atonyxu commited on
Commit
3840df0
1 Parent(s): 89ec56d

Upload folder using huggingface_hub

Browse files
furry/baobai/baobai6/D_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273a1da965da0f3b51c7f630c3aa1bf0ef4739da4ab367a9f063a6e12058e8ce
3
+ size 187027770
furry/baobai/baobai6/D_1600.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce3771c8687f274122e160ee4e54d321ac9addb1f3d21013eb163efc35baa5e0
3
+ size 561093259
furry/baobai/baobai6/D_2400.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db6dd7d4e3c4726b4948c2d1818051e9e56a99f8b55a86f09ec1b49126efd762
3
+ size 561093259
furry/baobai/baobai6/D_3200.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f9304b1b3799820eae02150d38b87feadfc88be5ae5a8e34efbe65d0cb17eee
3
+ size 561093259
furry/baobai/baobai6/G_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da86273856084312fcae6c6adc50f7149baab67693ea9f896117ad20c076dd2e
3
+ size 209268661
furry/baobai/baobai6/G_1600.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e292aefff9f9661004c096e1c771026c78ca1defb4a2a364963d28aa3a3cb0c
3
+ size 627897375
furry/baobai/baobai6/G_2400.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e54d4d139e98133c2b7084c2800d6c6385f18e24e8ae7147ad12f48bcae278a
3
+ size 627897375
furry/baobai/baobai6/G_3200.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cfd1b5096e1cdec20a16198701a018eceb41e581b351b9c5d04b564b43606cd
3
+ size 627897375
furry/baobai/baobai6/config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 800,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0001,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 6,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 10240,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0,
21
+ "use_sr": true,
22
+ "max_speclen": 512,
23
+ "port": "8001",
24
+ "keep_ckpts": 3,
25
+ "all_in_mem": false
26
+ },
27
+ "data": {
28
+ "training_files": "filelists/train.txt",
29
+ "validation_files": "filelists/val.txt",
30
+ "max_wav_value": 32768.0,
31
+ "sampling_rate": 44100,
32
+ "filter_length": 2048,
33
+ "hop_length": 512,
34
+ "win_length": 2048,
35
+ "n_mel_channels": 80,
36
+ "mel_fmin": 0.0,
37
+ "mel_fmax": 22050
38
+ },
39
+ "model": {
40
+ "inter_channels": 192,
41
+ "hidden_channels": 192,
42
+ "filter_channels": 768,
43
+ "n_heads": 2,
44
+ "n_layers": 6,
45
+ "kernel_size": 3,
46
+ "p_dropout": 0.1,
47
+ "resblock": "1",
48
+ "resblock_kernel_sizes": [
49
+ 3,
50
+ 7,
51
+ 11
52
+ ],
53
+ "resblock_dilation_sizes": [
54
+ [
55
+ 1,
56
+ 3,
57
+ 5
58
+ ],
59
+ [
60
+ 1,
61
+ 3,
62
+ 5
63
+ ],
64
+ [
65
+ 1,
66
+ 3,
67
+ 5
68
+ ]
69
+ ],
70
+ "upsample_rates": [
71
+ 8,
72
+ 8,
73
+ 2,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4,
83
+ 4
84
+ ],
85
+ "n_layers_q": 3,
86
+ "use_spectral_norm": false,
87
+ "gin_channels": 768,
88
+ "ssl_dim": 768,
89
+ "n_speakers": 1,
90
+ "speech_encoder": "vec768l12",
91
+ "speaker_embedding": false
92
+ },
93
+ "spk": {
94
+ "baobai": 0
95
+ }
96
+ }
furry/baobai/baobai6/diffusion/config.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ block_size: 512
3
+ cnhubertsoft_gate: 10
4
+ duration: 1
5
+ encoder: vec768l12
6
+ encoder_hop_size: 320
7
+ encoder_out_channels: 768
8
+ encoder_sample_rate: 16000
9
+ extensions:
10
+ - wav
11
+ sampling_rate: 44100
12
+ training_files: filelists/train.txt
13
+ validation_files: filelists/val.txt
14
+ device: cuda
15
+ env:
16
+ expdir: logs/44k/diffusion
17
+ gpu_id: 0
18
+ infer:
19
+ method: dpm-solver
20
+ speedup: 10
21
+ model:
22
+ n_chans: 512
23
+ n_hidden: 256
24
+ n_layers: 20
25
+ n_spk: 1
26
+ type: Diffusion
27
+ use_pitch_aug: true
28
+ spk:
29
+ baobai: 0
30
+ train:
31
+ amp_dtype: fp32
32
+ batch_size: 48
33
+ cache_all_data: true
34
+ cache_device: cpu
35
+ cache_fp16: true
36
+ decay_step: 100000
37
+ epochs: 100000
38
+ gamma: 0.5
39
+ interval_force_save: 10000
40
+ interval_log: 10
41
+ interval_val: 2000
42
+ lr: 0.0002
43
+ num_workers: 2
44
+ save_opt: false
45
+ weight_decay: 0
46
+ vocoder:
47
+ ckpt: pretrain/nsf_hifigan/model
48
+ type: nsf-hifigan
furry/baobai/baobai6/diffusion/log_info.txt ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --- model size ---
2
+ model: 55,192,704
3
+ ======= start training =======
4
+ epoch|batch_idx/num_batches|output_dir|batch/s|lr|time|step
5
+ epoch: 3 | 0/ 3 | logs/44k/diffusion | batch/s: 1.30 | lr: 0.0002 | loss: 0.032 | time: 0:00:07.9 | step: 10
6
+ epoch: 6 | 1/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.018 | time: 0:00:12.1 | step: 20
7
+ epoch: 9 | 2/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.061 | time: 0:00:16.1 | step: 30
8
+ epoch: 13 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.037 | time: 0:00:20.4 | step: 40
9
+ epoch: 16 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.008 | time: 0:00:24.8 | step: 50
10
+ epoch: 19 | 2/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.037 | time: 0:00:29.0 | step: 60
11
+ epoch: 23 | 0/ 3 | logs/44k/diffusion | batch/s: 2.29 | lr: 0.0002 | loss: 0.038 | time: 0:00:33.4 | step: 70
12
+ epoch: 26 | 1/ 3 | logs/44k/diffusion | batch/s: 2.25 | lr: 0.0002 | loss: 0.011 | time: 0:00:37.9 | step: 80
13
+ epoch: 29 | 2/ 3 | logs/44k/diffusion | batch/s: 2.25 | lr: 0.0002 | loss: 0.006 | time: 0:00:42.2 | step: 90
14
+ epoch: 33 | 0/ 3 | logs/44k/diffusion | batch/s: 2.27 | lr: 0.0002 | loss: 0.022 | time: 0:00:46.7 | step: 100
15
+ epoch: 36 | 1/ 3 | logs/44k/diffusion | batch/s: 2.25 | lr: 0.0002 | loss: 0.020 | time: 0:00:51.2 | step: 110
16
+ epoch: 39 | 2/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.022 | time: 0:00:55.3 | step: 120
17
+ epoch: 43 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:00:59.7 | step: 130
18
+ epoch: 46 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.014 | time: 0:01:04.0 | step: 140
19
+ epoch: 49 | 2/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.030 | time: 0:01:08.0 | step: 150
20
+ epoch: 53 | 0/ 3 | logs/44k/diffusion | batch/s: 2.42 | lr: 0.0002 | loss: 0.054 | time: 0:01:12.3 | step: 160
21
+ epoch: 56 | 1/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.011 | time: 0:01:16.5 | step: 170
22
+ epoch: 59 | 2/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.016 | time: 0:01:20.5 | step: 180
23
+ epoch: 63 | 0/ 3 | logs/44k/diffusion | batch/s: 2.42 | lr: 0.0002 | loss: 0.018 | time: 0:01:24.7 | step: 190
24
+ epoch: 66 | 1/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.025 | time: 0:01:28.9 | step: 200
25
+ epoch: 69 | 2/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.036 | time: 0:01:33.0 | step: 210
26
+ epoch: 73 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.041 | time: 0:01:37.2 | step: 220
27
+ epoch: 76 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.024 | time: 0:01:41.5 | step: 230
28
+ epoch: 79 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:01:45.6 | step: 240
29
+ epoch: 83 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.005 | time: 0:01:49.9 | step: 250
30
+ epoch: 86 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.031 | time: 0:01:54.2 | step: 260
31
+ epoch: 89 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.019 | time: 0:01:58.4 | step: 270
32
+ epoch: 93 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.015 | time: 0:02:02.7 | step: 280
33
+ epoch: 96 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.017 | time: 0:02:07.0 | step: 290
34
+ epoch: 99 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.012 | time: 0:02:11.2 | step: 300
35
+ epoch: 103 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.019 | time: 0:02:15.5 | step: 310
36
+ epoch: 106 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.006 | time: 0:02:19.8 | step: 320
37
+ epoch: 109 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:02:23.9 | step: 330
38
+ epoch: 113 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.035 | time: 0:02:28.2 | step: 340
39
+ epoch: 116 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.008 | time: 0:02:32.5 | step: 350
40
+ epoch: 119 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.025 | time: 0:02:36.5 | step: 360
41
+ epoch: 123 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.010 | time: 0:02:40.8 | step: 370
42
+ epoch: 126 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.022 | time: 0:02:45.1 | step: 380
43
+ epoch: 129 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.046 | time: 0:02:49.1 | step: 390
