step: 1630
|
168 |
+
epoch: 546 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:11:38.7 | step: 1640
|
169 |
+
epoch: 549 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:11:42.8 | step: 1650
|
170 |
+
epoch: 553 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.015 | time: 0:11:47.1 | step: 1660
|
171 |
+
epoch: 556 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.019 | time: 0:11:51.4 | step: 1670
|
172 |
+
epoch: 559 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:11:55.5 | step: 1680
|
173 |
+
epoch: 563 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.025 | time: 0:11:59.8 | step: 1690
|
174 |
+
epoch: 566 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.036 | time: 0:12:04.1 | step: 1700
|
175 |
+
epoch: 569 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.017 | time: 0:12:08.2 | step: 1710
|
176 |
+
epoch: 573 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.029 | time: 0:12:12.5 | step: 1720
|
177 |
+
epoch: 576 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.005 | time: 0:12:16.8 | step: 1730
|
178 |
+
epoch: 579 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.003 | time: 0:12:20.9 | step: 1740
|
179 |
+
epoch: 583 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:12:25.3 | step: 1750
|
180 |
+
epoch: 586 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:12:29.6 | step: 1760
|
181 |
+
epoch: 589 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:12:33.7 | step: 1770
|
182 |
+
epoch: 593 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:12:38.0 | step: 1780
|
183 |
+
epoch: 596 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.034 | time: 0:12:42.3 | step: 1790
|
184 |
+
epoch: 599 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.032 | time: 0:12:46.4 | step: 1800
|
185 |
+
epoch: 603 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.012 | time: 0:12:50.7 | step: 1810
|
186 |
+
epoch: 606 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.011 | time: 0:12:55.0 | step: 1820
|
187 |
+
epoch: 609 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.017 | time: 0:12:59.2 | step: 1830
|
188 |
+
epoch: 613 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.011 | time: 0:13:03.5 | step: 1840
|
189 |
+
epoch: 616 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.013 | time: 0:13:07.8 | step: 1850
|
190 |
+
epoch: 619 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.011 | time: 0:13:11.9 | step: 1860
|
191 |
+
epoch: 623 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:13:16.2 | step: 1870
|
192 |
+
epoch: 626 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.030 | time: 0:13:20.5 | step: 1880
|
193 |
+
epoch: 629 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.011 | time: 0:13:24.6 | step: 1890
|
194 |
+
epoch: 633 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.015 | time: 0:13:29.0 | step: 1900
|
195 |
+
epoch: 636 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:13:33.3 | step: 1910
|
196 |
+
epoch: 639 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:13:37.4 | step: 1920
|
197 |
+
epoch: 643 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.032 | time: 0:13:41.7 | step: 1930
|
198 |
+
epoch: 646 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.032 | time: 0:13:46.0 | step: 1940
|
199 |
+
epoch: 649 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:13:50.1 | step: 1950
|
200 |
+
epoch: 653 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.026 | time: 0:13:54.4 | step: 1960
|
201 |
+
epoch: 656 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.023 | time: 0:13:58.7 | step: 1970
|
202 |
+
epoch: 659 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:14:02.8 | step: 1980
|
203 |
+
epoch: 663 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.014 | time: 0:14:07.1 | step: 1990
|
204 |
+
epoch: 666 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.038 | time: 0:14:11.4 | step: 2000
|
205 |
+
--- <validation> ---
|
206 |
+
loss: 0.025.
|
207 |
+
epoch: 669 | 2/ 3 | logs/44k/diffusion | batch/s: 0.46 | lr: 0.0002 | loss: 0.008 | time: 0:14:33.1 | step: 2010
|
208 |
+
epoch: 673 | 0/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.014 | time: 0:14:37.3 | step: 2020
|
209 |
+
epoch: 676 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.013 | time: 0:14:41.6 | step: 2030
|
210 |
+
epoch: 679 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:14:45.8 | step: 2040
|
211 |
+
epoch: 683 | 0/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:14:50.2 | step: 2050
|
212 |
+
epoch: 686 | 1/ 3 | logs/44k/diffusion | batch/s: 2.29 | lr: 0.0002 | loss: 0.019 | time: 0:14:54.5 | step: 2060
|
213 |
+
epoch: 689 | 2/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.010 | time: 0:14:58.7 | step: 2070
|
214 |
+
epoch: 693 | 0/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.016 | time: 0:15:03.2 | step: 2080
|
215 |
+
epoch: 696 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.014 | time: 0:15:07.5 | step: 2090
|
216 |
+
epoch: 699 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:15:11.6 | step: 2100
|
217 |
+
epoch: 703 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.004 | time: 0:15:16.0 | step: 2110
|
218 |
+
epoch: 706 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:15:20.3 | step: 2120
|
219 |
+
epoch: 709 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.012 | time: 0:15:24.3 | step: 2130
|
220 |
+
epoch: 713 | 0/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.010 | time: 0:15:28.6 | step: 2140
|
221 |
+
epoch: 716 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.007 | time: 0:15:32.9 | step: 2150
|
222 |
+
epoch: 719 | 2/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.035 | time: 0:15:36.9 | step: 2160
|
223 |
+
epoch: 723 | 0/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.043 | time: 0:15:41.2 | step: 2170
|
224 |
+
epoch: 726 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:15:45.5 | step: 2180
|
225 |
+
epoch: 729 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:15:49.6 | step: 2190
|
226 |
+
epoch: 733 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:15:53.9 | step: 2200
|
227 |
+
epoch: 736 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.039 | time: 0:15:58.2 | step: 2210
|
228 |
+
epoch: 739 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.033 | time: 0:16:02.3 | step: 2220
|
229 |
+
epoch: 743 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:16:06.6 | step: 2230
|
230 |
+
epoch: 746 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:16:10.9 | step: 2240
|
231 |
+
epoch: 749 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.016 | time: 0:16:15.0 | step: 2250
|
232 |
+
epoch: 753 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.011 | time: 0:16:19.3 | step: 2260
|
233 |
+
epoch: 756 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.011 | time: 0:16:23.6 | step: 2270
|
234 |
+
epoch: 759 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:16:27.8 | step: 2280
|
235 |
+
epoch: 763 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:16:32.1 | step: 2290
|
236 |
+
epoch: 766 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.009 | time: 0:16:36.4 | step: 2300
|
237 |
+
epoch: 769 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.009 | time: 0:16:40.5 | step: 2310
|
238 |
+
epoch: 773 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.070 | time: 0:16:44.8 | step: 2320
|
239 |
+
epoch: 776 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.029 | time: 0:16:49.1 | step: 2330
|
240 |
+
epoch: 779 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.055 | time: 0:16:53.2 | step: 2340
|
241 |
+
epoch: 783 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.024 | time: 0:16:57.6 | step: 2350
|
242 |
+
epoch: 786 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.018 | time: 0:17:01.8 | step: 2360
|
243 |
+
epoch: 789 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.033 | time: 0:17:06.0 | step: 2370
|
244 |
+
epoch: 793 | 0/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.016 | time: 0:17:10.3 | step: 2380
|
245 |
+
epoch: 796 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.016 | time: 0:17:14.6 | step: 2390
|
246 |
+
epoch: 799 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.016 | time: 0:17:18.7 | step: 2400
|
247 |
+
epoch: 803 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.015 | time: 0:17:23.0 | step: 2410
|
248 |
+
