"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB240lEQVR4nO3dd1gUV9sG8HtpSwcboIKILfaGDUuMii3WaGKJxhJ7MIkaNRqNxhI1vnZj1CS2xK4xxt4Vo2JiF3tDsYGxUESk7M73B98OO+wCu7Cd+3ddXJk5c2b22WHjPpxz5hyZIAgCiIiIiGyUnbkDICIiIjImJjtERERk05jsEBERkU1jskNEREQ2jckOERER2TQmO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZNCY7RGRw7733HqpWrWq21y9dujT69etnttcnIsvCZIfo/61evRoymQwymQwnTpzQOC4IAgICAiCTydC+ffs8vcZPP/2E1atX5zNSTampqVi4cCFq1aoFT09PeHt7o0qVKhg8eDBu3Lgh1jt16hS+++47xMXFGTwGQ+nXr5/4e5DJZPD09ESNGjUwd+5cpKSkmDu8fEtLS8OiRYtQt25deHh4wN3dHXXr1sWiRYuQlpZm7vBEx44dk/wecvoBMv//OXv2rJkjJ9LkYO4AiCyNs7Mz1q9fj8aNG0vKw8PD8ejRI8jl8jxf+6effkLRokUN3urQtWtX7N27Fz179sSgQYOQlpaGGzduYNeuXWjYsCEqVqwIICPZmTJlCvr16wdvb2+DxmBIcrkcv/76KwAgLi4Of/zxB0aPHo0zZ85g48aNuZ5/8+ZN2NlZ3t9ySUlJaNeuHcLDw9G+fXv069cPdnZ22LdvH7788kts27YNu3fvhpubm7lDRaVKlfD7779LysaPHw93d3dMmDDBTFER5ZFARIIgCMKqVasEAEKXLl2EokWLCmlpaZLjgwYNEoKDg4XAwEChXbt2eXqNKlWqCE2bNjVAtJn+/fdfAYDw/fffaxxLT08Xnj9/Lu7/73//EwAIUVFRBo0hq6ZNmwpVqlTJ07l9+/YV3NzcJGUKhUKoU6eOAEB4/Pix1vOUSqXw5s2bPL2mqQwePFgAICxevFjj2I8//igAEIYOHWrSmPS5bzl9flX//5w5c8aA0REZhuX96UNkZj179sSLFy9w8OBBsSw1NRVbt27Fxx9/rPUcpVKJBQsWoEqVKnB2doavry+GDBmCV69eiXVKly6Nq1evIjw8XGz+f++99wAAL1++xOjRo1GtWjW4u7vD09MTbdu2xaVLl3KN9+7duwCARo0aaRyzt7dHkSJFAADfffcdxowZAwAICgoSY7h//z4AID09HdOmTUPZsmUhl8tRunRpfPPNN1q7jvbu3YumTZvCw8MDnp6eqFu3LtavX59jnAcOHICrqyt69uyJ9PT0XN+XOjs7O/FeqeItXbo02rdvj/3796NOnTpwcXHB8uXLxWNZW8/i4uIwcuRIlC5dGnK5HP7+/ujTpw+eP38u1klJScHkyZNRrlw5yOVyBAQEYOzYsRr34ODBg2jcuDG8vb3h7u6Od955B998802O7+HRo0dYsWIFmjdvjuHDh2scDwsLQ7NmzfDrr7/i0aNHAICqVauiWbNmGnWVSiVKliyJDz/8UFKW22cwt/tmaP369YO7uzuio6PRvn17uLu7o2TJkliyZAkAIDIyEs2bN4ebmxsCAwO1fobi4uIwYsQIBAQEQC6Xo1y5cvjhhx+gVCqNEjPZJiY7RFmULl0aISEh2LBhg1i2d+9exMfHo0ePHlrPGTJkCMaMGYNGjRph4cKF6N+/P9atW4fWrVuL4zAWLFgAf39/VKxYEb///jt+//13sTvg3r172L59O9q3b4958+ZhzJgxiIyMRNOmTfHkyZMc4w0MDAQArFu3LsckokuXLujZsycAYP78+WIMxYoVAwAMHDgQkyZNQu3atTF//nw0bdoUM2fO1HjPq1evRrt27fDy5UuMHz8es2bNQs2aNbFv375sX3vXrl3o2LEjPvroI6xduxYODvr3oKuSOlXyBmR0V/Xs2RMtW7bEwoULUbNmTa3nvn79Gk2aNMHixYvRqlUrLFy4EEOHDsWNGzfExEKpVKJjx46YM2cOOnTogMWLF6Nz586YP38+unfvLl7r6tWraN++PVJSUjB16lTMnTsXHTt2xMmTJ3OMf+/evVAoFOjTp0+2dfr06YP09HTxXnbv3h3Hjx9HTEyMpN6JEyfw5MkTye9Gl8+gvvfNEBQKBdq2bYuAgADMnj0bpUuXxvDhw7F69Wq0adMGderUwQ8//AAPDw/06dMHUVFR4rlv3rxB06ZNsXbtWvTp0weLFi1Co0aNMH78eIwaNcpoMZMNMnfTEpGlUG+G//HHHwUPDw+xef+jjz4SmjVrJgiCoNGN9ffffwsAhHXr1kmut2/fPo3y7LoB3r59KygUCklZVFSUIJfLhalTp+YYt1KpFJo2bSoAEHx9fYWePXsKS5YsER48eKBRN7turIsXLwoAhIEDB0rKR48eLQAQjhw5IgiCIMTFxQkeHh5C/fr1heTkZI04VNS7sf744w/B0dFRGDRokMZ71EbVjfXff/8J//33n3Dnzh1hxowZgkwmE6pXry7WCwwMFAAI+/bt07hGYGCg0LdvX3F/0qRJAgBh27ZtGnVVcf/++++CnZ2d8Pfff0uOL1u2TAAgnDx5UhAEQZg/f74AQPjvv/9yfS/qRowYIQAQLly4kG2d8+fPCwCEUaNGCYIgCDdv3tTa7fXZZ58J7u7u4udTn89gTvctN/p2Y/Xt21cAIMyYMUMse/XqleDi4iLIZDJh48aNYvmNGzcEAMLkyZPFsmnTpglubm7CrVu3JK81btw4wd7eXoiOjtb7PVDBxJYdIi26deuG5ORk7Nq1C4mJidi1a1e2XVhbtmyBl5cXWrZsiefPn4s/wcHBcHd3x9GjR3N9PblcLg6oVSgUePHihdg9cv78+RzPlclk2L9/P6ZPn45ChQphw4YNCAsLQ2BgILp3767Tk1d79uwBAI2