44
+ epoch: 133 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.013 | time: 0:02:53.5 | step: 400
45
+ epoch: 136 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.023 | time: 0:02:57.7 | step: 410
46
+ epoch: 139 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:03:01.8 | step: 420
47
+ epoch: 143 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:03:06.2 | step: 430
48
+ epoch: 146 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.006 | time: 0:03:10.5 | step: 440
49
+ epoch: 149 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.012 | time: 0:03:14.6 | step: 450
50
+ epoch: 153 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.018 | time: 0:03:19.0 | step: 460
51
+ epoch: 156 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.017 | time: 0:03:23.3 | step: 470
52
+ epoch: 159 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.010 | time: 0:03:27.4 | step: 480
53
+ epoch: 163 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.021 | time: 0:03:31.7 | step: 490
54
+ epoch: 166 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.009 | time: 0:03:36.0 | step: 500
55
+ epoch: 169 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.005 | time: 0:03:40.1 | step: 510
56
+ epoch: 173 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.017 | time: 0:03:44.4 | step: 520
57
+ epoch: 176 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.016 | time: 0:03:48.7 | step: 530
58
+ epoch: 179 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:03:52.8 | step: 540
59
+ epoch: 183 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.026 | time: 0:03:57.1 | step: 550
60
+ epoch: 186 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:04:01.3 | step: 560
61
+ epoch: 189 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.014 | time: 0:04:05.5 | step: 570
62
+ epoch: 193 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.010 | time: 0:04:09.8 | step: 580
63
+ epoch: 196 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:04:14.0 | step: 590
64
+ epoch: 199 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.039 | time: 0:04:18.1 | step: 600
65
+ epoch: 203 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.020 | time: 0:04:22.5 | step: 610
66
+ epoch: 206 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:04:26.7 | step: 620
67
+ epoch: 209 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:04:30.8 | step: 630
68
+ epoch: 213 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.022 | time: 0:04:35.1 | step: 640
69
+ epoch: 216 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:04:39.4 | step: 650
70
+ epoch: 219 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.026 | time: 0:04:43.5 | step: 660
71
+ epoch: 223 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.027 | time: 0:04:47.8 | step: 670
72
+ epoch: 226 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.038 | time: 0:04:52.1 | step: 680
73
+ epoch: 229 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.034 | time: 0:04:56.1 | step: 690
74
+ epoch: 233 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.012 | time: 0:05:00.4 | step: 700
75
+ epoch: 236 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.012 | time: 0:05:04.7 | step: 710
76
+ epoch: 239 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.026 | time: 0:05:08.8 | step: 720
77
+ epoch: 243 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.010 | time: 0:05:13.1 | step: 730
78
+ epoch: 246 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.029 | time: 0:05:17.3 | step: 740
79
+ epoch: 249 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.037 | time: 0:05:21.4 | step: 750
80
+ epoch: 253 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.016 | time: 0:05:25.7 | step: 760
81
+ epoch: 256 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.018 | time: 0:05:30.0 | step: 770
82
+ epoch: 259 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:05:34.1 | step: 780
83
+ epoch: 263 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.005 | time: 0:05:38.4 | step: 790
84
+ epoch: 266 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.018 | time: 0:05:42.7 | step: 800
85
+ epoch: 269 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.004 | time: 0:05:46.8 | step: 810
86
+ epoch: 273 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.013 | time: 0:05:51.1 | step: 820
87
+ epoch: 276 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:05:55.4 | step: 830
88
+ epoch: 279 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.010 | time: 0:05:59.5 | step: 840
89
+ epoch: 283 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.005 | time: 0:06:03.8 | step: 850
90
+ epoch: 286 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:06:08.0 | step: 860
91
+ epoch: 289 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:06:12.1 | step: 870
92
+ epoch: 293 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.011 | time: 0:06:16.5 | step: 880
93
+ epoch: 296 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:06:20.7 | step: 890
94
+ epoch: 299 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:06:24.8 | step: 900
95
+ epoch: 303 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.017 | time: 0:06:29.1 | step: 910
96
+ epoch: 306 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.030 | time: 0:06:33.4 | step: 920
97
+ epoch: 309 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.015 | time: 0:06:37.5 | step: 930
98
+ epoch: 313 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.018 | time: 0:06:41.9 | step: 940
99
+ epoch: 316 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:06:46.1 | step: 950
100
+ epoch: 319 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.010 | time: 0:06:50.3 | step: 960
101
+ epoch: 323 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.011 | time: 0:06:54.6 | step: 970
102
+ epoch: 326 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.021 | time: 0:06:58.9 | step: 980
103
+ epoch: 329 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.014 | time: 0:07:03.0 | step: 990
104
+ epoch: 333 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:07:07.3 | step: 1000
105
+ epoch: 336 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.015 | time: 0:07:11.6 | step: 1010
106
+ epoch: 339 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.003 | time: 0:07:15.7 | step: 1020
107
+ epoch: 343 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.029 | time: 0:07:20.0 | step: 1030
108
+ epoch: 346 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:07:24.3 | step: 1040
109
+ epoch: 349 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.022 | time: 0:07:28.3 | step: 1050
110
+ epoch: 353 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.048 | time: 0:07:32.6 | step: 1060
111
+ epoch: 356 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.026 | time: 0:07:36.9 | step: 1070
112
+ epoch: 359 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:07:41.0 | step: 1080
113
+ epoch: 363 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.011 | time: 0:07:45.3 | step: 1090
114
+ epoch: 366 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.021 | time: 0:07:49.5 | step: 1100
115
+ epoch: 369 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.032 | time: 0:07:53.6 | step: 1110
116
+ epoch: 373 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.021 | time: 0:07:57.9 | step: 1120
117
+ epoch: 376 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:08:02.2 | step: 1130
118
+ epoch: 379 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.016 | time: 0:08:06.3 | step: 1140
119
+ epoch: 383 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.021 | time: 0:08:10.6 | step: 1150
120
+ epoch: 386 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:08:14.9 | step: 1160
121
+ epoch: 389 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:08:19.0 | step: 1170
122
+ epoch: 393 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.023 | time: 0:08:23.4 | step: 1180
123
+ epoch: 396 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.019 | time: 0:08:27.7 | step: 1190
124
+ epoch: 399 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:08:31.8 | step: 1200
125
+ epoch: 403 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.024 | time: 0:08:36.1 | step: 1210
126
+ epoch: 406 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.014 | time: 0:08:40.4 | step: 1220