epoch: 806 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.014 | time: 0:17:27.3 | step: 2420
|
249 |
+
epoch: 809 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.031 | time: 0:17:31.4 | step: 2430
|
250 |
+
epoch: 813 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:17:35.7 | step: 2440
|
251 |
+
epoch: 816 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.011 | time: 0:17:40.0 | step: 2450
|
252 |
+
epoch: 819 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.034 | time: 0:17:44.1 | step: 2460
|
253 |
+
epoch: 823 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.030 | time: 0:17:48.4 | step: 2470
|
254 |
+
epoch: 826 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.018 | time: 0:17:52.7 | step: 2480
|
255 |
+
epoch: 829 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.017 | time: 0:17:56.8 | step: 2490
|
256 |
+
epoch: 833 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.022 | time: 0:18:01.2 | step: 2500
|
257 |
+
epoch: 836 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:18:05.5 | step: 2510
|
258 |
+
epoch: 839 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:18:09.6 | step: 2520
|
259 |
+
epoch: 843 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.011 | time: 0:18:13.9 | step: 2530
|
260 |
+
epoch: 846 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:18:18.2 | step: 2540
|
261 |
+
epoch: 849 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.025 | time: 0:18:22.3 | step: 2550
|
262 |
+
epoch: 853 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.008 | time: 0:18:26.6 | step: 2560
|
263 |
+
epoch: 856 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.003 | time: 0:18:30.8 | step: 2570
|
264 |
+
epoch: 859 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.003 | time: 0:18:34.9 | step: 2580
|
265 |
+
epoch: 863 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.011 | time: 0:18:39.2 | step: 2590
|
266 |
+
epoch: 866 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.011 | time: 0:18:43.5 | step: 2600
|
267 |
+
epoch: 869 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.005 | time: 0:18:47.5 | step: 2610
|
268 |
+
epoch: 873 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.014 | time: 0:18:51.8 | step: 2620
|
269 |
+
epoch: 876 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.011 | time: 0:18:56.1 | step: 2630
|
270 |
+
epoch: 879 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.003 | time: 0:19:00.2 | step: 2640
|
271 |
+
epoch: 883 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.012 | time: 0:19:04.5 | step: 2650
|
272 |
+
epoch: 886 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.005 | time: 0:19:08.8 | step: 2660
|
273 |
+
epoch: 889 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.005 | time: 0:19:12.9 | step: 2670
|
274 |
+
epoch: 893 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.030 | time: 0:19:17.2 | step: 2680
|
275 |
+
epoch: 896 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.015 | time: 0:19:21.5 | step: 2690
|
276 |
+
epoch: 899 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.006 | time: 0:19:25.6 | step: 2700
|
277 |
+
epoch: 903 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.016 | time: 0:19:29.9 | step: 2710
|
278 |
+
epoch: 906 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.034 | time: 0:19:34.2 | step: 2720
|
279 |
+
epoch: 909 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.004 | time: 0:19:38.4 | step: 2730
|
280 |
+
epoch: 913 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:19:42.7 | step: 2740
|
281 |
+
epoch: 916 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.011 | time: 0:19:47.0 | step: 2750
|
282 |
+
epoch: 919 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.019 | time: 0:19:51.1 | step: 2760
|
283 |
+
epoch: 923 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.031 | time: 0:19:55.4 | step: 2770
|
284 |
+
epoch: 926 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.029 | time: 0:19:59.7 | step: 2780
|
285 |
+
epoch: 929 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.007 | time: 0:20:03.9 | step: 2790
|
286 |
+
epoch: 933 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.011 | time: 0:20:08.2 | step: 2800
|
287 |
+
epoch: 936 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.005 | time: 0:20:12.5 | step: 2810
|
288 |
+
epoch: 939 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.016 | time: 0:20:16.6 | step: 2820
|
289 |
+
epoch: 943 | 0/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.007 | time: 0:20:21.0 | step: 2830
|
290 |
+
epoch: 946 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:20:25.2 | step: 2840
|
291 |
+
epoch: 949 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:20:29.3 | step: 2850
|
292 |
+
epoch: 953 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:20:33.7 | step: 2860
|
293 |
+
epoch: 956 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:20:37.9 | step: 2870
|
294 |
+
epoch: 959 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:20:42.0 | step: 2880
|
295 |
+
epoch: 963 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.009 | time: 0:20:46.4 | step: 2890
|
296 |
+
epoch: 966 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.015 | time: 0:20:50.6 | step: 2900
|
297 |
+
epoch: 969 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.003 | time: 0:20:54.7 | step: 2910
|
298 |
+
epoch: 973 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.021 | time: 0:20:59.1 | step: 2920
|
299 |
+
epoch: 976 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:21:03.3 | step: 2930
|
300 |
+
epoch: 979 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:21:07.4 | step: 2940
|
301 |
+
epoch: 983 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.040 | time: 0:21:11.8 | step: 2950
|
302 |
+
epoch: 986 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:21:16.0 | step: 2960
|
303 |
+
epoch: 989 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.008 | time: 0:21:20.1 | step: 2970
|
304 |
+
epoch: 993 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.023 | time: 0:21:24.5 | step: 2980
|
305 |
+
epoch: 996 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.024 | time: 0:21:28.7 | step: 2990
|
306 |
+
epoch: 999 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.015 | time: 0:21:32.8 | step: 3000
|
307 |
+
epoch: 1003 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:21:37.2 | step: 3010
|
308 |
+
epoch: 1006 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:21:41.4 | step: 3020
|
309 |
+
epoch: 1009 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.014 | time: 0:21:45.5 | step: 3030
|
310 |
+
epoch: 1013 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.004 | time: 0:21:49.9 | step: 3040
|
311 |
+
epoch: 1016 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:21:54.1 | step: 3050
|
312 |
+
epoch: 1019 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.033 | time: 0:21:58.2 | step: 3060
|
313 |
+
epoch: 1023 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:22:02.6 | step: 3070
|
314 |
+
epoch: 1026 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:22:06.8 | step: 3080
|
315 |
+
epoch: 1029 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:22:10.9 | step: 3090
|
316 |
+
epoch: 1033 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.006 | time: 0:22:15.2 | step: 3100
|
317 |
+
epoch: 1036 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.011 | time: 0:22:19.5 | step: 3110
|
318 |
+
epoch: 1039 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.012 | time: 0:22:23.6 | step: 3120
|
319 |
+
epoch: 1043 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:22:27.9 | step: 3130
|
320 |
+
epoch: 1046 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:22:32.2 | step: 3140
|
321 |
+
epoch: 1049 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.034 | time: 0:22:36.3 | step: 3150
|
322 |
+
epoch: 1053 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.042 | time: 0:22:40.6 | step: 3160
|
323 |
+
epoch: 1056 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.023 | time: 0:22:44.9 | step: 3170
|
324 |
+
epoch: 1059 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.023 | time: 0:22:49.0 | step: 3180
|
325 |
+
epoch: 1063 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.004 | time: 0:22:53.3 | step: 3190
|
326 |
+
epoch: 1066 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:22:57.6 | step: 3200
|
327 |
+
