"""Chunked decoder experiment.""" import os from os.path import join as p_join from audiocraft.data.audio import audio_write from datasets import load_dataset import torch from multibanddiffusion import MultiBandDiffusion # configure experiment cache_dir = "audio" os.makedirs(cache_dir, exist_ok=True) num_codes = 3 mbd_model = MultiBandDiffusion.from_pretrained(num_codebooks_decoder=num_codes, num_codebooks_encoder=num_codes) configs = [ [75, 55], # 1 sec chunk, 0.65 sec stride [75, 65], # 1 sec chunk, 0.8 sec stride [150, 120], # 2 sec chunk, 0.65 sec stride [150, 140], # 2 sec chunk, 0.8 sec stride ] concat_strategy = ["first", "crossfade", "last"] def test_hf(hf_dataset: str, sample_size: int = 128, batch_size: int = 32, skip_enhancer: bool = False): output_dir = p_join(cache_dir, os.path.basename(hf_dataset)) os.makedirs(output_dir, exist_ok=True) dataset = load_dataset(hf_dataset, split="test") dataset = dataset.select(range(sample_size)) dataset = dataset.map( lambda batch: {k: [v] for k, v in batch.items()}, batched=True, batch_size=batch_size ) for data in dataset: sr_list = [d["sampling_rate"] for d in data["audio"]] assert len(set(sr_list)) == 1, sr_list sr = sr_list[0] array = [d["array"] for d in data["audio"]] max_length = max([len(a) for a in array]) array = [a + [0] * (max_length - len(a)) for a in array] wav = torch.as_tensor(array, dtype=torch.float32).unsqueeze_(1) tokens = mbd_model.wav_to_tokens(wav, sr) for chunk, stride in configs: for s in concat_strategy: re_wav, sr = mbd_model.tokens_to_wav( tokens, chunk_length=chunk, stride=stride, concat_strategy=s, skip_enhancer=skip_enhancer ) for idx, one_wav in enumerate(re_wav): if skip_enhancer: output = p_join(output_dir, f"reconstructed_{num_codes}codes.{chunk}chunks.{stride}strides.{s}", str(idx)) else: output = p_join(output_dir, f"reconstructed_{num_codes}codes.{chunk}chunks.{stride}strides.{s}.enhancer", str(idx)) audio_write(output, one_wav, sr, strategy="loudness", loudness_compressor=True) if __name__ == '__main__': test_hf("japanese-asr/ja_asr.reazonspeech_test", sample_size=64, batch_size=16) test_hf("japanese-asr/ja_asr.jsut_basic5000", sample_size=64, batch_size=16) test_hf("japanese-asr/ja_asr.reazonspeech_test", sample_size=64, batch_size=16, skip_enhancer=True) test_hf("japanese-asr/ja_asr.jsut_basic5000", sample_size=64, batch_size=16, skip_enhancer=True)