127
+ epoch: 409 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.013 | time: 0:08:44.5 | step: 1230
128
+ epoch: 413 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.023 | time: 0:08:48.9 | step: 1240
129
+ epoch: 416 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.026 | time: 0:08:53.1 | step: 1250
130
+ epoch: 419 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:08:57.2 | step: 1260
131
+ epoch: 423 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.033 | time: 0:09:01.6 | step: 1270
132
+ epoch: 426 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.026 | time: 0:09:05.9 | step: 1280
133
+ epoch: 429 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:09:10.0 | step: 1290
134
+ epoch: 433 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.031 | time: 0:09:14.3 | step: 1300
135
+ epoch: 436 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:09:18.6 | step: 1310
136
+ epoch: 439 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.009 | time: 0:09:22.7 | step: 1320
137
+ epoch: 443 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:09:27.1 | step: 1330
138
+ epoch: 446 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.004 | time: 0:09:31.4 | step: 1340
139
+ epoch: 449 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.050 | time: 0:09:35.5 | step: 1350
140
+ epoch: 453 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.023 | time: 0:09:39.9 | step: 1360
141
+ epoch: 456 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:09:44.2 | step: 1370
142
+ epoch: 459 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.005 | time: 0:09:48.3 | step: 1380
143
+ epoch: 463 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:09:52.6 | step: 1390
144
+ epoch: 466 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.015 | time: 0:09:56.9 | step: 1400
145
+ epoch: 469 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:10:01.0 | step: 1410
146
+ epoch: 473 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.006 | time: 0:10:05.3 | step: 1420
147
+ epoch: 476 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.020 | time: 0:10:09.6 | step: 1430
148
+ epoch: 479 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.029 | time: 0:10:13.7 | step: 1440
149
+ epoch: 483 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.007 | time: 0:10:18.0 | step: 1450
150
+ epoch: 486 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.042 | time: 0:10:22.3 | step: 1460
151
+ epoch: 489 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.037 | time: 0:10:26.4 | step: 1470
152
+ epoch: 493 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.011 | time: 0:10:30.8 | step: 1480
153
+ epoch: 496 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.027 | time: 0:10:35.1 | step: 1490
154
+ epoch: 499 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:10:39.2 | step: 1500
155
+ epoch: 503 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:10:43.5 | step: 1510
156
+ epoch: 506 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.037 | time: 0:10:47.8 | step: 1520
157
+ epoch: 509 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:10:51.9 | step: 1530
158
+ epoch: 513 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:10:56.2 | step: 1540
159
+ epoch: 516 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.020 | time: 0:11:00.5 | step: 1550
160
+ epoch: 519 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:11:04.6 | step: 1560
161
+ epoch: 523 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.007 | time: 0:11:08.9 | step: 1570
162
+ epoch: 526 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.013 | time: 0:11:13.2 | step: 1580
163
+ epoch: 529 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.021 | time: 0:11:17.3 | step: 1590
164
+ epoch: 533 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:11:21.7 | step: 1600
165
+ epoch: 536 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.017 | time: 0:11:26.0 | step: 1610
166
+ epoch: 539 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:11:30.1 | step: 1620
167
+ epoch: 543 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.035 | time: 0:11:34.4 | step: 1630
168
+ epoch: 546 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:11:38.7 | step: 1640
169
+ epoch: 549 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:11:42.8 | step: 1650
170
+ epoch: 553 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.015 | time: 0:11:47.1 | step: 1660
171
+ epoch: 556 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.019 | time: 0:11:51.4 | step: 1670
172
+ epoch: 559 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:11:55.5 | step: 1680
173
+ epoch: 563 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.025 | time: 0:11:59.8 | step: 1690
174
+ epoch: 566 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.036 | time: 0:12:04.1 | step: 1700
175
+ epoch: 569 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.017 | time: 0:12:08.2 | step: 1710
176
+ epoch: 573 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.029 | time: 0:12:12.5 | step: 1720
177
+ epoch: 576 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.005 | time: 0:12:16.8 | step: 1730
178
+ epoch: 579 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.003 | time: 0:12:20.9 | step: 1740
179
+ epoch: 583 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:12:25.3 | step: 1750
180
+ epoch: 586 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:12:29.6 | step: 1760
181
+ epoch: 589 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:12:33.7 | step: 1770
182
+ epoch: 593 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:12:38.0 | step: 1780
183
+ epoch: 596 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.034 | time: 0:12:42.3 | step: 1790
184
+ epoch: 599 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.032 | time: 0:12:46.4 | step: 1800
185
+ epoch: 603 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.012 | time: 0:12:50.7 | step: 1810
186
+ epoch: 606 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.011 | time: 0:12:55.0 | step: 1820
187
+ epoch: 609 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.017 | time: 0:12:59.2 | step: 1830
188
+ epoch: 613 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.011 | time: 0:13:03.5 | step: 1840
189
+ epoch: 616 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.013 | time: 0:13:07.8 | step: 1850
190
+ epoch: 619 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.011 | time: 0:13:11.9 | step: 1860
191
+ epoch: 623 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:13:16.2 | step: 1870
192
+ epoch: 626 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.030 | time: 0:13:20.5 | step: 1880
193
+ epoch: 629 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.011 | time: 0:13:24.6 | step: 1890
194
+ epoch: 633 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.015 | time: 0:13:29.0 | step: 1900
195
+ epoch: 636 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:13:33.3 | step: 1910
196
+ epoch: 639 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:13:37.4 | step: 1920
197
+ epoch: 643 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.032 | time: 0:13:41.7 | step: 1930
198
+ epoch: 646 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.032 | time: 0:13:46.0 | step: 1940
199
+ epoch: 649 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:13:50.1 | step: 1950
200
+ epoch: 653 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.026 | time: 0:13:54.4 | step: 1960
201
+ epoch: 656 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.023 | time: 0:13:58.7 | step: 1970
202
+ epoch: 659 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:14:02.8 | step: 1980
203
+ epoch: 663 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.014 | time: 0:14:07.1 | step: 1990
204
+ epoch: 666 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.038 | time: 0:14:11.4 | step: 2000
205
+ --- <validation> ---
206
+ loss: 0.025.
207
+ epoch: 669 | 2/ 3 | logs/44k/diffusion | batch/s: 0.46 | lr: 0.0002 | loss: 0.008 | time: 0:14:33.1 | step: 2010
208
+ epoch: 673 | 0/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.014 | time: 0:14:37.3 | step: 2020
209
+ epoch: 676 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.013 | time: 0:14:41.6 | step: 2030
210