epoch: 1069 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.012 | time: 0:23:01.7 | step: 3210
|
328 |
+
epoch: 1073 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.008 | time: 0:23:06.0 | step: 3220
|
329 |
+
epoch: 1076 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:23:10.3 | step: 3230
|
330 |
+
epoch: 1079 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:23:14.4 | step: 3240
|
331 |
+
epoch: 1083 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:23:18.7 | step: 3250
|
332 |
+
epoch: 1086 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:23:23.0 | step: 3260
|
333 |
+
epoch: 1089 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.004 | time: 0:23:27.1 | step: 3270
|
334 |
+
epoch: 1093 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.035 | time: 0:23:31.4 | step: 3280
|
335 |
+
epoch: 1096 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:23:35.7 | step: 3290
|
336 |
+
epoch: 1099 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:23:39.8 | step: 3300
|
337 |
+
epoch: 1103 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.017 | time: 0:23:44.1 | step: 3310
|
338 |
+
epoch: 1106 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:23:48.4 | step: 3320
|
339 |
+
epoch: 1109 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:23:52.5 | step: 3330
|
340 |
+
epoch: 1113 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:23:56.8 | step: 3340
|
341 |
+
epoch: 1116 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.030 | time: 0:24:01.0 | step: 3350
|
342 |
+
epoch: 1119 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:24:05.2 | step: 3360
|
343 |
+
epoch: 1123 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.012 | time: 0:24:09.5 | step: 3370
|
344 |
+
epoch: 1126 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:24:13.7 | step: 3380
|
345 |
+
epoch: 1129 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.027 | time: 0:24:17.8 | step: 3390
|
346 |
+
epoch: 1133 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:24:22.2 | step: 3400
|
347 |
+
epoch: 1136 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.018 | time: 0:24:26.4 | step: 3410
|
348 |
+
epoch: 1139 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:24:30.5 | step: 3420
|
349 |
+
epoch: 1143 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.006 | time: 0:24:34.9 | step: 3430
|
350 |
+
epoch: 1146 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:24:39.1 | step: 3440
|
351 |
+
epoch: 1149 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.015 | time: 0:24:43.2 | step: 3450
|
352 |
+
epoch: 1153 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.007 | time: 0:24:47.5 | step: 3460
|
353 |
+
epoch: 1156 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.011 | time: 0:24:51.8 | step: 3470
|
354 |
+
epoch: 1159 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.021 | time: 0:24:55.9 | step: 3480
|
355 |
+
epoch: 1163 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.022 | time: 0:25:00.2 | step: 3490
|
356 |
+
epoch: 1166 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:25:04.5 | step: 3500
|
357 |
+
epoch: 1169 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:25:08.6 | step: 3510
|
358 |
+
epoch: 1173 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.005 | time: 0:25:12.9 | step: 3520
|
359 |
+
epoch: 1176 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:25:17.2 | step: 3530
|
360 |
+
epoch: 1179 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:25:21.3 | step: 3540
|
361 |
+
epoch: 1183 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:25:25.6 | step: 3550
|
362 |
+
epoch: 1186 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:25:29.9 | step: 3560
|
363 |
+
epoch: 1189 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:25:34.0 | step: 3570
|
364 |
+
epoch: 1193 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:25:38.3 | step: 3580
|
365 |
+
epoch: 1196 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:25:42.6 | step: 3590
|
366 |
+
epoch: 1199 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:25:46.7 | step: 3600
|
367 |
+
epoch: 1203 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:25:51.0 | step: 3610
|
368 |
+
epoch: 1206 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.023 | time: 0:25:55.2 | step: 3620
|
369 |
+
epoch: 1209 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:25:59.3 | step: 3630
|
370 |
+
epoch: 1213 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.013 | time: 0:26:03.6 | step: 3640
|
371 |
+
epoch: 1216 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:26:07.9 | step: 3650
|
372 |
+
epoch: 1219 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.012 | time: 0:26:12.0 | step: 3660
|
373 |
+
epoch: 1223 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.013 | time: 0:26:16.3 | step: 3670
|
374 |
+
epoch: 1226 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.020 | time: 0:26:20.6 | step: 3680
|
375 |
+
epoch: 1229 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.012 | time: 0:26:24.7 | step: 3690
|
376 |
+
epoch: 1233 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.026 | time: 0:26:29.0 | step: 3700
|
377 |
+
epoch: 1236 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.013 | time: 0:26:33.3 | step: 3710
|
378 |
+
epoch: 1239 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:26:37.4 | step: 3720
|
379 |
+
epoch: 1243 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.028 | time: 0:26:41.7 | step: 3730
|
380 |
+
epoch: 1246 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.020 | time: 0:26:46.0 | step: 3740
|
381 |
+
epoch: 1249 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:26:50.1 | step: 3750
|
382 |
+
epoch: 1253 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.009 | time: 0:26:54.4 | step: 3760
|
383 |
+
epoch: 1256 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:26:58.6 | step: 3770
|
384 |
+
epoch: 1259 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:27:02.7 | step: 3780
|
385 |
+
epoch: 1263 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:27:07.1 | step: 3790
|
386 |
+
epoch: 1266 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.019 | time: 0:27:11.3 | step: 3800
|
387 |
+
epoch: 1269 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.004 | time: 0:27:15.4 | step: 3810
|
388 |
+
epoch: 1273 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:27:19.8 | step: 3820
|
389 |
+
epoch: 1276 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.013 | time: 0:27:24.1 | step: 3830
|
390 |
+
epoch: 1279 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.040 | time: 0:27:28.2 | step: 3840
|
391 |
+
epoch: 1283 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.007 | time: 0:27:32.5 | step: 3850
|
392 |
+
epoch: 1286 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:27:36.8 | step: 3860
|
393 |
+
epoch: 1289 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.010 | time: 0:27:40.9 | step: 3870
|
394 |
+
epoch: 1293 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.011 | time: 0:27:45.2 | step: 3880
|
395 |
+
epoch: 1296 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:27:49.4 | step: 3890
|
396 |
+
epoch: 1299 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.002 | time: 0:27:53.5 | step: 3900
|
397 |
+
epoch: 1303 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.009 | time: 0:27:57.9 | step: 3910
|
398 |
+
epoch: 1306 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:28:02.1 | step: 3920
|
399 |
+
epoch: 1309 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:28:06.2 | step: 3930
|
400 |
+
epoch: 1313 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.016 | time: 0:28:10.5 | step: 3940
|
401 |
+
epoch: 1316 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.027 | time: 0:28:14.8 | step: 3950
|
402 |
+
epoch: 1319 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.059 | time: 0:28:18.9 | step: 3960
|
403 |
+
epoch: 1323 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.251 | time: 0:28:23.2 | step: 3970
|
404 |
+
epoch: 1326 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.098 | time: 0:28:27.5 | step: 3980
|
405 |
+
epoch: 1329 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.085 | time: 0:28:31.6 | step: 3990
|
406 |
+
epoch: 1333 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.053 | time: 0:28:35.9 | step: 4000
|
407 |
+
--- <validation> ---
|
408 |
+
loss: 0.055.