/lr/66isAwO7duwFkdN8kJiZi3LhxcHZ21ogjqw0bNqB79+4YMmQIli9frvOg4aSkJBQrVgzFihVDuXLl8M033yAkJAR//vmnpF5QUBBat26d6/X++OMP1KhRAx988IHGMVXcW7ZsQaVKlVCxYkXJ77F58+YAIP4eVQO7//rrL726UhITEwEAHh4e2dZRHUtISAAAVKhQATVr1sSmTZvEOgqFAlu3bkWHDh3g4uIixq7PZ1DX+2YoAwcOFLe9vb3xzjvvwM3NDd26dRPL33nnHXh7e+PevXti2ZYtW9CkSRMUKlRI8r5CQ0OhUChw/Phxk70Hsm58GotIi2LFiiE0NBTr16/HmzdvoFAoJOMj1N2+fRvx8fHw8fHRevzZs2e5vp5SqcTChQvx008/ISoqCgqFQjym3m2THblcjgkTJmDChAl4+vQpwsPDsXDhQmzevBmOjo5Yu3Ztjuc/ePAAdnZ2KFeunKTcz88P3t7eePDgAYDMriRd5tCJiopC79698dFHH2Hx4sW51lfn7OyMnTt3iu8tKCgI/v7+GvWCgoJ0ut7du3fRtWvXHOvcvn0b169fF7v1slL9Hrt3745ff/0VAwcOxLhx49CiRQt06dIFH374YY7JnCqRUSU92mhLiLp3745vvvkGjx8/RsmSJXHs2DE8e/ZM0rWm72dQ1/tmCM7Ozhr31MvLC/7+/hoJspeXl2SM0e3bt3H58uVcfydEuWGyQ5SNjz/+GIMGDUJMTAzatm2b7aPaSqUSPj4+WLdundbj2f1DrW7GjBn49ttv8emnn2LatGkoXLgw7OzsMGLECL0HYhYvXhw9evRA165dUaVKFWzevBmrV6/WaZyMttaZvCpevDiKFy+OPXv24OzZs6hTp47O59rb2yM0NDTXeqqWDUNQKpWoVq0a5s2bp/V4QECA+JrHjx/H0aNHsXv3buzbtw+bNm1C8+bNceDAAdjb22s9v1KlSgCAy5cvZztG5vLlywCAypUri2Xdu3fH+PHjsWXLFowYMQKbN2+Gl5cX2rRpI4ldn8+gIe9bbrK7H9mVC4IgbiuVSrRs2RJjx47VWrdChQr5D5AKBCY7RNn44IMPMGTIEJw+fVrSjZBV2bJlcejQITRq1CjXL5HskomtW7eiWbNmWLFihaQ8Li4ORYsW1T94AI6OjqhevTpu376N58+fw8/PL9vXDwwMhFKpxO3bt8UvZQCIjY1FXFycOAi6bNmyAIArV65otAJl5ezsjF27dqF58+Zo06YNwsPDUaVKlTy9l/wqW7Ysrly5kmudS5cuoUWLFrkmfXZ2dmjRogVatGiBefPmYcaMGZgwYQKOHj2abZLWtm1b2Nvb4/fff892kPJvv/0GBwcHSSITFBSEevXqYdOmTRg+fDi2bduGzp07S+Z70uczaE3Kli2L169f65T4EuWEY3aIsuHu7o6lS5fiu+++Q4cOHbKt161bNygUCkybNk3jWHp6umTMjJubm9YxNPb29pK/aIGM8QqPHz/ONc7bt28jOjpaozwuLg4REREoVKiQ+Je9arK6rDG8//77ADKeGFOnauVo164dAKBVq1bw8PDAzJkz8fbtW0ndrPEDGd0S+/fvh4+PD1q2bCl2g5la165dcenSJY0xP0Bm3N26dcPjx4/xyy+/aNRJTk5GUlISgIxpArJStdTkNMNzQEAA+vfvj0OHDmHp0qUax5ctW4YjR45gwIABGl123bt3x+nTp7Fy5Uo8f/5c0oWlil3Xz6A16datGyIiIrB//36NY3FxcXpPYUAFF1t2iHLQt2/fXOs0bdoUQ4YMwcyZM3Hx4kW0atUKjo6OuH37NrZs2YKFCxeK432Cg4OxdOlSTJ8+HeXKlYOPjw+aN2+O9u3bY+rUqejfvz8aNmyIyMhIrFu3DmXKlMn19S9duoSPP/4Ybdu2RZMmTVC4cGE8fvwYa9aswZMnT7BgwQKxyyA4OBgAMGHCBPTo0QOOjo7o0KEDatSogb59++Lnn39GXFwcmjZtin///Rdr1qxB586dxblePD09MX/+fAwcOBB169bFxx9/jEKFCuHSpUt48+YN1qxZoxFf0aJFxXlpQkNDceLECZQsWVLn34EhjBkzBlu3bsVHH32ETz/9FMHBwXj58iV27NiBZcuWoUaNGvjkk0+wefNmDB06FEePHkWjRo2gUChw48YNbN68WZyXZurUqTh+/DjatWuHwMBAPHv2DD/99BP8/f01Zt3Oav78+bhx4wY+++wz7Nu3T2zB2b9/P/766y80bdoUc+fO1TivW7duGD16NEaPHo3ChQtrtHTo8xm0JmPGjMGOHTvE2aaDg4ORlJSEyMhIbN26Fffv389zyycVMOZ9GIzIcug6A2x2Myj//PPPQnBwsODi4iJ4eHgI1apVE8aOHSs8efJErBMTEyO0a9dO8PDwEACIj/G+fftW+Oqrr4TixYsLLi4uQqNGjYSIiAihadOmuc64HBsbK8yaNUto2rSpULx4ccHBwUEoVKiQ0Lx5c2Hr1q0a9adNmyaULFlSsLOzkzyGnpaWJkyZMkUICgoSHB0dhYCAAGH8+PHC27dvNa6xY8cOoWHDhoKLi4vg6ekp1KtXT9iwYYN4XNsMynfu3BGKFy8uVKpUKcfHtrXNoKxNTjNZZ330XBAE4cWLF8Lw4cOFkiVLCk5OToK/v7/Qt29fyQzTqampwg8//CBUqVJFkMvlQqFChYTg4GBhypQpQnx8vCAIgnD48GGhU6dOQokSJQQnJyehRIkSQs+ePTUej85OSkqKMH/+fCE4OFhwc3MTXF1dhdq1awsLFiwQUlNTsz2vUaNGWqcHUKfLZ9BYM4Bn9+i5tt9ldjNsa4stMTFRGD9+vFCuXDnByclJKFq0qNCwYUNhzpw5Od4vInUyQdDS9kxERERkIzhmh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpnFQQGeuvPHnyBB4eHgZdG4iIiIiMRxAEJCYmokSJEjkuxMtkB8CTJ0/ERf6IiIjIujx8+FBjmRV1THYAeHh4AMi4WZ6enmaOhoiIiHSRkJCAgIAA8Xs8O0x2kLkStaenJ5MdIiIiK5PbEBQOUCYiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIpjHZISIiIpvGZIeIiIhsGpMdIiIismlMdoiIiMimMdkhIiIim8Zkh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEiIiKDSE5LNncIWjHZISIionybGj4VrjNccez+MXOHooHJDhEREeXb5GOTAQDDdg8zcySamOwQERGRwdx4fsPcIWhgskNEREQGpVAqzB2CBJMdIiIiMqg0ZZq5Q5BgskNEREQGxZYdIiIismnpynRzhyDBZIeIiIgMSiGwZYeIiIhsTO3itcVttuwQERGRzUhKTQIAuDq6imUcs0NEREQ24btj38F9pjv23dknSXAsrWXHwdwBEBERkXWaEj4FANB2XVu4ObqJ5SmKFHOFpBVbdoiIiCjfktKSMrdTk3KoaXpMdoiIiMig1BMfS8Bkh4iIiAzqdeprc4cgYdZk57vvvoNMJpP8VKxYUTz+9u1bhIWFoUiRInB3d0fXrl0RGxsruUZ0dDTatWsHV1dX+Pj4YMyYMUhPt6yBUURERAWJpXVjmX2AcpUqVXDo0CFx38EhM6SRI0di9+7d2LJlC7y8vDB8+HB06dIFJ0+eBAAoFAq0a9cOfn5+OHXqFJ4+fYo+ffrA0dERM2bMMPl7ISIiKihyeuLqRfILE0aSO7N3Yzk4OMDPz0/8KVq0KAAgPj4eK1aswLx589C8eXMEBwdj1apVOHXqFE6fPg0AOHDgAK5du4a1a9eiZs2aaNu2LaZNm4YlS5YgNTXVnG+LiIjIpm25uiXbY4N2DjJhJLkze7Jz+/ZtlChRAmXKlEGvXr0QHR0NADh37hzS0tIQGhoq1q1YsSJKlSqFiIgIAEBERASqVasGX19fsU7r1q2RkJCAq1evZvuaKSkpSEhIkPwQERGR7p6+fmruEHRm1mSnfv36WL16Nfbt24elS5ciKioKTZo0QWJiImJiYuDk5ARvb2/JOb6+voiJiQEAxMTESBId1XHVsezMnDkTXl5e4k9AQIBh3xgREZGN83Xzzb2ShTDrmJ22bduK29WrV0f9+vURGBiIzZs3w8XFxWivO378eIwaNUrcT0hIYMJDRESkB2cH5xyPC4IAmUxmomhyZvZuLHXe3t6oUKEC7ty5Az8/P6SmpiIuLk5SJzY2Fn5+fgAAPz8/jaezVPuqOtrI5XJ4enpKfoiIiEh3uS0Jse36NhNFkjuLSnZev36Nu3fvonjx4ggODoajoyMOHz4sHr958yaio6MREhICAAgJCUFkZCSePXsm1jl48CA8PT1RuXJlk8dPRERUUKQp03I8HvEowkSR5M6s3VijR49Ghw4dEBgYiCdPnmDy5Mmwt7dHz5494eXlhQEDBmDUqFEoXLgwPD098fnnnyMkJAQNGjQAALRq1QqVK1fGJ598gtmzZyMmJgYTJ05EWFgY5HK5Od8aERGRTcutZSc5LdlEkeTOrMnOo0eP0LNnT7x48QLFihVD48aNcfr0aRQrVgwAMH/+fNjZ2aFr165ISUlB69at8dNPP4nn29vbY9euXRg2bBhCQkLg5uaGvn37YurUqeZ6S0RERAVCbsmOncxyOo/Mmuxs3Lgxx+POzs5YsmQJlixZkm2dwMBA7Nmzx9ChERERUQ7SFDl3Y1lSsmM5kRAREZHViI6PzvE4kx0iIiKyWoIgYNbJWTnWYbJDREREVmvLteyXilBhskNERERWq/vW7hplnd7phI1dM8fiMtkhIiIim9G6bGv82f1P+Lj5iGVH7h9BtaXV8M+jf8wYWQYmO0RERJRn5wefx77e+yCTyVDMrZhYfvbJWVx5dgUNVjTA8rPLzRghkx0iIiLKh1rFa4nbVX2qaq0zdPdQU4WjFZMdIiIiMph25duZOwQNTHaIiIhIZ0vPLM3xuKWsdK6OyQ4RERHpJDI2Ep/t+SzHOjIw2SEiIiIr9fzN81zrZNeyIwiCocPRGZMdIiIi0oncQZ7nc1MUKQaMRD9MdoiIiEgncvvck53surGS05INHY7OmOwQERGRTnRp2cmuGys5nckOERERWTgHOwfJfgP/Bhp12LJDRERENmND1w061xVgvgHKDrlXISIiItKNtm6sRyMfoaRnSTNEk4EtO0RERKSTrI+PKwWlRh31bqzuVbrj1vBbZk10ACY7RERElEfa5s5Rb9kpW6gsyhcpb8qQtGKyQ0RERDrJOu6muEdxjTrqLTuujq5Gj0kXTHaIiIhIb/VK1ss1mWGyQ0RERFZFvduquLtmqw4g7cZiskNERERWq4hLEa3l6t1Ybk5upgonR0x2iIiISCfqY3ZmtJihtQ5bdoiIiMjq+bj5wNfdV+sx9ZYdFwcXU4WUIyY7REREpBNtj5rnJD+rpBsSkx0iIiLSS3brXwHSbixHO0dThJMrJjtERESkE13Wt1JPhJzsnYwZjs6Y7BAREZFetK1/pe2Yoz1bdoiIiMiK6DJm596re+I2W3aIiIjIKuU0ZufUw1PiNsfsEBERkVXRZcyOOrbsEBERkVXKaczOZ3U+E7c5ZoeIiIisii5jdoJLBIvbbNkhIiIiq5TTmB1nB2dxm2N2iIiIyKroMmZHbp85azJbdoiIiMgq5TRmR32JCI7ZISIiIquiy5gd9dYcdmMRERGRVdJ1zE5OLUCm5GDuAIiIiMg66DJmJ8Q/BNV9q6O0d2njB6QjJjtERESkl5xabBztHXFxyEXTBaMDJjtERESkE13G7ACW032lwjE7REREpJecxuxYIiY7REREZNOY7BAREZFO9F0I1FIw2SEiIiK9WNqYnNww2SEiIiKd6DpA2dIw2SEiIiK9cIAyERER2SSO2SEiIqICgWN2iIiIyCZxzA4REREVCByzQ0RERDaJY3aIiIioQOCYHSIiIrJJHLOTT7NmzYJMJsOIESPEsrdv3yIsLAxFihSBu7s7unbtitjYWMl50dHRaNeuHVxdXeHj44MxY8YgPT3dxNETEREVHByzkwdnzpzB8uXLUb16dUn5yJEjsXPnTmzZsgXh4eF48uQJunTpIh5XKBRo164dUlNTcerUKaxZswarV6/GpEmTTP0WiIiIbB7H7OTR69ev0atXL/zyyy8oVKiQWB4fH48VK1Zg3rx5aN68OYKDg7Fq1SqcOnUKp0+fBgAcOHAA165dw9q1a1GzZk20bdsW06ZNw5IlS5Cammqut0RERGSTzjw+AwC4/fK2mSPRj9mTnbCwMLRr1w6hoaGS8nPnziEtLU1SXrFiRZQqVQoREREAgIiICFSrVg2+vr5indatWyMhIQFXr17N9jVTUlKQkJAg+SEiIqKcjTowytwh5ImDOV9848aNOH/+PM6cOaNxLCYmBk5OTvD29paU+/r6IiYmRqyjnuiojquOZWfmzJmYMmVKPqMnIiIia2C2lp2HDx/iyy+/xLp16+Ds7GzS1x4/fjzi4+PFn4cPH5r09YmIiMh0zJbsnDt3Ds+ePUPt2rXh4OAABwcHhIeHY9GiRXBwcICvry9SU1MRFxcnOS82NhZ+fn4AAD8/P42ns1T7qjrayOVyeHp6Sn6IiIjINpkt2WnRogUiIyNx8eJF8adOnTro1auXuO3o6IjDhw+L59y8eRPR0dEICQkBAISEhCAyMhLPnj0T6xw8eBCenp6oXLmyyd8TERERWR6zjdnx8PBA1apVJWVubm4oUqSIWD5gwACMGjUKhQsXhqenJz7//HOEhISgQYMGAIBWrVqhcuXK+OSTTzB79mzExMRg4sSJCAsLg1wuN/l7IiIiIstj1gHKuZk/fz7s7OzQtWtXpKSkoHXr1vjpp5/E4/b29ti1axeGDRuGkJAQuLm5oW/fvpg6daoZoyYiIiJLIhOsde5nA0pISICXlxfi4+M5foeIiEgLpaCE/VR7cV+YbP70Qdfvb7PPs0NERESWLyk1Sdy+98U9M0aiPyY7RERElKvE1EQAgL3MHqW9S5s3GD0x2SEiIqJcJaRkrDbg5uQGmYwLgRIREZnUy+SXmHNqDu6+vGvuUGzWd8e+A5CZ9FgTi34ai4iISBdFZhcBAIw5OMYiBs7aok1XN5k7hDxjyw4REVm1dGW6uUMoENpXaA8A8HDyMHMk+mOyQ0REVi3ubZxk/1nSM+0VKV+8nb0BAJOaTjJvIHnAZIeIiKxa/Nt4yf66y+vMFIltS1WkAgCc7J3MHIn+mOwQEZFVyzpgNvJZpJkisV2CIOBE9AkAgKOdo5mj0R+THSIisjpv0t5gwekFuPfqHuJTpC07sUmxZorKdh2JOoIniU8AAI72THaIiIiMrszCMhi5fyTKLiqr0Y3FMTuGt+f2HnGb3VhEREQmoN56k5yeLDmWkp5i6nBsnvogcHZjERERmVhyWkayYyfL+EpLU6aZMxybtPLiSnHbGu8vkx0iIrJqw3YPA5CxKjcApCms78vY0nWr0k3cfpX8yoyR5A2THSIismopCmm3lTW2PFi6IO8gcfvdwHfNGEneMNkhIiKbwpYdw1MoFQCAEP8Q1Cpey8zR6I/JDhER2ZS36W/NHYLNUQgZyY41tuoATHaIiMhGLGi9AACQmJoIQeBioIakatmxl9mbOZK8YbJDREQ2oYF/AwAZC4NmHcdD+aNq2bG3Y7JDRERkNuWLlBe3sy4hQXm3+9ZuLDmzBADwMOGhmaPJGyY7RERkE1SrcgPAmcdnzBeIjWm/ob24vfriavMFkg9MdoiIyCqcf3oePv/zyfYLVzWpIABMPT7VRFEVLF83+trcIeQJkx0iIrIKbde1xX9v/kP/v/prHMu6XpO/p7+pwrJpW65ukey3KdfGTJHkD5MdIiKyCtkt8Nk0sCn+7v+3pGzb9W2mCMnmDd41WLLvKfc0UyT5w2SHiIisWuNSjVGvZD1zh2GT3iv9nmSfyQ4REZGJ2cvsMaj2IHOHYbOyzqvDZIeIiMjEkr5JQqB3oNZj6hMLrji/Artu7TJVWDbjdepryT6THSIiIiPycPLQKJM7yLOtr1oQ9Pp/1zFw50B02NBBPHYi+gSG7hqKuLdxBo/TlmRNdpwdnM0USf4w2SEiIquQdfxIblIVqQCkE+GdfnQaANBkVRMsP7ccw/cMN1h8tigxNdHcIRgEkx0iIrIKO2/t1Kt+YkrGF3W6Ml0s67Wtl6TOush1+Q/MhmVt2bFWDuYOgIiIyFCaBjZF+INwAECjlY1QplAZ+Ln7icfvvbqHBacXmCk66xD7OhY/n/sZA2oPEBPGEfVHoGe1nmaOLO9kApeGRUJCAry8vBAfHw9PT+scfEVEZOtkU2QaZcJk6VdYYkoiPGfp/u94VZ+qiBwWme/YbEmp+aXwMOEhKhSpgIfxD5GcnoyoL6NQ2ru0uUPToOv3N7uxiIjI4ql3Ram31GTlIdccxJyTK8+u5DkmW6Ua43TrxS0kpycDANyd3M0ZUr4x2SEiIouWlJqE6ceni/tB3kEGvb5CqTDo9WyRtifhrAmTHSIismjdtnbDlPAp4n7PqhljR1wdXbXW71Ojj17X5+PnmSIeRmiUOdg5aKw9Zm2Y7BARkUXbc3uPZP+zup9hRccVuDz0stb6cvvs597RZs6pOXmOzdaMPzxeoyxdmQ6ZTHO8lDVhskNERBZr05VNGmX2dvb4tNanKFu4rNZzzj89r9drzDo5K0+x2aLsFlu1dkx2iIjIYvX4o4fe55x7ek7vc14mv9T7HFvUPKi5uUMwCiY7RERkUS7HXkbY7jDEvo7N0/ky6N/lwqeyMpQpVMbcIRgFJxUkIiKLUmNZDQBAVFyUxrEBtQbker6zg7P4yLSu1B9tL2hOPzqNfx79gy/qf4GIR5oDlG1BvpKdt2/fwtnZOhcFIyIiy/bv438l+3t77dWpm8Xf0x+3X97W67VsPdkRBCHbQcYhK0IAAMU9iuNxwmNThmUyendjKZVKTJs2DSVLloS7uzvu3bsHAPj222+xYsUKgwdIREQFU1JakmS/canGOj0C3SKohUZZIedC+KjyR9mek6ZI0z9AK7Hvzj4U/V9RbL+xPcd6V55dEVeK93b2Nn5gJqR3sjN9+nSsXr0as2fPhpNT5oeuatWq+PXXXw0aHBERFVxv09+K23NbzdV5Ft/ZLWdrlG3ouiHH5Q7OPDmDC08v6B2jNXh/3ft4mfwSH2z6IMd6045PE1u41JOd6c2mZ3OG9dA72fntt9/w888/o1evXrC3txfLa9SogRs3bhg0OCIiImcHZ4wKGaVzfQ+5B2a2mCkp83L2goNd5siN4/2OY2KTieL+lPApqP1zbZtZ5VudAN2XwFS1cJXwKCGWDas7zOAxmZreyc7jx49Rrlw5jXKlUom0NNttBiQiItMo5VVKsu8p13+B5q8bfY09H2dORujs4CxJdtyd3DGt+TSNrq2ElAS9X8ua5Lb2t6obq6RHSbHM0c7RqDGZgt7JTuXKlfH3339rlG/duhW1atUySFBERFRwuTi4SPZT0lP0voZMJoO/p7+47+zgLPnSVi01cTjqsOQ8fWdftjZZB2JnTX5evHkBAChbKHPCRmtfKgLIw9NYkyZNQt++ffH48WMolUps27YNN2/exG+//YZdu3YZI0YiIipAnB2kT/nGp8Tn6TqO9pnJjdxeLmnZUSU7WScT1KfLx1oUdS2K52+eAwCS05Ml9+VN2htJ3RfJGclOnRJ1xDL1+tZK75adTp06YefOnTh06BDc3NwwadIkXL9+HTt37kTLli2NESMRERUgLo4uuVfSgXpLjtxB2mKjSnY+rfmpQV7LUt2Puy8mOgAw99RcyfG7r+5qnGMvs8e7ge+K+3Yy659/OE/z7DRp0gQHDx40dCxEREQG60pS/5KW28vF8ShAZrITWiYUKy+uFMtzG9Nibbpv7S7Zn3p8KqY0y1xB/vYLzfmIinsURzG3Yrgy7IrBEk9z0zvZOXPmDJRKJerXry8p/+eff2Bvb486depkcyYREVH2poVPw+nHp6EQFJLyGr418nQ99S4puYNcMpeOqqvM3s4+23OsnUKp0JiYMaus3VhA5vpYVXyqGCUuc9C7bSosLAwPHz7UKH/8+DHCwsIMEhQRERU83//9Pfbc3oMT0Sck5XntRlHvxnKyd0KqIlXcV80mbC/LkuzYUMvOg/gH2R7bcXMHyi8ur3V5iAdx2Z9nrfRu2bl27Rpq166tUV6rVi1cu3bNIEEREVHBk6LQ/tRV1tYXXQV4BWBkg5HwcPLQSHayu7YtteyoD8jOqtPGTgCAOy/vaBwLfxButJjMRe9kRy6XIzY2FmXKSFdGffr0KRwcuK4oERHpT1siovJ5vc/zfN15reeJ20pBqXHcllt2tL2Xmn41cz1vctPJRojGvPRuG2zVqhXGjx+P+PjMRwHj4uLwzTff8GksIiLKk0sxl7I99kn1TwzyGtq6w7IujmlLLTvqA7JVLsZczPU89Tl2bIXeyc6cOXPw8OFDBAYGolmzZmjWrBmCgoIQExODuXPn5n4BIiKiLHJKMrJbrVtfHd/pCAAo4lJELEtMSZTGYUMtO9m1loXfz7mbKq/dhpZM72SnZMmSuHz5MmbPno3KlSsjODgYCxcuRGRkJAICAvS61tKlS1G9enV4enrC09MTISEh2Lt3r3j87du3CAsLQ5EiReDu7o6uXbsiNjZWco3o6Gi0a9cOrq6u8PHxwZgxY5Cenp71pYiIyACWn12Onn/0NPgq4aZYk6pZUDOcHnAaN4ZnruOomkRPxaZadrL5He24uSPH83Ia62Ot8vSO3NzcMHjw4Hy/uL+/P2bNmoXy5ctDEASsWbMGnTp1woULF1ClShWMHDkSu3fvxpYtW+Dl5YXhw4ejS5cuOHnyJABAoVCgXbt28PPzw6lTp/D06VP06dMHjo6OmDFjRr7jIyIiqaG7hwIAIh5G4P6I+wa7btzbOINdKyf1/aXTpqjm21GxpZYdbd1YQO6TNqqvNm8rdEp2duzYgbZt28LR0RE7duScEXbs2FHnF+/QoYNk//vvv8fSpUtx+vRp+Pv7Y8WKFVi/fj2aN8945n/VqlWoVKkSTp8+jQYNGuDAgQO4du0aDh06BF9fX9SsWRPTpk3D119/je+++w5OTta/ngcRkSXK6bHmvIh/q31JiE7vdDLo62TVq1ovDNgxQNwvCC07ubXc7Lm9B31q9DFGSGajU7LTuXNnxMTEwMfHB507d862nkwmg0KhyPZ4ThQKBbZs2YKkpCSEhITg3LlzSEtLQ2hoqFinYsWKKFWqFCIiItCgQQNERESgWrVq8PX1Feu0bt0aw4YNw9WrV7NdmDQlJQUpKZmPOCYk2PYqt0RElk5by87zMc9RyKWQUV836zISttSyk92YnSnhUzTKqvtWx+XYywCAsY3GGjUuc9BpzI5SqYSPj4+4nd1PXhKdyMhIuLu7Qy6XY+jQofjzzz9RuXJlxMTEwMnJCd7e3pL6vr6+iImJAQDExMRIEh3VcdWx7MycORNeXl7ij75jjYiIyLC0LfZZxLWIyddlsqmWnWy6sbTpUaWHuF3dt7oxwjErvT5FaWlpaNGiBW7f1lxLI6/eeecdXLx4Ef/88w+GDRuGvn37Gn1yQtWj86ofbTNCExGR6SSnJZs7BJuTki6dpNHN0S3buq/evhK3bXGAsl7JjqOjIy5fvmzQAJycnFCuXDkEBwdj5syZqFGjBhYuXAg/Pz+kpqYiLi5OUj82NhZ+fn4AAD8/P42ns1T7qjrayOVy8Qkw1Q8REekna5fPlWdX0G97P