+ epoch: 679 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:14:45.8 | step: 2040
211
+ epoch: 683 | 0/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:14:50.2 | step: 2050
212
+ epoch: 686 | 1/ 3 | logs/44k/diffusion | batch/s: 2.29 | lr: 0.0002 | loss: 0.019 | time: 0:14:54.5 | step: 2060
213
+ epoch: 689 | 2/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.010 | time: 0:14:58.7 | step: 2070
214
+ epoch: 693 | 0/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.016 | time: 0:15:03.2 | step: 2080
215
+ epoch: 696 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.014 | time: 0:15:07.5 | step: 2090
216
+ epoch: 699 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.008 | time: 0:15:11.6 | step: 2100
217
+ epoch: 703 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.004 | time: 0:15:16.0 | step: 2110
218
+ epoch: 706 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:15:20.3 | step: 2120
219
+ epoch: 709 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.012 | time: 0:15:24.3 | step: 2130
220
+ epoch: 713 | 0/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.010 | time: 0:15:28.6 | step: 2140
221
+ epoch: 716 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.007 | time: 0:15:32.9 | step: 2150
222
+ epoch: 719 | 2/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.035 | time: 0:15:36.9 | step: 2160
223
+ epoch: 723 | 0/ 3 | logs/44k/diffusion | batch/s: 2.41 | lr: 0.0002 | loss: 0.043 | time: 0:15:41.2 | step: 2170
224
+ epoch: 726 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:15:45.5 | step: 2180
225
+ epoch: 729 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:15:49.6 | step: 2190
226
+ epoch: 733 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:15:53.9 | step: 2200
227
+ epoch: 736 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.039 | time: 0:15:58.2 | step: 2210
228
+ epoch: 739 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.033 | time: 0:16:02.3 | step: 2220
229
+ epoch: 743 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:16:06.6 | step: 2230
230
+ epoch: 746 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:16:10.9 | step: 2240
231
+ epoch: 749 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.016 | time: 0:16:15.0 | step: 2250
232
+ epoch: 753 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.011 | time: 0:16:19.3 | step: 2260
233
+ epoch: 756 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.011 | time: 0:16:23.6 | step: 2270
234
+ epoch: 759 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:16:27.8 | step: 2280
235
+ epoch: 763 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:16:32.1 | step: 2290
236
+ epoch: 766 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.009 | time: 0:16:36.4 | step: 2300
237
+ epoch: 769 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.009 | time: 0:16:40.5 | step: 2310
238
+ epoch: 773 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.070 | time: 0:16:44.8 | step: 2320
239
+ epoch: 776 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.029 | time: 0:16:49.1 | step: 2330
240
+ epoch: 779 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.055 | time: 0:16:53.2 | step: 2340
241
+ epoch: 783 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.024 | time: 0:16:57.6 | step: 2350
242
+ epoch: 786 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.018 | time: 0:17:01.8 | step: 2360
243
+ epoch: 789 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.033 | time: 0:17:06.0 | step: 2370
244
+ epoch: 793 | 0/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.016 | time: 0:17:10.3 | step: 2380
245
+ epoch: 796 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.016 | time: 0:17:14.6 | step: 2390
246
+ epoch: 799 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.016 | time: 0:17:18.7 | step: 2400
247
+ epoch: 803 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.015 | time: 0:17:23.0 | step: 2410
248
+ epoch: 806 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.014 | time: 0:17:27.3 | step: 2420
249
+ epoch: 809 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.031 | time: 0:17:31.4 | step: 2430
250
+ epoch: 813 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:17:35.7 | step: 2440
251
+ epoch: 816 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.011 | time: 0:17:40.0 | step: 2450
252
+ epoch: 819 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.034 | time: 0:17:44.1 | step: 2460
253
+ epoch: 823 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.030 | time: 0:17:48.4 | step: 2470
254
+ epoch: 826 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.018 | time: 0:17:52.7 | step: 2480
255
+ epoch: 829 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.017 | time: 0:17:56.8 | step: 2490
256
+ epoch: 833 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.022 | time: 0:18:01.2 | step: 2500
257
+ epoch: 836 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:18:05.5 | step: 2510
258
+ epoch: 839 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:18:09.6 | step: 2520
259
+ epoch: 843 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.011 | time: 0:18:13.9 | step: 2530
260
+ epoch: 846 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.018 | time: 0:18:18.2 | step: 2540
261
+ epoch: 849 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.025 | time: 0:18:22.3 | step: 2550
262
+ epoch: 853 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.008 | time: 0:18:26.6 | step: 2560
263
+ epoch: 856 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.003 | time: 0:18:30.8 | step: 2570
264
+ epoch: 859 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.003 | time: 0:18:34.9 | step: 2580
265
+ epoch: 863 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.011 | time: 0:18:39.2 | step: 2590
266
+ epoch: 866 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.011 | time: 0:18:43.5 | step: 2600
267
+ epoch: 869 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.005 | time: 0:18:47.5 | step: 2610
268
+ epoch: 873 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.014 | time: 0:18:51.8 | step: 2620
269
+ epoch: 876 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.011 | time: 0:18:56.1 | step: 2630
270
+ epoch: 879 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.003 | time: 0:19:00.2 | step: 2640
271
+ epoch: 883 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.012 | time: 0:19:04.5 | step: 2650
272
+ epoch: 886 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.005 | time: 0:19:08.8 | step: 2660
273
+ epoch: 889 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.005 | time: 0:19:12.9 | step: 2670
274
+ epoch: 893 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.030 | time: 0:19:17.2 | step: 2680
275
+ epoch: 896 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.015 | time: 0:19:21.5 | step: 2690
276
+ epoch: 899 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.006 | time: 0:19:25.6 | step: 2700
277
+ epoch: 903 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.016 | time: 0:19:29.9 | step: 2710
278
+ epoch: 906 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.034 | time: 0:19:34.2 | step: 2720
279
+ epoch: 909 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.004 | time: 0:19:38.4 | step: 2730
280
+ epoch: 913 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:19:42.7 | step: 2740
281
+ epoch: 916 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.011 | time: 0:19:47.0 | step: 2750
282
+ epoch: 919 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.019 | time: 0:19:51.1 | step: 2760
283
+ epoch: 923 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.031 | time: 0:19:55.4 | step: 2770
284
+ epoch: 926 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.029 | time: 0:19:59.7 | step: 2780
285
+ epoch: 929 | 2/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.007 | time: 0:20:03.9 | step: 2790
286
+ epoch: 933 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.011 | time: 0:20:08.2 | step: 2800
287
+ epoch: 936 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.005 | time: 0:20:12.5 | step: 2810
288
+ epoch: 939 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.016 | time: 0:20:16.6 | step: 2820
289
+ epoch: 943 | 0/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.007 | time: 0:20:21.0 | step: 2830
290
+ epoch: 946 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:20:25.2 | step: 2840