|
409 |
+
epoch: 1336 | 1/ 3 | logs/44k/diffusion | batch/s: 0.47 | lr: 0.0002 | loss: 0.060 | time: 0:28:57.1 | step: 4010
|
410 |
+
epoch: 1339 | 2/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.042 | time: 0:29:01.2 | step: 4020
|
411 |
+
epoch: 1343 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.035 | time: 0:29:05.5 | step: 4030
|
412 |
+
epoch: 1346 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.020 | time: 0:29:09.8 | step: 4040
|
413 |
+
epoch: 1349 | 2/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.033 | time: 0:29:14.0 | step: 4050
|
414 |
+
epoch: 1353 | 0/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:29:18.4 | step: 4060
|
415 |
+
epoch: 1356 | 1/ 3 | logs/44k/diffusion | batch/s: 2.28 | lr: 0.0002 | loss: 0.012 | time: 0:29:22.8 | step: 4070
|
416 |
+
epoch: 1359 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:29:27.0 | step: 4080
|
417 |
+
epoch: 1363 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.025 | time: 0:29:31.3 | step: 4090
|
418 |
+
epoch: 1366 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.030 | time: 0:29:35.7 | step: 4100
|
419 |
+
epoch: 1369 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:29:39.8 | step: 4110
|
420 |
+
epoch: 1373 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.017 | time: 0:29:44.1 | step: 4120
|
421 |
+
epoch: 1376 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:29:48.4 | step: 4130
|
422 |
+
epoch: 1379 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.015 | time: 0:29:52.4 | step: 4140
|
423 |
+
epoch: 1383 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.032 | time: 0:29:56.8 | step: 4150
|
424 |
+
epoch: 1386 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:30:01.0 | step: 4160
|
425 |
+
epoch: 1389 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.019 | time: 0:30:05.1 | step: 4170
|
426 |
+
epoch: 1393 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.041 | time: 0:30:09.4 | step: 4180
|
427 |
+
epoch: 1396 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.015 | time: 0:30:13.6 | step: 4190
|
428 |
+
epoch: 1399 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:30:17.7 | step: 4200
|
429 |
+
epoch: 1403 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.021 | time: 0:30:22.0 | step: 4210
|
430 |
+
epoch: 1406 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:30:26.3 | step: 4220
|
431 |
+
epoch: 1409 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:30:30.4 | step: 4230
|
432 |
+
epoch: 1413 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.023 | time: 0:30:34.7 | step: 4240
|
433 |
+
epoch: 1416 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.013 | time: 0:30:39.0 | step: 4250
|
furry/baobai/baobai6/diffusion/logs/events.out.tfevents.1684649704.dabec9d50fc6.33951.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7f72c2d197e78adf98bcddc33b4fa8b0942b3a8f7943a76e345bb729f99d6c4
|
3 |
+
size 7750712
|
furry/baobai/baobai6/diffusion/model_0.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:409452a27ab310f7a5897844d003d372a7357cc91c4a43562584a1714518cdf9
|
3 |
+
size 220895384
|
furry/baobai/baobai6/diffusion/model_4000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6937a0293b885a2a1c5583e95de58de5f6d7b049e9fefd099d22389d99aa816e
|
3 |
+
size 220893574
|
furry/baobai/baobai6/eval/events.out.tfevents.1684644188.dabec9d50fc6.7497.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caaa6ae30bb454f29d6a229fbdce029b499fc804c005b6399402c761b72060fe
|
3 |
+
size 10570536
|
furry/baobai/baobai6/events.out.tfevents.1684644188.dabec9d50fc6.7497.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6730fb371d4e9bb5d4bd6f624ed1dc2a5c85e34a317f8afe900c65b30e410cf
|
3 |
+
size 2955618
|
furry/baobai/baobai6/githash
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
7c754dc420996d2216d4d480a76f7603cc4cec4c
|
furry/baobai/baobai6/train.log
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-05-21 04:43:08,221 44k INFO {'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 3, 'all_in_mem': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'speech_encoder': 'vec768l12', 'speaker_embedding': False}, 'spk': {'baobai': 0}, 'model_dir': './logs/44k'}
|
2 |
+
2023-05-21 04:43:16,737 44k INFO emb_g.weight is not in the checkpoint
|
3 |
+
2023-05-21 04:43:16,823 44k INFO Loaded checkpoint './logs/44k/G_0.pth' (iteration 0)
|