9yPu6/3tVSDYpuVbgYAGFR7UL7jywtb6sbKOhNyYZfCWuut7rTaJgclq9O7fbB3795YsWKFMWIBkNFNlpKSguDgYDg6OuLw4cPisZs3byI6OhohISEAgJCQEERGRuLZs2dinYMHD8LT0xOVK1c2WoxERASNBTvfX/c+1lxag7br2up1nUP3DmHRv4sAAO+Vfg/x4+KxvP1yg8WZm3bl24nbttSN9b9T/5PsZ012/uz+JyY2mYg+NfrYVJKnjd5tVenp6Vi5ciUOHTqE4OBguLlJm8XmzZuXzZmaxo8fj7Zt26JUqVJITEzE+vXrcezYMezfvx9eXl4YMGAARo0ahcKFC8PT0xOff/45QkJC0KBBAwAZszlXrlwZn3zyCWbPno2YmBhMnDgRYWFhkMvlubw6ERHlR7oyXdLl8TAhY0jAjec3sjtFq5a/Z86+L7eXw1Nu2tb2VZ1WwWdOxrhUW/7Sd3dyl+x3rtgZnSt2BqB9KQ1boneyc+XKFXEh0Fu3bkmO6TvL5bNnz9CnTx88ffoUXl5eqF69Ovbv3y8uOzF//nzY2dmha9euSElJQevWrfHTTz+J59vb22PXrl0YNmwYQkJC4Obmhr59+2Lq1Kn6vi0iItJTutLwE7ga+pF2XRRzKwYPJw8kpibaVMtOVmULl8XJhye1HrPl9w3kIdk5evSowV48t+4wZ2dnLFmyBEuWLMm2TmBgIPbs2WOwmIiIKHuujq54k/YGgHGSnfWR6/FTu59yr2gkttCyIwgChu0eJu7PaTkHjUo1wtrLa3M8x5bpNWZn06ZN6NWrFz766CMsW7bMWDEREZGFUn8UPKdkZ+KRiSizsAz+S/pPr+tX8amS59jyQ9UzYQstHBdiLmD5ucwxT4ODB6OBfwMkpSVle05wiWBThGY2OrfsLF26FGFhYShfvjxcXFywbds23L17F//73/9yP5mIiGyOerKT9Wme7//+HgDQem1rnB9yXudrLnk/+5Z8Y5Lh/5MdG2jhyLrOmGp5CPXfkbezt6RO/5r9kaZIQ5PAJkaPzxx0btn58ccfMXnyZNy8eRMXL17EmjVrJONniIjI9qknA+rJTtWfqmqtfyHmgl7XL1uobN4CyydbatnJOkBcNYg8KTWzZefL+l9K6tjb2WNY3WGo6qP992jtdE527t27h759+4r7H3/8MdLT0/H06VOjBEZERJZH/akd9WTn7qu7Op1/Mvok7r26J+6/Sn4lOZ71iSFTsaWWnSG7hmgtd3PKfHp6QpMJpgrHIujcjZWSkiJ5zNzOzg5OTk5ITuasl0REBYV6sqPvRHRXn11F41WNAQDC5IykIjld+h2i71O9hmJLLTvZmdViFu6+vIsRDUbA0d7R3OGYlF5PY3377bdwdXUV91NTU/H999/Dy8tLLNNnnh0iIrIu6slOYkoiAN1bQ848OaNRZownuvLCllp21FUqWkncDvQOxL+D/jVjNOajc7Lz7rvv4ubNm5Kyhg0b4t69zOZIc2XkRERkGurJSUJKgkaZNqmKVDjYOSBNobkwZdb1m8zFVr+/VJMGFnQ6JzvHjh0zYhhERGTplIJS0s2jSnayrsGUlXy6HK3KtkKbsm00jql3hc0OnW2gSPUntuzYQDeWDDLxfXxe73MzR2MZbG9pUyIiMoqsLTiJqRndWOrLPWTnwN0DCPQKlJQJgiAmO6W8SmFMozEGilR/4pgdK+/GUk9IY0fHwsfNx8wRWQYmO0REpJOs3VBrLq1B7+q9dT5f/SmsxisbIyktCZWLZSzaHB0fbZgg88hWWnbi38aL23J7rhGpwmSHiIh0krVl50jUEdx9qdsj5wBwOOqwuK1ao+lizEWDxJZfttCyEx0fjcAFma1ncgcmOyp6LRdBREQFV6oiVaNs2vFp2daf03KOMcMxKFto2Tn18JRk39nB2UyRWB69k520NM3R9CrPnz/PVzBERGSZHsQ9wDeHv9EoVw1S1saavmxtoWVHfd0yktL7zvTo0UPrhyE2NhbvvfeeIWIiIiILU2ZRGfx64VeN8lsvbmV7jmpNJmtgCy07qtXoSZPeyU50dDQGDhwoKYuJicF7772HihUrGiwwIiKyHOqTCaq7/vy6RtnEJhMxtuFY9KrWS+frz2g+I8+xGZI1t+yoJzueck8zRmJ59E529uzZg1OnTmHUqFEAgCdPnqBp06aoVq0aNm/ebPAAiYjIsjQNbJrj8Qb+DfBDyx8gd5Dj34G6zdh7++VtQ4SWZ7awXIR6slPYpbAZI7E8ej+NVaxYMRw4cACNG2esb7Jr1y7Url0b69atg50d+wuJiGxdo4BGcHV0xd47e7UeVx+rU7dkXcxpOQejD47O8Zod3+lo0Bj1ZQvLRcS+jhW365SoY8ZILE+espOAgAAcPHgQ69atQ7169bBhwwbY29sbOjYiIrJAro6ukhW0c/NprU9zrRPkHZSfkPLNFlp2/rj+h7j90/s/mTESy6NTy06hQoW0rhvy5s0b7Ny5E0WKFBHLXr58abjoiIjI4tQrWQ/Xnl/L9niFIhUk+4VcCqFCkQo5DmZ2sDPvtG+qlh1rJQgCouKiAADXw66jmFsxM0dkWXT6dC1YsMDIYRARkbUILROK9VfWa5Tf/vw2klKTEOAVoHHM3cldsl+mUBnJjMpmT3as/NFz9Qkffd18zRiJZdLp09W3b19jx0FERFZCJpPByc5JUta9SneUK1wu23OyJjM/hP6Aj7Z8JO5n97SXqVj7o+fqyY6jvaMZI7FMeqfSe/bsgb29PVq3bi0pP3DgABQKBdq2bWuw4IiIyDI52WcmO4VdCuOXDr/kWF99Xa1zg8/BzVE65ic5PdmwAerJllp2zN1KZon0HqA8btw4KBQKjXKlUolx48YZJCgiIrIc6t1NqzqtAgDEp2QuOLm47WJ4yD1yvIb6UhO1i9fW+ELOuiK6qdlSyw6THU16Jzu3b99G5cqVNcorVqyIO3