291
+ epoch: 949 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:20:29.3 | step: 2850
292
+ epoch: 953 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:20:33.7 | step: 2860
293
+ epoch: 956 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:20:37.9 | step: 2870
294
+ epoch: 959 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:20:42.0 | step: 2880
295
+ epoch: 963 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.009 | time: 0:20:46.4 | step: 2890
296
+ epoch: 966 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.015 | time: 0:20:50.6 | step: 2900
297
+ epoch: 969 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.003 | time: 0:20:54.7 | step: 2910
298
+ epoch: 973 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.021 | time: 0:20:59.1 | step: 2920
299
+ epoch: 976 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:21:03.3 | step: 2930
300
+ epoch: 979 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:21:07.4 | step: 2940
301
+ epoch: 983 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.040 | time: 0:21:11.8 | step: 2950
302
+ epoch: 986 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:21:16.0 | step: 2960
303
+ epoch: 989 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.008 | time: 0:21:20.1 | step: 2970
304
+ epoch: 993 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.023 | time: 0:21:24.5 | step: 2980
305
+ epoch: 996 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.024 | time: 0:21:28.7 | step: 2990
306
+ epoch: 999 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.015 | time: 0:21:32.8 | step: 3000
307
+ epoch: 1003 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:21:37.2 | step: 3010
308
+ epoch: 1006 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:21:41.4 | step: 3020
309
+ epoch: 1009 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.014 | time: 0:21:45.5 | step: 3030
310
+ epoch: 1013 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.004 | time: 0:21:49.9 | step: 3040
311
+ epoch: 1016 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:21:54.1 | step: 3050
312
+ epoch: 1019 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.033 | time: 0:21:58.2 | step: 3060
313
+ epoch: 1023 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:22:02.6 | step: 3070
314
+ epoch: 1026 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:22:06.8 | step: 3080
315
+ epoch: 1029 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:22:10.9 | step: 3090
316
+ epoch: 1033 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.006 | time: 0:22:15.2 | step: 3100
317
+ epoch: 1036 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.011 | time: 0:22:19.5 | step: 3110
318
+ epoch: 1039 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.012 | time: 0:22:23.6 | step: 3120
319
+ epoch: 1043 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:22:27.9 | step: 3130
320
+ epoch: 1046 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:22:32.2 | step: 3140
321
+ epoch: 1049 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.034 | time: 0:22:36.3 | step: 3150
322
+ epoch: 1053 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.042 | time: 0:22:40.6 | step: 3160
323
+ epoch: 1056 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.023 | time: 0:22:44.9 | step: 3170
324
+ epoch: 1059 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.023 | time: 0:22:49.0 | step: 3180
325
+ epoch: 1063 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.004 | time: 0:22:53.3 | step: 3190
326
+ epoch: 1066 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:22:57.6 | step: 3200
327
+ epoch: 1069 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.012 | time: 0:23:01.7 | step: 3210
328
+ epoch: 1073 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.008 | time: 0:23:06.0 | step: 3220
329
+ epoch: 1076 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:23:10.3 | step: 3230
330
+ epoch: 1079 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:23:14.4 | step: 3240
331
+ epoch: 1083 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:23:18.7 | step: 3250
332
+ epoch: 1086 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:23:23.0 | step: 3260
333
+ epoch: 1089 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.004 | time: 0:23:27.1 | step: 3270
334
+ epoch: 1093 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.035 | time: 0:23:31.4 | step: 3280
335
+ epoch: 1096 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:23:35.7 | step: 3290
336
+ epoch: 1099 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:23:39.8 | step: 3300
337
+ epoch: 1103 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.017 | time: 0:23:44.1 | step: 3310
338
+ epoch: 1106 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.007 | time: 0:23:48.4 | step: 3320
339
+ epoch: 1109 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:23:52.5 | step: 3330
340
+ epoch: 1113 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:23:56.8 | step: 3340
341
+ epoch: 1116 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.030 | time: 0:24:01.0 | step: 3350
342
+ epoch: 1119 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.010 | time: 0:24:05.2 | step: 3360
343
+ epoch: 1123 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.012 | time: 0:24:09.5 | step: 3370
344
+ epoch: 1126 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.010 | time: 0:24:13.7 | step: 3380
345
+ epoch: 1129 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.027 | time: 0:24:17.8 | step: 3390
346
+ epoch: 1133 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.008 | time: 0:24:22.2 | step: 3400
347
+ epoch: 1136 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.018 | time: 0:24:26.4 | step: 3410
348
+ epoch: 1139 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:24:30.5 | step: 3420
349
+ epoch: 1143 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.006 | time: 0:24:34.9 | step: 3430
350
+ epoch: 1146 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:24:39.1 | step: 3440
351
+ epoch: 1149 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.015 | time: 0:24:43.2 | step: 3450
352
+ epoch: 1153 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.007 | time: 0:24:47.5 | step: 3460
353
+ epoch: 1156 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.011 | time: 0:24:51.8 | step: 3470
354
+ epoch: 1159 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.021 | time: 0:24:55.9 | step: 3480
355
+ epoch: 1163 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.022 | time: 0:25:00.2 | step: 3490
356
+ epoch: 1166 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:25:04.5 | step: 3500
357
+ epoch: 1169 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:25:08.6 | step: 3510
358
+ epoch: 1173 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.005 | time: 0:25:12.9 | step: 3520
359
+ epoch: 1176 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.009 | time: 0:25:17.2 | step: 3530
360
+ epoch: 1179 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:25:21.3 | step: 3540
361
+ epoch: 1183 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:25:25.6 | step: 3550
362
+ epoch: 1186 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:25:29.9 | step: 3560
363
+ epoch: 1189 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.009 | time: 0:25:34.0 | step: 3570
364
+ epoch: 1193 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.009 | time: 0:25:38.3 | step: 3580
365
+ epoch: 1196 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:25:42.6 | step: 3590
366
+ epoch: 1199 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.013 | time: 0:25:46.7 | step: 3600
367
+ epoch: 1203 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.018 | time: 0:25:51.0 | step: 3610
368
+ epoch: 1206 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.023 | time: 0:25:55.2 | step: 3620
369
+ epoch: 1209 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:25:59.3 | step: 3630
370
+ epoch: 1213 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.013 | time: 0:26:03.6 | step: 3640
371
+ epoch: 1216 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:26:07.9 | step: 3650
372
+ epoch: 1219 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.012 | time: 0:26:12.0 | step: 3660
373