4 |
+
2023-05-21 04:43:18,005 44k INFO Loaded checkpoint './logs/44k/D_0.pth' (iteration 0)
|
5 |
+
2023-05-21 04:44:18,923 44k INFO ====> Epoch: 1, cost 70.71 s
|
6 |
+
2023-05-21 04:44:52,034 44k INFO ====> Epoch: 2, cost 33.11 s
|
7 |
+
2023-05-21 04:45:25,029 44k INFO ====> Epoch: 3, cost 33.00 s
|
8 |
+
2023-05-21 04:45:58,832 44k INFO ====> Epoch: 4, cost 33.80 s
|
9 |
+
2023-05-21 04:46:32,881 44k INFO ====> Epoch: 5, cost 34.05 s
|
10 |
+
2023-05-21 04:47:07,159 44k INFO ====> Epoch: 6, cost 34.28 s
|
11 |
+
2023-05-21 04:47:41,279 44k INFO ====> Epoch: 7, cost 34.12 s
|
12 |
+
2023-05-21 04:48:15,771 44k INFO ====> Epoch: 8, cost 34.49 s
|
13 |
+
2023-05-21 04:48:51,407 44k INFO ====> Epoch: 9, cost 35.64 s
|
14 |
+
2023-05-21 04:49:13,163 44k INFO Train Epoch: 10 [48%]
|
15 |
+
2023-05-21 04:49:13,170 44k INFO Losses: [2.5445778369903564, 2.83388090133667, 15.380541801452637, 18.88252830505371, 1.092060923576355], step: 200, lr: 9.98875562335968e-05, reference_loss: 40.73358917236328
|
16 |
+
2023-05-21 04:49:26,768 44k INFO ====> Epoch: 10, cost 35.36 s
|
17 |
+
2023-05-21 04:50:00,043 44k INFO ====> Epoch: 11, cost 33.27 s
|
18 |
+
2023-05-21 04:50:32,887 44k INFO ====> Epoch: 12, cost 32.84 s
|
19 |
+
2023-05-21 04:51:05,646 44k INFO ====> Epoch: 13, cost 32.76 s
|
20 |
+
2023-05-21 04:51:38,556 44k INFO ====> Epoch: 14, cost 32.91 s
|
21 |
+
2023-05-21 04:52:11,877 44k INFO ====> Epoch: 15, cost 33.32 s
|
22 |
+
2023-05-21 04:52:45,053 44k INFO ====> Epoch: 16, cost 33.18 s
|
23 |
+
2023-05-21 04:53:18,379 44k INFO ====> Epoch: 17, cost 33.33 s
|
24 |
+
2023-05-21 04:53:51,413 44k INFO ====> Epoch: 18, cost 33.03 s
|
25 |
+
2023-05-21 04:54:24,092 44k INFO ====> Epoch: 19, cost 32.68 s
|
26 |
+
2023-05-21 04:54:34,638 44k INFO Train Epoch: 20 [0%]
|
27 |
+
2023-05-21 04:54:34,639 44k INFO Losses: [2.2672250270843506, 3.07883882522583, 15.199647903442383, 18.87508201599121, 1.056928277015686], step: 400, lr: 9.976276699833672e-05, reference_loss: 40.477718353271484
|
28 |
+
2023-05-21 04:54:58,369 44k INFO ====> Epoch: 20, cost 34.28 s
|
29 |
+
2023-05-21 04:55:31,807 44k INFO ====> Epoch: 21, cost 33.44 s
|
30 |
+
2023-05-21 04:56:04,832 44k INFO ====> Epoch: 22, cost 33.03 s
|
31 |
+
2023-05-21 04:56:37,683 44k INFO ====> Epoch: 23, cost 32.85 s
|
32 |
+
2023-05-21 04:57:11,401 44k INFO ====> Epoch: 24, cost 33.72 s
|
33 |
+
2023-05-21 04:57:45,362 44k INFO ====> Epoch: 25, cost 33.96 s
|
34 |
+
2023-05-21 04:58:19,556 44k INFO ====> Epoch: 26, cost 34.19 s
|
35 |
+
2023-05-21 04:58:53,777 44k INFO ====> Epoch: 27, cost 34.22 s
|
36 |
+
2023-05-21 04:59:28,417 44k INFO ====> Epoch: 28, cost 34.64 s
|
37 |
+
2023-05-21 04:59:52,227 44k INFO Train Epoch: 29 [52%]
|
38 |
+
2023-05-21 04:59:52,228 44k INFO Losses: [2.6102354526519775, 2.5509371757507324, 15.050143241882324, 18.5263729095459, 0.6427398324012756], step: 600, lr: 9.965058998565574e-05, reference_loss: 39.38042449951172
|
39 |
+
2023-05-21 05:00:04,491 44k INFO ====> Epoch: 29, cost 36.07 s
|
40 |
+
2023-05-21 05:00:39,358 44k INFO ====> Epoch: 30, cost 34.87 s
|
41 |
+
2023-05-21 05:01:14,944 44k INFO ====> Epoch: 31, cost 35.59 s
|
42 |
+
2023-05-21 05:01:50,616 44k INFO ====> Epoch: 32, cost 35.67 s
|
43 |
+
2023-05-21 05:02:24,588 44k INFO ====> Epoch: 33, cost 33.97 s
|
44 |
+
2023-05-21 05:02:58,697 44k INFO ====> Epoch: 34, cost 34.11 s
|
45 |
+
2023-05-21 05:03:31,929 44k INFO ====> Epoch: 35, cost 33.23 s
|
46 |
+
2023-05-21 05:04:04,532 44k INFO ====> Epoch: 36, cost 32.60 s
|
47 |
+
2023-05-21 05:04:37,191 44k INFO ====> Epoch: 37, cost 32.66 s
|
48 |
+
2023-05-21 05:05:09,501 44k INFO ====> Epoch: 38, cost 32.31 s
|
49 |
+
2023-05-21 05:05:20,677 44k INFO Train Epoch: 39 [5%]
|
50 |
+
2023-05-21 05:05:20,678 44k INFO Losses: [2.1589901447296143, 2.6669301986694336, 16.74024772644043, 18.339496612548828, 0.8423145413398743], step: 800, lr: 9.952609679164422e-05, reference_loss: 40.74797821044922
|
51 |
+
2023-05-21 05:05:38,923 44k INFO Saving model and optimizer state at iteration 39 to ./logs/44k/G_800.pth
|
52 |
+
2023-05-21 05:05:43,429 44k INFO Saving model and optimizer state at iteration 39 to ./logs/44k/D_800.pth
|
53 |
+
2023-05-21 05:06:08,013 44k INFO ====> Epoch: 39, cost 58.51 s
|
54 |
+
2023-05-21 05:06:43,198 44k INFO ====> Epoch: 40, cost 35.18 s
|
55 |
+
2023-05-21 05:07:18,870 44k INFO ====> Epoch: 41, cost 35.67 s
|
56 |
+
2023-05-21 05:07:53,211 44k INFO ====> Epoch: 42, cost 34.34 s
|
57 |
+
2023-05-21 05:08:26,741 44k INFO ====> Epoch: 43, cost 33.53 s
|
58 |
+
2023-05-21 05:09:00,756 44k INFO ====> Epoch: 44, cost 34.01 s
|
59 |
+
2023-05-21 05:09:34,017 44k INFO ====> Epoch: 45, cost 33.26 s
|
60 |
+
2023-05-21 05:10:06,712 44k INFO ====> Epoch: 46, cost 32.69 s
|
61 |
+
2023-05-21 05:10:39,216 44k INFO ====> Epoch: 47, cost 32.50 s
|
62 |
+
2023-05-21 05:11:01,524 44k INFO Train Epoch: 48 [57%]
|
63 |
+
2023-05-21 05:11:01,528 44k INFO Losses: [2.5245370864868164, 2.759749174118042, 15.53822135925293, 18.24738121032715, 0.8092263340950012], step: 1000, lr: 9.941418589985758e-05, reference_loss: 39.87911605834961
|
64 |
+
2023-05-21 05:11:12,263 44k INFO ====> Epoch: 48, cost 33.05 s
|
65 |
+
2023-05-21 05:11:44,742 44k INFO ====> Epoch: 49, cost 32.48 s
|
66 |
+
2023-05-21 05:12:16,612 44k INFO ====> Epoch: 50, cost 31.87 s
|
67 |
+
2023-05-21 05:12:48,642 44k INFO ====> Epoch: 51, cost 32.03 s
|
68 |
+
2023-05-21 05:13:20,754 44k INFO ====> Epoch: 52, cost 32.11 s
|
69 |
+
2023-05-21 05:13:53,229 44k INFO ====> Epoch: 53, cost 32.47 s
|
70 |
+
2023-05-21 05:14:25,437 44k INFO ====> Epoch: 54, cost 32.21 s
|
71 |
+
2023-05-21 05:14:58,124 44k INFO ====> Epoch: 55, cost 32.69 s
|
72 |
+
2023-05-21 05:15:30,617 44k INFO ====> Epoch: 56, cost 32.49 s
|
73 |
+
2023-05-21 05:16:03,136 44k INFO ====> Epoch: 57, cost 32.52 s
|
74 |
+
2023-05-21 05:16:15,483 44k INFO Train Epoch: 58 [10%]
|
75 |
+
2023-05-21 05:16:15,484 44k INFO Losses: [2.4595236778259277, 2.8447391986846924, 16.389728546142578, 18.046951293945312, 0.5579648613929749], step: 1200, lr: 9.928998804478705e-05, reference_loss: 40.29890823364258
|
76 |
+
2023-05-21 05:16:36,572 44k INFO ====> Epoch: 58, cost 33.44 s
|
77 |
+
2023-05-21 05:17:09,212 44k INFO ====> Epoch: 59, cost 32.64 s
|
78 |
+
2023-05-21 05:17:41,885 44k INFO ====> Epoch: 60, cost 32.67 s
|
79 |
+
2023-05-21 05:18:15,056 44k INFO ====> Epoch: 61, cost 33.17 s
|
80 |
+
2023-05-21 05:18:48,935 44k INFO ====> Epoch: 62, cost 33.88 s
|
81 |
+
2023-05-21 05:19:23,333 44k INFO ====> Epoch: 63, cost 34.40 s
|
82 |
+
2023-05-21 05:19:57,813 44k INFO ====> Epoch: 64, cost 34.48 s
|
83 |
+
2023-05-21 05:20:32,971 44k INFO ====> Epoch: 65, cost 35.16 s
|
84 |
+
2023-05-21 05:21:08,468 44k INFO ====> Epoch: 66, cost 35.50 s
|
85 |
+
2023-05-21 05:21:33,538 44k INFO Train Epoch: 67 [62%]
|
86 |
+
2023-05-21 05:21:33,543 44k INFO Losses: [2.5141336917877197, 2.321308135986328, 13.527164459228516, 17.738521575927734, 0.9825926423072815], step: 1400, lr: 9.917834264256819e-05, reference_loss: 37.08372116088867
|
87 |
+
2023-05-21 05:21:44,291 44k INFO ====> Epoch: 67, cost 35.82 s
|
88 |
+
2023-05-21 05:22:18,049 44k INFO ====> Epoch: 68, cost 33.76 s
|
89 |
+
2023-05-21 05:22:51,054 44k INFO ====> Epoch: 69, cost 33.01 s
|
90 |
+
2023-05-21 05:23:23,243 44k INFO ====> Epoch: 70, cost 32.19 s
|
91 |
+
2023-05-21 05:23:55,543 44k INFO ====> Epoch: 71, cost 32.30 s
|
92 |
+
2023-05-21 05:24:27,802 44k INFO ====> Epoch: 72, cost 32.26 s
|
93 |
+
2023-05-21 05:24:59,750 44k INFO ====> Epoch: 73, cost 31.95 s
|
94 |
+
2023-05-21 05:25:31,765 44k INFO ====> Epoch: 74, cost 32.01 s
|
95 |
+
2023-05-21 05:26:03,995 44k INFO ====> Epoch: 75, cost 32.23 s
|
96 |
+
2023-05-21 05:26:36,249 44k INFO ====> Epoch: 76, cost 32.25 s
|
97 |
+
2023-05-21 05:26:49,329 44k INFO Train Epoch: 77 [14%]
|
98 |
+
2023-05-21 05:26:49,330 44k INFO Losses: [2.3342432975769043, 2.160710573196411, 12.683871269226074, 16.918319702148438, 0.9933038353919983], step: 1600, lr: 9.905443942579728e-05, reference_loss: 35.090450286865234
|
99 |
+
2023-05-21 05:26:59,032 44k INFO Saving model and optimizer state at iteration 77 to ./logs/44k/G_1600.pth
|
100 |
+
2023-05-21 05:27:01,667 44k INFO Saving model and optimizer state at iteration 77 to ./logs/44k/D_1600.pth
|
101 |
+
2023-05-21 05:27:25,363 44k INFO ====> Epoch: 77, cost 49.11 s
|
102 |
+
2023-05-21 05:27:57,887 44k INFO ====> Epoch: 78, cost 32.52 s
|
103 |
+
2023-05-21 05:28:29,962 44k INFO ====> Epoch: 79, cost 32.08 s
|
104 |
+
2023-05-21 05:29:02,076 44k INFO ====> Epoch: 80, cost 32.11 s
|
105 |
+
2023-05-21 05:29:34,715 44k INFO ====> Epoch: 81, cost 32.64 s
|
106 |
+
2023-05-21 05:30:07,051 44k INFO ====> Epoch: 82, cost 32.34 s
|
