--- dataset_info: features: - name: title dtype: string - name: link dtype: string - name: article dtype: string splits: - name: train num_bytes: 503475 num_examples: 428 download_size: 218936 dataset_size: 503475 configs: - config_name: default data_files: - split: train path: data/train-* --- Created by the following code: ```py !pip install -Uq datasets import requests from bs4 import BeautifulSoup, Comment import pandas as pd from datasets import Dataset def get_content(url): response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') return soup url = "https://huggingface.co/blog/community" soup = get_content(url) articles = soup.find_all("article") titles = [article.h4.text for article in articles] links = [f'https://hf.co{article.find("a", class_="block px-3 py-2 cursor-pointer").get("href")}' for article in articles] def get_article(soup): # Find all comments in the document comments = soup.find_all(string=lambda text: isinstance(text, Comment)) # Initialize variables to store the start and end comments start_comment = None end_comment = None # Identify the start and end comments for comment in comments: comment_text = comment.strip() if comment_text == 'HTML_TAG_START': start_comment = comment elif comment_text == 'HTML_TAG_END': end_comment = comment # Check if both comments were found if start_comment and end_comment: # Collect all elements between the start and end comments contents = [] current = start_comment.next_sibling while current and current != end_comment: contents.append(current) current = current.next_sibling # Convert the contents to a string between_content = ''.join(str(item) for item in contents) # Output the extracted content return between_content else: return "Start or end comment not found." article_soups = [get_content(link) for link in links] articles = [get_article(article_soup) for article_soup in article_soups] # Assuming titles, links, articles are your lists df = pd.DataFrame({ 'title': titles, 'link': links, 'article': articles }) # Create a Hugging Face Dataset object dataset = Dataset.from_pandas(df) # Push the dataset to the Hugging Face Hub dataset.push_to_hub("ariG23498/community-blogs") ```