+ epoch: 1223 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.013 | time: 0:26:16.3 | step: 3670
374
+ epoch: 1226 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.020 | time: 0:26:20.6 | step: 3680
375
+ epoch: 1229 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.012 | time: 0:26:24.7 | step: 3690
376
+ epoch: 1233 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.026 | time: 0:26:29.0 | step: 3700
377
+ epoch: 1236 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.013 | time: 0:26:33.3 | step: 3710
378
+ epoch: 1239 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.007 | time: 0:26:37.4 | step: 3720
379
+ epoch: 1243 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.028 | time: 0:26:41.7 | step: 3730
380
+ epoch: 1246 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.020 | time: 0:26:46.0 | step: 3740
381
+ epoch: 1249 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.010 | time: 0:26:50.1 | step: 3750
382
+ epoch: 1253 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.009 | time: 0:26:54.4 | step: 3760
383
+ epoch: 1256 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.004 | time: 0:26:58.6 | step: 3770
384
+ epoch: 1259 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.008 | time: 0:27:02.7 | step: 3780
385
+ epoch: 1263 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.017 | time: 0:27:07.1 | step: 3790
386
+ epoch: 1266 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.019 | time: 0:27:11.3 | step: 3800
387
+ epoch: 1269 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.004 | time: 0:27:15.4 | step: 3810
388
+ epoch: 1273 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:27:19.8 | step: 3820
389
+ epoch: 1276 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.013 | time: 0:27:24.1 | step: 3830
390
+ epoch: 1279 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.040 | time: 0:27:28.2 | step: 3840
391
+ epoch: 1283 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.007 | time: 0:27:32.5 | step: 3850
392
+ epoch: 1286 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.008 | time: 0:27:36.8 | step: 3860
393
+ epoch: 1289 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.010 | time: 0:27:40.9 | step: 3870
394
+ epoch: 1293 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.011 | time: 0:27:45.2 | step: 3880
395
+ epoch: 1296 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:27:49.4 | step: 3890
396
+ epoch: 1299 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.002 | time: 0:27:53.5 | step: 3900
397
+ epoch: 1303 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.009 | time: 0:27:57.9 | step: 3910
398
+ epoch: 1306 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.022 | time: 0:28:02.1 | step: 3920
399
+ epoch: 1309 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.024 | time: 0:28:06.2 | step: 3930
400
+ epoch: 1313 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.016 | time: 0:28:10.5 | step: 3940
401
+ epoch: 1316 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.027 | time: 0:28:14.8 | step: 3950
402
+ epoch: 1319 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.059 | time: 0:28:18.9 | step: 3960
403
+ epoch: 1323 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.251 | time: 0:28:23.2 | step: 3970
404
+ epoch: 1326 | 1/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.098 | time: 0:28:27.5 | step: 3980
405
+ epoch: 1329 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.085 | time: 0:28:31.6 | step: 3990
406
+ epoch: 1333 | 0/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.053 | time: 0:28:35.9 | step: 4000
407
+ --- <validation> ---
408
+ loss: 0.055.
409
+ epoch: 1336 | 1/ 3 | logs/44k/diffusion | batch/s: 0.47 | lr: 0.0002 | loss: 0.060 | time: 0:28:57.1 | step: 4010
410
+ epoch: 1339 | 2/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.042 | time: 0:29:01.2 | step: 4020
411
+ epoch: 1343 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.035 | time: 0:29:05.5 | step: 4030
412
+ epoch: 1346 | 1/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.020 | time: 0:29:09.8 | step: 4040
413
+ epoch: 1349 | 2/ 3 | logs/44k/diffusion | batch/s: 2.31 | lr: 0.0002 | loss: 0.033 | time: 0:29:14.0 | step: 4050
414
+ epoch: 1353 | 0/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:29:18.4 | step: 4060
415
+ epoch: 1356 | 1/ 3 | logs/44k/diffusion | batch/s: 2.28 | lr: 0.0002 | loss: 0.012 | time: 0:29:22.8 | step: 4070
416
+ epoch: 1359 | 2/ 3 | logs/44k/diffusion | batch/s: 2.34 | lr: 0.0002 | loss: 0.013 | time: 0:29:27.0 | step: 4080
417
+ epoch: 1363 | 0/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.025 | time: 0:29:31.3 | step: 4090
418
+ epoch: 1366 | 1/ 3 | logs/44k/diffusion | batch/s: 2.32 | lr: 0.0002 | loss: 0.030 | time: 0:29:35.7 | step: 4100
419
+ epoch: 1369 | 2/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:29:39.8 | step: 4110
420
+ epoch: 1373 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.017 | time: 0:29:44.1 | step: 4120
421
+ epoch: 1376 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.026 | time: 0:29:48.4 | step: 4130
422
+ epoch: 1379 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.015 | time: 0:29:52.4 | step: 4140
423
+ epoch: 1383 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.032 | time: 0:29:56.8 | step: 4150
424
+ epoch: 1386 | 1/ 3 | logs/44k/diffusion | batch/s: 2.36 | lr: 0.0002 | loss: 0.022 | time: 0:30:01.0 | step: 4160
425
+ epoch: 1389 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.019 | time: 0:30:05.1 | step: 4170
426
+ epoch: 1393 | 0/ 3 | logs/44k/diffusion | batch/s: 2.40 | lr: 0.0002 | loss: 0.041 | time: 0:30:09.4 | step: 4180
427
+ epoch: 1396 | 1/ 3 | logs/44k/diffusion | batch/s: 2.35 | lr: 0.0002 | loss: 0.015 | time: 0:30:13.6 | step: 4190
428
+ epoch: 1399 | 2/ 3 | logs/44k/diffusion | batch/s: 2.37 | lr: 0.0002 | loss: 0.006 | time: 0:30:17.7 | step: 4200
429
+ epoch: 1403 | 0/ 3 | logs/44k/diffusion | batch/s: 2.39 | lr: 0.0002 | loss: 0.021 | time: 0:30:22.0 | step: 4210
430
+ epoch: 1406 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.008 | time: 0:30:26.3 | step: 4220
431
+ epoch: 1409 | 2/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.020 | time: 0:30:30.4 | step: 4230
432
+ epoch: 1413 | 0/ 3 | logs/44k/diffusion | batch/s: 2.38 | lr: 0.0002 | loss: 0.023 | time: 0:30:34.7 | step: 4240
433
+ epoch: 1416 | 1/ 3 | logs/44k/diffusion | batch/s: 2.33 | lr: 0.0002 | loss: 0.013 | time: 0:30:39.0 | step: 4250
furry/baobai/baobai6/diffusion/logs/events.out.tfevents.1684649704.dabec9d50fc6.33951.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f72c2d197e78adf98bcddc33b4fa8b0942b3a8f7943a76e345bb729f99d6c4
3
+ size 7750712
furry/baobai/baobai6/diffusion/model_0.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:409452a27ab310f7a5897844d003d372a7357cc91c4a43562584a1714518cdf9
3
+ size 220895384
furry/baobai/baobai6/diffusion/model_4000.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6937a0293b885a2a1c5583e95de58de5f6d7b049e9fefd099d22389d99aa816e
3
+ size 220893574
furry/baobai/baobai6/eval/events.out.tfevents.1684644188.dabec9d50fc6.7497.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caaa6ae30bb454f29d6a229fbdce029b499fc804c005b6399402c761b72060fe
3
+ size 10570536
furry/baobai/baobai6/events.out.tfevents.1684644188.dabec9d50fc6.7497.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6730fb371d4e9bb5d4bd6f624ed1dc2a5c85e34a317f8afe900c65b30e410cf
3
+ size 2955618
furry/baobai/baobai6/githash ADDED
@@ -0,0 +1 @@
 
 
1
+ 7c754dc420996d2216d4d480a76f7603cc4cec4c
furry/baobai/baobai6/train.log ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-05-21 04:43:08,221 44k INFO {'train': {'log_interval': 200, 'eval_interval': 800, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 10240, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 512, 'port': '8001', 'keep_ckpts': 3, 'all_in_mem': False}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 44100, 'filter_length': 2048, 'hop_length': 512, 'win_length': 2048, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': 22050}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 768, 'ssl_dim': 768, 'n_speakers': 1, 'speech_encoder': 'vec768l12', 'speaker_embedding': False}, 'spk': {'baobai': 0}, 'model_dir': './logs/44k'}
2
+ 2023-05-21 04:43:16,737 44k INFO emb_g.weight is not in the checkpoint
3