107 |
+
2023-05-21 05:30:39,190 44k INFO ====> Epoch: 83, cost 32.14 s
|
108 |
+
2023-05-21 05:31:11,160 44k INFO ====> Epoch: 84, cost 31.97 s
|
109 |
+
2023-05-21 05:31:43,221 44k INFO ====> Epoch: 85, cost 32.06 s
|
110 |
+
2023-05-21 05:32:07,280 44k INFO Train Epoch: 86 [67%]
|
111 |
+
2023-05-21 05:32:07,286 44k INFO Losses: [2.2493386268615723, 2.731492042541504, 13.587553024291992, 15.12157154083252, 0.6404907703399658], step: 1800, lr: 9.894305888331732e-05, reference_loss: 34.330448150634766
|
112 |
+
2023-05-21 05:32:15,872 44k INFO ====> Epoch: 86, cost 32.65 s
|
113 |
+
2023-05-21 05:32:48,137 44k INFO ====> Epoch: 87, cost 32.27 s
|
114 |
+
2023-05-21 05:33:20,556 44k INFO ====> Epoch: 88, cost 32.42 s
|
115 |
+
2023-05-21 05:33:52,810 44k INFO ====> Epoch: 89, cost 32.25 s
|
116 |
+
2023-05-21 05:34:25,058 44k INFO ====> Epoch: 90, cost 32.25 s
|
117 |
+
2023-05-21 05:34:57,181 44k INFO ====> Epoch: 91, cost 32.12 s
|
118 |
+
2023-05-21 05:35:29,385 44k INFO ====> Epoch: 92, cost 32.20 s
|
119 |
+
2023-05-21 05:36:01,609 44k INFO ====> Epoch: 93, cost 32.22 s
|
120 |
+
2023-05-21 05:36:34,026 44k INFO ====> Epoch: 94, cost 32.42 s
|
121 |
+
2023-05-21 05:37:06,407 44k INFO ====> Epoch: 95, cost 32.38 s
|
122 |
+
2023-05-21 05:37:20,710 44k INFO Train Epoch: 96 [19%]
|
123 |
+
2023-05-21 05:37:20,711 44k INFO Losses: [2.2139039039611816, 2.295823097229004, 9.69484806060791, 17.4899845123291, 0.738105058670044], step: 2000, lr: 9.881944960586671e-05, reference_loss: 32.43266296386719
|
124 |
+
2023-05-21 05:37:39,559 44k INFO ====> Epoch: 96, cost 33.15 s
|
125 |
+
2023-05-21 05:38:12,464 44k INFO ====> Epoch: 97, cost 32.91 s
|
126 |
+
2023-05-21 05:38:44,917 44k INFO ====> Epoch: 98, cost 32.45 s
|
127 |
+
2023-05-21 05:39:17,468 44k INFO ====> Epoch: 99, cost 32.55 s
|
128 |
+
2023-05-21 05:39:50,088 44k INFO ====> Epoch: 100, cost 32.62 s
|
129 |
+
2023-05-21 05:40:22,585 44k INFO ====> Epoch: 101, cost 32.50 s
|
130 |
+
2023-05-21 05:40:55,431 44k INFO ====> Epoch: 102, cost 32.85 s
|
131 |
+
2023-05-21 05:41:28,821 44k INFO ====> Epoch: 103, cost 33.39 s
|
132 |
+
2023-05-21 05:42:02,738 44k INFO ====> Epoch: 104, cost 33.92 s
|
133 |
+
2023-05-21 05:42:30,808 44k INFO Train Epoch: 105 [71%]
|
134 |
+
2023-05-21 05:42:30,809 44k INFO Losses: [2.2192392349243164, 2.7417397499084473, 13.63097858428955, 18.681087493896484, 0.5394753217697144], step: 2200, lr: 9.870833329479095e-05, reference_loss: 37.81251907348633
|
135 |
+
2023-05-21 05:42:38,700 44k INFO ====> Epoch: 105, cost 35.96 s
|
136 |
+
2023-05-21 05:43:13,054 44k INFO ====> Epoch: 106, cost 34.35 s
|
137 |
+
2023-05-21 05:43:47,619 44k INFO ====> Epoch: 107, cost 34.56 s
|
138 |
+
2023-05-21 05:44:24,249 44k INFO ====> Epoch: 108, cost 36.63 s
|
139 |
+
2023-05-21 05:44:59,453 44k INFO ====> Epoch: 109, cost 35.20 s
|
140 |
+
2023-05-21 05:45:32,699 44k INFO ====> Epoch: 110, cost 33.25 s
|
141 |
+
2023-05-21 05:46:05,362 44k INFO ====> Epoch: 111, cost 32.66 s
|
142 |
+
2023-05-21 05:46:37,904 44k INFO ====> Epoch: 112, cost 32.54 s
|
143 |
+
2023-05-21 05:47:10,343 44k INFO ====> Epoch: 113, cost 32.44 s
|
144 |
+
2023-05-21 05:47:43,227 44k INFO ====> Epoch: 114, cost 32.88 s
|
145 |
+
2023-05-21 05:47:59,052 44k INFO Train Epoch: 115 [24%]
|
146 |
+
2023-05-21 05:47:59,057 44k INFO Losses: [2.2330069541931152, 2.7372024059295654, 8.495346069335938, 17.723203659057617, 0.7708501219749451], step: 2400, lr: 9.858501725933955e-05, reference_loss: 31.95960807800293
|
147 |
+
2023-05-21 05:48:08,136 44k INFO Saving model and optimizer state at iteration 115 to ./logs/44k/G_2400.pth
|
148 |
+
2023-05-21 05:48:12,093 44k INFO Saving model and optimizer state at iteration 115 to ./logs/44k/D_2400.pth
|
149 |
+
2023-05-21 05:48:33,640 44k INFO ====> Epoch: 115, cost 50.41 s
|
150 |
+
2023-05-21 05:49:06,586 44k INFO ====> Epoch: 116, cost 32.95 s
|
151 |
+
2023-05-21 05:49:39,074 44k INFO ====> Epoch: 117, cost 32.49 s
|
152 |
+
2023-05-21 05:50:12,016 44k INFO ====> Epoch: 118, cost 32.94 s
|
153 |
+
2023-05-21 05:50:44,838 44k INFO ====> Epoch: 119, cost 32.82 s
|
154 |
+
2023-05-21 05:51:17,762 44k INFO ====> Epoch: 120, cost 32.92 s
|
155 |
+
2023-05-21 05:51:50,661 44k INFO ====> Epoch: 121, cost 32.90 s
|
156 |
+
2023-05-21 05:52:23,470 44k INFO ====> Epoch: 122, cost 32.81 s
|
157 |
+
