!pip install neuralprophet import numpy as np import pandas as pd import matplotlib.pyplot as plt from neuralprophet import NeuralProphet import warnings warnings.filterwarnings('ignore') import os for dirname, _, filesnames in os.walk('yourstockdata.csv') for filenames in filesnames: print(os.path.join(dirname, filename)) df = pd.read_csv('youstockdata.csv') df.head() df.info() df['Date'] = pd.to_datetime(df['Date']) df.dtypes df = df[['Date', 'Close']] df.head() df.columns = ['ds', 'y'] df.head() plt.plot(df['ds'], df['y'], label='actual', c='g') plt.title('Stock Data') plt.xlabel('Date') plt.ylabel('Stock Price') plt.show() model = NeuralProphet( batch_size=16 ) model.fit(df) future = model.make_future_dataframe(df, periods=365) forecast = model.predict(future) forecast actual_prediction = model.predict(df) plt.plot(df['ds'], df['y'], label='actual', c='g') plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label='prediction_actual', c='r') plt.plot(forecast['ds'], forecast['yhat1'], label='future_prediction', c='b') plt.xlabel('Date') plt.ylabel('Stock Price') plt.legend() plt.show() model.plot_components(forecast)