+ 2023-05-21 04:43:16,823 44k INFO Loaded checkpoint './logs/44k/G_0.pth' (iteration 0)
4
+ 2023-05-21 04:43:18,005 44k INFO Loaded checkpoint './logs/44k/D_0.pth' (iteration 0)
5
+ 2023-05-21 04:44:18,923 44k INFO ====> Epoch: 1, cost 70.71 s
6
+ 2023-05-21 04:44:52,034 44k INFO ====> Epoch: 2, cost 33.11 s
7
+ 2023-05-21 04:45:25,029 44k INFO ====> Epoch: 3, cost 33.00 s
8
+ 2023-05-21 04:45:58,832 44k INFO ====> Epoch: 4, cost 33.80 s
9
+ 2023-05-21 04:46:32,881 44k INFO ====> Epoch: 5, cost 34.05 s
10
+ 2023-05-21 04:47:07,159 44k INFO ====> Epoch: 6, cost 34.28 s
11
+ 2023-05-21 04:47:41,279 44k INFO ====> Epoch: 7, cost 34.12 s
12
+ 2023-05-21 04:48:15,771 44k INFO ====> Epoch: 8, cost 34.49 s
13
+ 2023-05-21 04:48:51,407 44k INFO ====> Epoch: 9, cost 35.64 s
14
+ 2023-05-21 04:49:13,163 44k INFO Train Epoch: 10 [48%]
15
+ 2023-05-21 04:49:13,170 44k INFO Losses: [2.5445778369903564, 2.83388090133667, 15.380541801452637, 18.88252830505371, 1.092060923576355], step: 200, lr: 9.98875562335968e-05, reference_loss: 40.73358917236328
16
+ 2023-05-21 04:49:26,768 44k INFO ====> Epoch: 10, cost 35.36 s
17
+ 2023-05-21 04:50:00,043 44k INFO ====> Epoch: 11, cost 33.27 s
18
+ 2023-05-21 04:50:32,887 44k INFO ====> Epoch: 12, cost 32.84 s
19
+ 2023-05-21 04:51:05,646 44k INFO ====> Epoch: 13, cost 32.76 s
20
+ 2023-05-21 04:51:38,556 44k INFO ====> Epoch: 14, cost 32.91 s
21
+ 2023-05-21 04:52:11,877 44k INFO ====> Epoch: 15, cost 33.32 s
22
+ 2023-05-21 04:52:45,053 44k INFO ====> Epoch: 16, cost 33.18 s
23
+ 2023-05-21 04:53:18,379 44k INFO ====> Epoch: 17, cost 33.33 s
24
+ 2023-05-21 04:53:51,413 44k INFO ====> Epoch: 18, cost 33.03 s
25
+ 2023-05-21 04:54:24,092 44k INFO ====> Epoch: 19, cost 32.68 s
26
+ 2023-05-21 04:54:34,638 44k INFO Train Epoch: 20 [0%]
27
+ 2023-05-21 04:54:34,639 44k INFO Losses: [2.2672250270843506, 3.07883882522583, 15.199647903442383, 18.87508201599121, 1.056928277015686], step: 400, lr: 9.976276699833672e-05, reference_loss: 40.477718353271484
28
+ 2023-05-21 04:54:58,369 44k INFO ====> Epoch: 20, cost 34.28 s
29
+ 2023-05-21 04:55:31,807 44k INFO ====> Epoch: 21, cost 33.44 s
30
+ 2023-05-21 04:56:04,832 44k INFO ====> Epoch: 22, cost 33.03 s
31
+ 2023-05-21 04:56:37,683 44k INFO ====> Epoch: 23, cost 32.85 s
32
+ 2023-05-21 04:57:11,401 44k INFO ====> Epoch: 24, cost 33.72 s
33
+ 2023-05-21 04:57:45,362 44k INFO ====> Epoch: 25, cost 33.96 s
34
+ 2023-05-21 04:58:19,556 44k INFO ====> Epoch: 26, cost 34.19 s
35
+ 2023-05-21 04:58:53,777 44k INFO ====> Epoch: 27, cost 34.22 s
36
+ 2023-05-21 04:59:28,417 44k INFO ====> Epoch: 28, cost 34.64 s
37
+ 2023-05-21 04:59:52,227 44k INFO Train Epoch: 29 [52%]
38
+ 2023-05-21 04:59:52,228 44k INFO Losses: [2.6102354526519775, 2.5509371757507324, 15.050143241882324, 18.5263729095459, 0.6427398324012756], step: 600, lr: 9.965058998565574e-05, reference_loss: 39.38042449951172
39
+ 2023-05-21 05:00:04,491 44k INFO ====> Epoch: 29, cost 36.07 s
40
+ 2023-05-21 05:00:39,358 44k INFO ====> Epoch: 30, cost 34.87 s
41
+ 2023-05-21 05:01:14,944 44k INFO ====> Epoch: 31, cost 35.59 s
42
+ 2023-05-21 05:01:50,616 44k INFO ====> Epoch: 32, cost 35.67 s
43
+ 2023-05-21 05:02:24,588 44k INFO ====> Epoch: 33, cost 33.97 s
44
+ 2023-05-21 05:02:58,697 44k INFO ====> Epoch: 34, cost 34.11 s
45
+ 2023-05-21 05:03:31,929 44k INFO ====> Epoch: 35, cost 33.23 s
46
+ 2023-05-21 05:04:04,532 44k INFO ====> Epoch: 36, cost 32.60 s
47
+ 2023-05-21 05:04:37,191 44k INFO ====> Epoch: 37, cost 32.66 s
48
+ 2023-05-21 05:05:09,501 44k INFO ====> Epoch: 38, cost 32.31 s
49
+ 2023-05-21 05:05:20,677 44k INFO Train Epoch: 39 [5%]
50
+ 2023-05-21 05:05:20,678 44k INFO Losses: [2.1589901447296143, 2.6669301986694336, 16.74024772644043, 18.339496612548828, 0.8423145413398743], step: 800, lr: 9.952609679164422e-05, reference_loss: 40.74797821044922
51
+ 2023-05-21 05:05:38,923 44k INFO Saving model and optimizer state at iteration 39 to ./logs/44k/G_800.pth
52
+ 2023-05-21 05:05:43,429 44k INFO Saving model and optimizer state at iteration 39 to ./logs/44k/D_800.pth
53
+ 2023-05-21 05:06:08,013 44k INFO ====> Epoch: 39, cost 58.51 s
54
+ 2023-05-21 05:06:43,198 44k INFO ====> Epoch: 40, cost 35.18 s
55
+ 2023-05-21 05:07:18,870 44k INFO ====> Epoch: 41, cost 35.67 s
56
+ 2023-05-21 05:07:53,211 44k INFO ====> Epoch: 42, cost 34.34 s
57
+ 2023-05-21 05:08:26,741 44k INFO ====> Epoch: 43, cost 33.53 s
58
+ 2023-05-21 05:09:00,756 44k INFO ====> Epoch: 44, cost 34.01 s
59
+ 2023-05-21 05:09:34,017 44k INFO ====> Epoch: 45, cost 33.26 s
60
+ 2023-05-21 05:10:06,712 44k INFO ====> Epoch: 46, cost 32.69 s
61
+ 2023-05-21 05:10:39,216 44k INFO ====> Epoch: 47, cost 32.50 s
62
+ 2023-05-21 05:11:01,524 44k INFO Train Epoch: 48 [57%]
63
+ 2023-05-21 05:11:01,528 44k INFO Losses: [2.5245370864868164, 2.759749174118042, 15.53822135925293, 18.24738121032715, 0.8092263340950012], step: 1000, lr: 9.941418589985758e-05, reference_loss: 39.87911605834961
64
+ 2023-05-21 05:11:12,263 44k INFO ====> Epoch: 48, cost 33.05 s
65
+ 2023-05-21 05:11:44,742 44k INFO ====> Epoch: 49, cost 32.48 s
66
+ 2023-05-21 05:12:16,612 44k INFO ====> Epoch: 50, cost 31.87 s
67
+ 2023-05-21 05:12:48,642 44k INFO ====> Epoch: 51, cost 32.03 s
68
+ 2023-05-21 05:13:20,754 44k INFO ====> Epoch: 52, cost 32.11 s
69
+ 2023-05-21 05:13:53,229 44k INFO ====> Epoch: 53, cost 32.47 s
70
+ 2023-05-21 05:14:25,437 44k INFO ====> Epoch: 54, cost 32.21 s
71
+ 2023-05-21 05:14:58,124 44k INFO ====> Epoch: 55, cost 32.69 s
72
+ 2023-05-21 05:15:30,617 44k INFO ====> Epoch: 56, cost 32.49 s
73
+ 2023-05-21 05:16:03,136 44k INFO ====> Epoch: 57, cost 32.52 s
74
+ 2023-05-21 05:16:15,483 44k INFO Train Epoch: 58 [10%]
75
+ 2023-05-21 05:16:15,484 44k INFO Losses: [2.4595236778259277, 2.8447391986846924, 16.389728546142578, 18.046951293945312, 0.5579648613929749], step: 1200, lr: 9.928998804478705e-05, reference_loss: 40.29890823364258
76
+ 2023-05-21 05:16:36,572 44k INFO ====> Epoch: 58, cost 33.44 s
77
+ 2023-05-21 05:17:09,212 44k INFO ====> Epoch: 59, cost 32.64 s
78
+ 2023-05-21 05:17:41,885 44k INFO ====> Epoch: 60, cost 32.67 s
79
+ 2023-05-21 05:18:15,056 44k INFO ====> Epoch: 61, cost 33.17 s
80
+ 2023-05-21 05:18:48,935 44k INFO ====> Epoch: 62, cost 33.88 s
81
+ 2023-05-21 05:19:23,333 44k INFO ====> Epoch: 63, cost 34.40 s
82
+ 2023-05-21 05:19:57,813 44k INFO ====> Epoch: 64, cost 34.48 s
83
+ 2023-05-21 05:20:32,971 44k INFO ====> Epoch: 65, cost 35.16 s
84
+ 2023-05-21 05:21:08,468 44k INFO ====> Epoch: 66, cost 35.50 s
85
+ 2023-05-21 05:21:33,538 44k INFO Train Epoch: 67 [62%]
86
+ 2023-05-21 05:21:33,543 44k INFO Losses: [2.5141336917877197, 2.321308135986328, 13.527164459228516, 17.738521575927734, 0.9825926423072815], step: 1400, lr: 9.917834264256819e-05, reference_loss: 37.08372116088867
87
+ 2023-05-21 05:21:44,291 44k INFO ====> Epoch: 67, cost 35.82 s
88
+ 2023-05-21 05:22:18,049 44k INFO ====> Epoch: 68, cost 33.76 s
89
+ 2023-05-21 05:22:51,054 44k INFO ====> Epoch: 69, cost 33.01 s
90
+ 2023-05-21 05:23:23,243 44k INFO ====> Epoch: 70, cost 32.19 s
91
+ 2023-05-21 05:23:55,543 44k INFO ====> Epoch: 71, cost 32.30 s
92
+ 2023-05-21 05:24:27,802 44k INFO ====> Epoch: 72, cost 32.26 s
93
+ 2023-05-21 05:24:59,750 44k INFO ====> Epoch: 73, cost 31.95 s
94
+ 2023-05-21 05:25:31,765 44k INFO ====> Epoch: 74, cost 32.01 s
95
+ 2023-05-21 05:26:03,995 44k INFO ====> Epoch: 75, cost 32.23 s
96
+ 2023-05-21 05:26:36,249 44k INFO ====> Epoch: 76, cost 32.25 s
97
+ 2023-05-21 05:26:49,329 44k INFO Train Epoch: 77 [14%]
98
+ 2023-05-21 05:26:49,330 44k INFO Losses: [2.3342432975769043, 2.160710573196411, 12.683871269226074, 16.918319702148438, 0.9933038353919983], step: 1600, lr: 9.905443942579728e-05, reference_loss: 35.090450286865234
99
+ 2023-05-21 05:26:59,032 44k INFO Saving model and optimizer state at iteration 77 to ./logs/44k/G_1600.pth
100
+ 2023-05-21 05:27:01,667 44k INFO Saving model and optimizer state at iteration 77 to ./logs/44k/D_1600.pth
101
+ 2023-05-21 05:27:25,363 44k INFO ====> Epoch: 77, cost 49.11 s
102
+ 2023-05-21 05:27:57,887 44k INFO ====> Epoch: 78, cost 32.52 s
103
+ 2023-05-21 05:28:29,962 44k INFO ====> Epoch: 79, cost 32.08 s
104
+ 2023-05-21 05:29:02,076 44k INFO ====> Epoch: 80, cost 32.11 s
105
+ 2023-05-21 05:29:34,715 44k INFO ====> Epoch: 81, cost 32.64 s
106
+ 2023-05-21 05:30:07,051 44k INFO ====> Epoch: 82, cost 32.34 s