2023-05-21 05:52:56,124 44k INFO ====> Epoch: 123, cost 32.65 s
|
158 |
+
2023-05-21 05:53:23,266 44k INFO Train Epoch: 124 [76%]
|
159 |
+
2023-05-21 05:53:23,267 44k INFO Losses: [2.200976848602295, 2.4772040843963623, 16.151382446289062, 17.823810577392578, 0.8057739734649658], step: 2600, lr: 9.847416455282387e-05, reference_loss: 39.45914840698242
|
160 |
+
2023-05-21 05:53:30,688 44k INFO ====> Epoch: 124, cost 34.56 s
|
161 |
+
2023-05-21 05:54:04,912 44k INFO ====> Epoch: 125, cost 34.22 s
|
162 |
+
2023-05-21 05:54:39,924 44k INFO ====> Epoch: 126, cost 35.01 s
|
163 |
+
2023-05-21 05:55:15,121 44k INFO ====> Epoch: 127, cost 35.20 s
|
164 |
+
2023-05-21 05:55:50,216 44k INFO ====> Epoch: 128, cost 35.10 s
|
165 |
+
2023-05-21 05:56:25,353 44k INFO ====> Epoch: 129, cost 35.14 s
|
166 |
+
2023-05-21 05:57:01,674 44k INFO ====> Epoch: 130, cost 36.32 s
|
167 |
+
2023-05-21 05:57:36,466 44k INFO ====> Epoch: 131, cost 34.79 s
|
168 |
+
2023-05-21 05:58:09,526 44k INFO ====> Epoch: 132, cost 33.06 s
|
169 |
+
2023-05-21 05:58:42,501 44k INFO ====> Epoch: 133, cost 32.97 s
|
170 |
+
2023-05-21 05:58:59,391 44k INFO Train Epoch: 134 [29%]
|
171 |
+
2023-05-21 05:58:59,396 44k INFO Losses: [2.4819719791412354, 2.301201105117798, 14.97828197479248, 16.09484100341797, 0.7705917358398438], step: 2800, lr: 9.835114106370493e-05, reference_loss: 36.626888275146484
|
172 |
+
2023-05-21 05:59:16,031 44k INFO ====> Epoch: 134, cost 33.53 s
|
173 |
+
2023-05-21 05:59:49,318 44k INFO ====> Epoch: 135, cost 33.29 s
|
174 |
+
2023-05-21 06:00:22,788 44k INFO ====> Epoch: 136, cost 33.47 s
|
175 |
+
2023-05-21 06:00:56,655 44k INFO ====> Epoch: 137, cost 33.87 s
|
176 |
+
2023-05-21 06:01:31,309 44k INFO ====> Epoch: 138, cost 34.65 s
|
177 |
+
2023-05-21 06:02:06,233 44k INFO ====> Epoch: 139, cost 34.92 s
|
178 |
+
2023-05-21 06:02:41,223 44k INFO ====> Epoch: 140, cost 34.99 s
|
179 |
+
2023-05-21 06:03:16,447 44k INFO ====> Epoch: 141, cost 35.22 s
|
180 |
+
2023-05-21 06:03:52,380 44k INFO ====> Epoch: 142, cost 35.93 s
|
181 |
+
2023-05-21 06:04:21,519 44k INFO Train Epoch: 143 [81%]
|
182 |
+
2023-05-21 06:04:21,524 44k INFO Losses: [1.8807615041732788, 2.6372532844543457, 14.652959823608398, 15.112489700317383, 0.5258215069770813], step: 3000, lr: 9.824055133639235e-05, reference_loss: 34.80928421020508
|
183 |
+
2023-05-21 06:04:28,625 44k INFO ====> Epoch: 143, cost 36.25 s
|
184 |
+
2023-05-21 06:05:01,690 44k INFO ====> Epoch: 144, cost 33.07 s
|
185 |
+
2023-05-21 06:05:34,433 44k INFO ====> Epoch: 145, cost 32.74 s
|
186 |
+
2023-05-21 06:06:07,368 44k INFO ====> Epoch: 146, cost 32.94 s
|
187 |
+
2023-05-21 06:06:39,959 44k INFO ====> Epoch: 147, cost 32.59 s
|
188 |
+
2023-05-21 06:07:12,854 44k INFO ====> Epoch: 148, cost 32.89 s
|
189 |
+
2023-05-21 06:07:45,489 44k INFO ====> Epoch: 149, cost 32.64 s
|
190 |
+
2023-05-21 06:08:18,144 44k INFO ====> Epoch: 150, cost 32.66 s
|
191 |
+
2023-05-21 06:08:50,747 44k INFO ====> Epoch: 151, cost 32.60 s
|
192 |
+
2023-05-21 06:09:23,202 44k INFO ====> Epoch: 152, cost 32.46 s
|
193 |
+
2023-05-21 06:09:40,817 44k INFO Train Epoch: 153 [33%]
|
194 |
+
2023-05-21 06:09:40,820 44k INFO Losses: [2.426485300064087, 2.5262508392333984, 14.231987953186035, 18.29201889038086, 0.7122567892074585], step: 3200, lr: 9.811781969958938e-05, reference_loss: 38.18899917602539
|
195 |
+
2023-05-21 06:09:50,503 44k INFO Saving model and optimizer state at iteration 153 to ./logs/44k/G_3200.pth
|
196 |
+
2023-05-21 06:09:58,273 44k INFO Saving model and optimizer state at iteration 153 to ./logs/44k/D_3200.pth
|
197 |
+
2023-05-21 06:10:00,551 44k INFO .. Free up space by deleting ckpt ./logs/44k/G_800.pth
|
198 |
+
2023-05-21 06:10:00,552 44k INFO .. Free up space by deleting ckpt ./logs/44k/D_800.pth
|
199 |
+
2023-05-21 06:10:17,278 44k INFO ====> Epoch: 153, cost 54.08 s
|
200 |
+
2023-05-21 06:10:52,325 44k INFO ====> Epoch: 154, cost 35.05 s
|
201 |
+
2023-05-21 06:11:27,070 44k INFO ====> Epoch: 155, cost 34.74 s
|
202 |
+
2023-05-21 06:12:02,019 44k INFO ====> Epoch: 156, cost 34.95 s
|
203 |
+
2023-05-21 06:12:37,932 44k INFO ====> Epoch: 157, cost 35.91 s
|
204 |
+
2023-05-21 06:13:13,223 44k INFO ====> Epoch: 158, cost 35.29 s
|
205 |
+
2023-05-21 06:13:47,471 44k INFO ====> Epoch: 159, cost 34.25 s
|
206 |
+
2023-05-21 06:14:20,359 44k INFO ====> Epoch: 160, cost 32.89 s
|