|
from __future__ import annotations |
|
import os |
|
from collections import namedtuple |
|
import enum |
|
|
|
from modules import sd_models, cache, errors, hashes, shared |
|
|
|
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module']) |
|
|
|
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} |
|
|
|
|
|
class SdVersion(enum.Enum): |
|
Unknown = 1 |
|
SD1 = 2 |
|
SD2 = 3 |
|
SDXL = 4 |
|
|
|
|
|
class NetworkOnDisk: |
|
def __init__(self, name, filename): |
|
self.name = name |
|
self.filename = filename |
|
self.metadata = {} |
|
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" |
|
|
|
def read_metadata(): |
|
metadata = sd_models.read_metadata_from_safetensors(filename) |
|
metadata.pop('ssmd_cover_images', None) |
|
|
|
return metadata |
|
|
|
if self.is_safetensors: |
|
try: |
|
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata) |
|
except Exception as e: |
|
errors.display(e, f"reading lora {filename}") |
|
|
|
if self.metadata: |
|
m = {} |
|
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): |
|
m[k] = v |
|
|
|
self.metadata = m |
|
|
|
self.alias = self.metadata.get('ss_output_name', self.name) |
|
|
|
self.hash = None |
|
self.shorthash = None |
|
self.set_hash( |
|
self.metadata.get('sshs_model_hash') or |
|
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or |
|
'' |
|
) |
|
|
|
self.sd_version = self.detect_version() |
|
|
|
def detect_version(self): |
|
if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"): |
|
return SdVersion.SDXL |
|
elif str(self.metadata.get('ss_v2', "")) == "True": |
|
return SdVersion.SD2 |
|
elif len(self.metadata): |
|
return SdVersion.SD1 |
|
|
|
return SdVersion.Unknown |
|
|
|
def set_hash(self, v): |
|
self.hash = v |
|
self.shorthash = self.hash[0:12] |
|
|
|
if self.shorthash: |
|
import networks |
|
networks.available_network_hash_lookup[self.shorthash] = self |
|
|
|
def read_hash(self): |
|
if not self.hash: |
|
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '') |
|
|
|
def get_alias(self): |
|
import networks |
|
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases: |
|
return self.name |
|
else: |
|
return self.alias |
|
|
|
|
|
class Network: |
|
def __init__(self, name, network_on_disk: NetworkOnDisk): |
|
self.name = name |
|
self.network_on_disk = network_on_disk |
|
self.te_multiplier = 1.0 |
|
self.unet_multiplier = 1.0 |
|
self.dyn_dim = None |
|
self.modules = {} |
|
self.mtime = None |
|
|
|
self.mentioned_name = None |
|
"""the text that was used to add the network to prompt - can be either name or an alias""" |
|
|
|
|
|
class ModuleType: |
|
def create_module(self, net: Network, weights: NetworkWeights) -> Network | None: |
|
return None |
|
|
|
|
|
class NetworkModule: |
|
def __init__(self, net: Network, weights: NetworkWeights): |
|
self.network = net |
|
self.network_key = weights.network_key |
|
self.sd_key = weights.sd_key |
|
self.sd_module = weights.sd_module |
|
|
|
if hasattr(self.sd_module, 'weight'): |
|
self.shape = self.sd_module.weight.shape |
|
|
|
self.dim = None |
|
self.bias = weights.w.get("bias") |
|
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None |
|
self.scale = weights.w["scale"].item() if "scale" in weights.w else None |
|
|
|
def multiplier(self): |
|
if 'transformer' in self.sd_key[:20]: |
|
return self.network.te_multiplier |
|
else: |
|
return self.network.unet_multiplier |
|
|
|
def calc_scale(self): |
|
if self.scale is not None: |
|
return self.scale |
|
if self.dim is not None and self.alpha is not None: |
|
return self.alpha / self.dim |
|
|
|
return 1.0 |
|
|
|
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): |
|
if self.bias is not None: |
|
updown = updown.reshape(self.bias.shape) |
|
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) |
|
updown = updown.reshape(output_shape) |
|
|
|
if len(output_shape) == 4: |
|
updown = updown.reshape(output_shape) |
|
|
|
if orig_weight.size().numel() == updown.size().numel(): |
|
updown = updown.reshape(orig_weight.shape) |
|
|
|
if ex_bias is not None: |
|
ex_bias = ex_bias * self.multiplier() |
|
|
|
return updown * self.calc_scale() * self.multiplier(), ex_bias |
|
|
|
def calc_updown(self, target): |
|
raise NotImplementedError() |
|
|
|
def forward(self, x, y): |
|
raise NotImplementedError() |
|
|
|
|