107
+ 2023-05-21 05:30:39,190 44k INFO ====> Epoch: 83, cost 32.14 s
108
+ 2023-05-21 05:31:11,160 44k INFO ====> Epoch: 84, cost 31.97 s
109
+ 2023-05-21 05:31:43,221 44k INFO ====> Epoch: 85, cost 32.06 s
110
+ 2023-05-21 05:32:07,280 44k INFO Train Epoch: 86 [67%]
111
+ 2023-05-21 05:32:07,286 44k INFO Losses: [2.2493386268615723, 2.731492042541504, 13.587553024291992, 15.12157154083252, 0.6404907703399658], step: 1800, lr: 9.894305888331732e-05, reference_loss: 34.330448150634766
112
+ 2023-05-21 05:32:15,872 44k INFO ====> Epoch: 86, cost 32.65 s
113
+ 2023-05-21 05:32:48,137 44k INFO ====> Epoch: 87, cost 32.27 s
114
+ 2023-05-21 05:33:20,556 44k INFO ====> Epoch: 88, cost 32.42 s
115
+ 2023-05-21 05:33:52,810 44k INFO ====> Epoch: 89, cost 32.25 s
116
+ 2023-05-21 05:34:25,058 44k INFO ====> Epoch: 90, cost 32.25 s
117
+ 2023-05-21 05:34:57,181 44k INFO ====> Epoch: 91, cost 32.12 s
118
+ 2023-05-21 05:35:29,385 44k INFO ====> Epoch: 92, cost 32.20 s
119
+ 2023-05-21 05:36:01,609 44k INFO ====> Epoch: 93, cost 32.22 s
120
+ 2023-05-21 05:36:34,026 44k INFO ====> Epoch: 94, cost 32.42 s
121
+ 2023-05-21 05:37:06,407 44k INFO ====> Epoch: 95, cost 32.38 s
122
+ 2023-05-21 05:37:20,710 44k INFO Train Epoch: 96 [19%]
123
+ 2023-05-21 05:37:20,711 44k INFO Losses: [2.2139039039611816, 2.295823097229004, 9.69484806060791, 17.4899845123291, 0.738105058670044], step: 2000, lr: 9.881944960586671e-05, reference_loss: 32.43266296386719
124
+ 2023-05-21 05:37:39,559 44k INFO ====> Epoch: 96, cost 33.15 s
125
+ 2023-05-21 05:38:12,464 44k INFO ====> Epoch: 97, cost 32.91 s
126
+ 2023-05-21 05:38:44,917 44k INFO ====> Epoch: 98, cost 32.45 s
127
+ 2023-05-21 05:39:17,468 44k INFO ====> Epoch: 99, cost 32.55 s
128
+ 2023-05-21 05:39:50,088 44k INFO ====> Epoch: 100, cost 32.62 s
129
+ 2023-05-21 05:40:22,585 44k INFO ====> Epoch: 101, cost 32.50 s
130
+ 2023-05-21 05:40:55,431 44k INFO ====> Epoch: 102, cost 32.85 s
131
+ 2023-05-21 05:41:28,821 44k INFO ====> Epoch: 103, cost 33.39 s
132
+ 2023-05-21 05:42:02,738 44k INFO ====> Epoch: 104, cost 33.92 s
133
+ 2023-05-21 05:42:30,808 44k INFO Train Epoch: 105 [71%]
134
+ 2023-05-21 05:42:30,809 44k INFO Losses: [2.2192392349243164, 2.7417397499084473, 13.63097858428955, 18.681087493896484, 0.5394753217697144], step: 2200, lr: 9.870833329479095e-05, reference_loss: 37.81251907348633
135
+ 2023-05-21 05:42:38,700 44k INFO ====> Epoch: 105, cost 35.96 s
136
+ 2023-05-21 05:43:13,054 44k INFO ====> Epoch: 106, cost 34.35 s
137
+ 2023-05-21 05:43:47,619 44k INFO ====> Epoch: 107, cost 34.56 s
138
+ 2023-05-21 05:44:24,249 44k INFO ====> Epoch: 108, cost 36.63 s
139
+ 2023-05-21 05:44:59,453 44k INFO ====> Epoch: 109, cost 35.20 s
140
+ 2023-05-21 05:45:32,699 44k INFO ====> Epoch: 110, cost 33.25 s
141
+ 2023-05-21 05:46:05,362 44k INFO ====> Epoch: 111, cost 32.66 s
142
+ 2023-05-21 05:46:37,904 44k INFO ====> Epoch: 112, cost 32.54 s
143
+ 2023-05-21 05:47:10,343 44k INFO ====> Epoch: 113, cost 32.44 s
144
+ 2023-05-21 05:47:43,227 44k INFO ====> Epoch: 114, cost 32.88 s
145
+ 2023-05-21 05:47:59,052 44k INFO Train Epoch: 115 [24%]
146
+ 2023-05-21 05:47:59,057 44k INFO Losses: [2.2330069541931152, 2.7372024059295654, 8.495346069335938, 17.723203659057617, 0.7708501219749451], step: 2400, lr: 9.858501725933955e-05, reference_loss: 31.95960807800293
147
+ 2023-05-21 05:48:08,136 44k INFO Saving model and optimizer state at iteration 115 to ./logs/44k/G_2400.pth
148
+ 2023-05-21 05:48:12,093 44k INFO Saving model and optimizer state at iteration 115 to ./logs/44k/D_2400.pth
149
+ 2023-05-21 05:48:33,640 44k INFO ====> Epoch: 115, cost 50.41 s
150
+ 2023-05-21 05:49:06,586 44k INFO ====> Epoch: 116, cost 32.95 s
151
+ 2023-05-21 05:49:39,074 44k INFO ====> Epoch: 117, cost 32.49 s
152
+ 2023-05-21 05:50:12,016 44k INFO ====> Epoch: 118, cost 32.94 s
153
+ 2023-05-21 05:50:44,838 44k INFO ====> Epoch: 119, cost 32.82 s
154
+ 2023-05-21 05:51:17,762 44k INFO ====> Epoch: 120, cost 32.92 s
155
+ 2023-05-21 05:51:50,661 44k INFO ====> Epoch: 121, cost 32.90 s
156
+ 2023-05-21 05:52:23,470 44k INFO ====> Epoch: 122, cost 32.81 s
157
+ 2023-05-21 05:52:56,124 44k INFO ====> Epoch: 123, cost 32.65 s
158
+ 2023-05-21 05:53:23,266 44k INFO Train Epoch: 124 [76%]
159
+ 2023-05-21 05:53:23,267 44k INFO Losses: [2.200976848602295, 2.4772040843963623, 16.151382446289062, 17.823810577392578, 0.8057739734649658], step: 2600, lr: 9.847416455282387e-05, reference_loss: 39.45914840698242
160
+ 2023-05-21 05:53:30,688 44k INFO ====> Epoch: 124, cost 34.56 s
161
+ 2023-05-21 05:54:04,912 44k INFO ====> Epoch: 125, cost 34.22 s
162
+ 2023-05-21 05:54:39,924 44k INFO ====> Epoch: 126, cost 35.01 s
163
+ 2023-05-21 05:55:15,121 44k INFO ====> Epoch: 127, cost 35.20 s
164
+ 2023-05-21 05:55:50,216 44k INFO ====> Epoch: 128, cost 35.10 s
165
+ 2023-05-21 05:56:25,353 44k INFO ====> Epoch: 129, cost 35.14 s
166
+ 2023-05-21 05:57:01,674 44k INFO ====> Epoch: 130, cost 36.32 s
167
+ 2023-05-21 05:57:36,466 44k INFO ====> Epoch: 131, cost 34.79 s
168
+ 2023-05-21 05:58:09,526 44k INFO ====> Epoch: 132, cost 33.06 s
169
+ 2023-05-21 05:58:42,501 44k INFO ====> Epoch: 133, cost 32.97 s
170
+ 2023-05-21 05:58:59,391 44k INFO Train Epoch: 134 [29%]
171
+ 2023-05-21 05:58:59,396 44k INFO Losses: [2.4819719791412354, 2.301201105117798, 14.97828197479248, 16.09484100341797, 0.7705917358398438], step: 2800, lr: 9.835114106370493e-05, reference_loss: 36.626888275146484
172
+ 2023-05-21 05:59:16,031 44k INFO ====> Epoch: 134, cost 33.53 s
173
+ 2023-05-21 05:59:49,318 44k INFO ====> Epoch: 135, cost 33.29 s
174
+ 2023-05-21 06:00:22,788 44k INFO ====> Epoch: 136, cost 33.47 s
175
+ 2023-05-21 06:00:56,655 44k INFO ====> Epoch: 137, cost 33.87 s
176
+ 2023-05-21 06:01:31,309 44k INFO ====> Epoch: 138, cost 34.65 s
177
+ 2023-05-21 06:02:06,233 44k INFO ====> Epoch: 139, cost 34.92 s
178
+ 2023-05-21 06:02:41,223 44k INFO ====> Epoch: 140, cost 34.99 s
179
+ 2023-05-21 06:03:16,447 44k INFO ====> Epoch: 141, cost 35.22 s
180
+ 2023-05-21 06:03:52,380 44k INFO ====> Epoch: 142, cost 35.93 s
181
+ 2023-05-21 06:04:21,519 44k INFO Train Epoch: 143 [81%]
182
+ 2023-05-21 06:04:21,524 44k INFO Losses: [1.8807615041732788, 2.6372532844543457, 14.652959823608398, 15.112489700317383, 0.5258215069770813], step: 3000, lr: 9.824055133639235e-05, reference_loss: 34.80928421020508
183
+ 2023-05-21 06:04:28,625 44k INFO ====> Epoch: 143, cost 36.25 s
184
+ 2023-05-21 06:05:01,690 44k INFO ====> Epoch: 144, cost 33.07 s
185
+ 2023-05-21 06:05:34,433 44k INFO ====> Epoch: 145, cost 32.74 s
186
+ 2023-05-21 06:06:07,368 44k INFO ====> Epoch: 146, cost 32.94 s
187
+ 2023-05-21 06:06:39,959 44k INFO ====> Epoch: 147, cost 32.59 s
188
+ 2023-05-21 06:07:12,854 44k INFO ====> Epoch: 148, cost 32.89 s
189
+ 2023-05-21 06:07:45,489 44k INFO ====> Epoch: 149, cost 32.64 s
190
+ 2023-05-21 06:08:18,144 44k INFO ====> Epoch: 150, cost 32.66 s
191
+ 2023-05-21 06:08:50,747 44k INFO ====> Epoch: 151, cost 32.60 s
192
+ 2023-05-21 06:09:23,202 44k INFO ====> Epoch: 152, cost 32.46 s
193
+ 2023-05-21 06:09:40,817 44k INFO Train Epoch: 153 [33%]
194
+ 2023-05-21 06:09:40,820 44k INFO Losses: [2.426485300064087, 2.5262508392333984, 14.231987953186035, 18.29201889038086, 0.7122567892074585], step: 3200, lr: 9.811781969958938e-05, reference_loss: 38.18899917602539
195
+ 2023-05-21 06:09:50,503 44k INFO Saving model and optimizer state at iteration 153 to ./logs/44k/G_3200.pth
196
+ 2023-05-21 06:09:58,273 44k INFO Saving model and optimizer state at iteration 153 to ./logs/44k/D_3200.pth
197
+ 2023-05-21 06:10:00,551 44k INFO .. Free up space by deleting ckpt ./logs/44k/G_800.pth
198
+ 2023-05-21 06:10:00,552 44k INFO .. Free up space by deleting ckpt ./logs/44k/D_800.pth
199
+ 2023-05-21 06:10:17,278 44k INFO ====> Epoch: 153, cost 54.08 s
200
+ 2023-05-21 06:10:52,325 44k INFO ====> Epoch: 154, cost 35.05 s
201
+ 2023-05-21 06:11:27,070 44k INFO ====> Epoch: 155, cost 34.74 s
202
+ 2023-05-21 06:12:02,019 44k INFO ====> Epoch: 156, cost 34.95 s
203
+ 2023-05-21 06:12:37,932 44k INFO ====> Epoch: 157, cost 35.91 s
204
+ 2023-05-21 06:13:13,223 44k INFO ====> Epoch: 158, cost 35.29 s
205
+ 2023-05-21 06:13:47,471 44k INFO ====> Epoch: 159, cost 34.25 s
206
+ 2023-05-21 06:14:20,359 44k INFO ====> Epoch: 160, cost 32.89 s