fuGCQoIiKyHF/u+1LcblmmJQAg5nWMWFbUtWiu18i6rlbZwmUxsclEfFDxA1wPu44irkWyOdM0rL1lJ02Z2XJmL+PT0Vnpnf55eXnh3r17KF26tKT8zp07cHPT/VFEIiKyDvfj7ovbqvEg6jP06vIkk9ZFRJtnv4ioqVl7y05yWkY3oNxervXp6YJO75adTp06YcSIEbh7965YdufOHXz11Vfo2NG8k0IREZHhlSlURtxWtRr4e/qLZbp8uVr6F7C1t+wkpiYCQK7diQWV3snO7Nmz4ebmhooVKyIoKAhBQUGoVKkSihQpgjlz5hgjRiIiMqPi7sXFbdXinurJjnoylB1HO8t+QsjaW3a239gOAHj+5rl5A7FQeerGOnXqFA4ePIhLly7BxcUF1atXx7vvvmuM+IiIyIzSlemIjo8GALQt1xaujq4AgEG1B2HMwTEo7V1ap2TH0gfNWnvLzrdHvzV3CBYtT58+mUyGVq1aoVWrVoaOh4iILMSys8swbPcwcb9uibritpezF5STlDp3T9X0q6l1hXRLYe0tO5SzPK2NFR4ejg4dOqBcuXIoV64cOnbsiL///tvQsRERkZkkpCRIEh0AsJNJvzL0GYezuO1iDA0eqvMq6KZmrS07l2Mv48PNH4r7+3vvN2M0lkvvZGft2rUIDQ2Fq6srvvjiC3zxxRdwcXFBixYtsH695vThRERkXXbd2gWvWV4a5VmTHX0UcS2Cpe2Xom7JurlXJp2FrAiRLADq5+5nxmgsl97dWN9//z1mz56NkSNHimVffPEF5s2bh2nTpuHjjz82aIBERGRaQ3YN0Vqen2TH0llrN9abtDeS/SIu5p2vyFLp/cm9d+8eOnTooFHesWNHREVFGSQoIiIyj5/P/YwniU+0HrPpZMdKu7Gy8nHzMXcIFknvT25AQAAOHz6sUX7o0CEEBGiudEtERNYju1YdwMaTHStt2VFX2KUwFwHNht7dWF999RW++OILXLx4EQ0bNgQAnDx5EqtXr8bChQsNHiARERlfUmoSrjy7kmMdW0527O0yJktUX2PK2rxMfmnuECyW3snOsGHD4Ofnh7lz52Lz5s0AgEqVKmHTpk3o1KmTwQMkIiLj6/dXP2y9tjXHOrac7Lg4ZEyW+Db9raT81MNT2HlzJ7577zvIHeTmCI0MIE/z7HzwwQf44IMPDB0LERGZSW6JDiBd6dzWqGaGVl/hHQAarWwEIGMZhm+afGPyuMgw9E7Ty5QpgxcvXmiUx8XFoUyZ3GfRJCIi66G+grZqsUlbdCTqCADgqwNfaT1+IeaCKcPRmfrvZ1fPXWaMxLLpnezcv38fCoVCozwlJQWPHz82SFBERGQZOlfsLG77uvuaLxAzuPn8pritnlRYEi/njPmQLgy5gHYV2pk5GsulczfWjh07xO39+/fDyytzwimFQoHDhw+jdOnSBg2OiIjMq0OFDjj96DRiXsdgSHD2T2rZoq8PfS1uW+pTTgplRuODas0y0k7nZKdz584AMuYi6Nu3r+SYo6MjSpcujblz5xo0OCIiMg07mR2UglKj3NHeEY9GPTJDROanfj8sdSFThZCR7Fhqy5Ol0Pm3p1Rm/NKDgoJw5swZFC1a1GhBERGRabk5uiExNVGj3NHOMls0TEH9ySxLvQ+qhMyWn5QzBL3vTlRUFBMdIiILl5CSgMlHJ+Paf9d0qp/dY9WW2n1jCurJn53MDiejT6L/X/3x/M1zM0YlperGUs0TRNrpnOxERERg1y7pSO/ffvsNQUFB8PHxweDBg5GSkmLwAImISD81l9WE1ywvTD0+FVV+qqLTOWmKNADAojaL0DyouVhuqd03pqA+QDnubRwar2qM1RdX44u9X5gxqgxKQYlNVzYhRZHxvcuWnZzpfHemTp2Kq1evivuRkZEYMGAAQkNDMW7cOOzcuRMzZ840SpBERKSbJ4lPcCn2kt7npSpSAQAd3umAJe8vEcsttfvG0NQH+B67fwwAUMKjhFgWHR8tbt96cctkcWVn582d6PFHD3GfY3ZypnOyc/HiRbRo0ULc37hxI+rXr49ffvkFo0aNwqJFi8QZlYmIyDwexD3I03lpyoyWHUc7R0krgZuTm0HisnTdq3QXt0cfGA1Auk7Wi+TM+eUsYf2sizEXJfvsxsqZzsnOq1ev4OubOcdCeHg42rZtK+7XrVsXDx8+NGx0RERGIAgC+vzZB1PDp5o7FIPbcGWDRlmx/xXD98e/z/YcQRDENaGc7J3ERTEBaeuGLVvcdrG4/Sgh4+kz9fFO6q05lrAyetbfC7uxcqbz3fH19UVUVBQAIDU1FefPn0eDBg3E44mJiXB0LBjNnURk3Y4/OI7fL/+OyccmmzsUk3j+5jkmHp2Y7XFVFxaQMSA5ISVB3C8oyY56C1bb8m2x7OwyM0aTM6WgxOBdgyVl7MbKmc7Jzvvvv49x48bh77//xvjx4+Hq6oomTZqIxy9fvoyyZcsaJUgiIkNS75KwNXn5C/9N2htx29XRFe8UfQcyyFDMtRicHZwNGZ5FC6sbBgDw9/DHsN3Dsq1n7m6s4w+Oa5SxGytnOg+znzZtGrp06YKmTZvC3d0da9asgZOTk3h85cqVaNWqlVGCJCIyJPUvd1vzOFH/ZXsG7RwkbjvZO8HJ3gkvv34prgReUGS38rml+XLflxpl7MbKmc7JTtGiRXH8+HHEx8fD3d0d9vbSLHLLli1wd3c3eIBERIZmy8mO6qmhfjX7YfXF1ZJjgiBAJpNJyh7EPcAf1//QuI63s7exQrRYqlasORFzcqxn7jE7l2Mva5SxGytneqeCXl5eGokOABQuXFjS0kNEZKmG7LLNNZ6UghL/Pv4XAFDGu4zGcfWxOSrqj1QX9C9MXbvsnOzN+12nbRwVW3ZyxrtDRAWKuf8qN6aJRzIHIZctrDmG8nXqa42y2KRYcbugLybp4qjZbTehyQT0qNpDUmbu++TrlvFktPrCrByzkzMmO0RUoJx7es7cIRhFUmoSZp7InNjVx81Ho462ZOdZ0jOjxmVNtLXsuDu5Y3qz6ZIycyY7giDgQswFANLfcUGe6VoXZk12Zs6cibp168LDwwM+Pj7o3Lkzbt68Kanz9u1bhIWFoUiRInB3d0fXrl0RGxsrqRMdHY127drB1dUVPj4+GDNmDNLT0035VojISuy6JV32xlJaeo7dP4Z1l9ch/H54ns5f/O9iyb62L7+ktCSNsgN3D4jbBb0rRFuy42DnoNFqoq0FyBSUghL1f60v7rev0B69q/fGvFbzzBKPNTFrKhgeHo6wsDDUrVsX6enp+Oabb9CqVStcu3YNbm4Zcx6MHDkSu3fvxpYtW+Dl5YXhw4ejS5cuOHnyJABAoVCgXbt28PPzw6lTp/D06VP06dMHjo6OmDFjhjnfHhFZoCnhUyT7SkFp9rEqqYpUNFvTTNw/3OewZH0qXZx/el6yry3Z0day89fNv8TtoXWG6vWatibAM0CjzNHOUeNemusptQ2RG3DmyRlx38PJA79/8LtZYrE2Zk3j9+3bh379+qFKlSqoUaMGVq9ejejoaJw7l9HMHB8fjxUrVmDevHlo3rw5goODsWrVKpw6dQqnT58GABw4cADXrl3D2rVrUbNmTbRt2xbTpk3DkiVLkJqqORiPiAqmiIcR8Jvjp1GuFJRmiEbq3qt7kn311pbcHLp3CGG7w7Dl2pbM83sfQEp65sLMhZwLAdCe7Kj4ufthyntTsj1eELxT9B2NMkd7R41keF3kOvzv5P9MFZYoa0JbUJbyMASLarOMj48HkPFkFwCcO3cOaWlpCA0NFetUrFgRpUqVQkREBICM1dirVasmWcqidevWSEhIkCxcSkQFW8OVDSWDcVUsIdnJ+oi4l9xL53M/+fMT/HT2J3F/WbtlaFm2JbycM69RoUgFAJrJjnoX3sauGyF3kOsTts3x9/TXKNPWsgMAYw+NNUVIElknMzT3QGlrYjHJjlKpxIgRI9CoUSNUrVoVABATEwMnJyd4e3tL6vr6+iImJkaso57oqI6rjmmTkpKChIQEyQ8RFUyWkOzUKVFHsp91LpzsrLu8DjGvpf/OqebHCS4ejFWdVuGfgf+ILQBZkx2FoBC3q/tW1zdsm6NtzJKjvfZkBwAWnl5o0gkIs35WPeWeJntta2cxw7fDwsJw5coVnDhxwuivNXPmTEyZUrCba4kog7mn/gc0uyfUx2XkpPefvTXKVC06MpkM/Wr2A5A5f85/Sf9J6qoW/wT46HJ2HO0cs703I/aPwH9v/sP05tO1Hjc09WRnVINRZp/vx5pYRMvO8OHDsWvXLhw9ehT+/pnNiH5+fkhNTUVcXJykfmxsLPz8/MQ6WZ/OUu2r6mQ1fvx4xMfHiz9crZ3Ith26dyjbY6Zs2bn67KrWR73VHxkHgG3Xt+X5NbR1xRy8dxBAxpezeteVQpnZssNHlzMsbbdUsp9Tyw4AfP939qvJG5r6Z7V/rf4me11bYNZkRxAEDB8+HH/++SeOHDmCoKAgyfHg4GA4Ojri8OHDYtnNmzcRHR2NkJAQAEBISAgiIyPx7FnmPyAHDx6Ep6cnKleurPV15XI5PD09JT9EZJuSUpPw+d7Psz1uqmRnxfkVqLq0KnznSLvdtc1qnJvXqa/RdHVTcX9mi8xkqWwhzckEVZPQAcDL5JfitqRlp4DPnqyS9Yk0RzvNAcpZmWr6AvXfV6WilUzymrbCrMlOWFgY1q5di/Xr18PDwwMxMTGIiYlBcnIygIylKQYMGIBRo0bh6NGjOHfuHPr374+QkBA0aNAAANCqVStUrlwZn3zyCS5duoT9+/dj4sSJCAsLg1xesAfbEdmihacXYsLhCTrXn3BkAm48v5HtcVMlOwN3DhS3o15Fidu7b+0Wt08POC1upynSsr3Wkn+XSFa+Vv/i0zYHjPqYIPVuO/UvT7bsaJdbyw5gus9QVZ+q4ja7HfVj1mRn6dKliI+Px3vvvYfixYuLP5s2bRLrzJ8/H+3bt0fXrl3x7rvvws/PD9u2ZTbx2tvbY9euXbC3t0dISAh69+6NPn36YOrUqeZ4S0RkZCP2j8CMEzNw7b9rOtVf+M/CHI+b4osqOS1Zsv8o4RGAjBaBLpu7iOW1i9cWtxNSEiAIAi7GXNQ4//rz65L99hXaY1yjcdjZc6fW11d/Ci3+bby4rT5AuaBPKJgdBzuHXO+N+n00tG8Of4PpxzPGBKmS055Vexrt9WyVWVN5XZr+nJ2dsWTJEixZsiTbOoGBgdizZ48hQyMiC6TemvHizQudznF1dBVXOR/bcCy8nb3RqWInVPmpCgDTJDvqLShAZldS1hYnR3tH2MnsoBSUWHB6ASoWrSgOQh5YayAWv78Y1ZdWx+2Xt8VzZJDB3s4eM0Ol437UqT+FteD0Aix+P2O25bNPzmZeR8cnwAoaJ3unXO9NujLdKIOFHyc8FsdzjWk4RmztYyuc/njHiMjivU59jYWnF2Li0cyFLlMUKTmckUn9i6F1udZoHtRc8oeWKZKdrH/5P0l8AgCYfWq2WFalmDT5mv73dNTwrSEe//XCryjqWlSS6ABAm3Jtcn395qWbi4nVi+TMJLHTxk76vI0CSZeV0LMms4ay985ecTtVkYo0ZUay42jnaJTXs2VstyQii/fDiR8kiQ4AyQzB2vx5/U80W9MMCSmZ82gFFw8GkNGKIUPGX+umGFya9cvwsz2fQaFUSCYTLOxSWOO8S7GXJPtZu6/cHN2wrP2yXF9/VugscVv1haktLtIkt8997Kex7uOgnYPE7VRFqvg6jvZMdvTFZIeILN6ifxdplF15dgX77+zHmANjMHzPcCSmJEqOjz00FsfuHxP3pzWbJplVWDUOw2+uX47LKBiCti/Dz/d+jiDvzCdQf+7wc67XiYqLkuy//PolSnmVyvU8D7lHjrGQ1KwWmcmhapLGnJjint5+eRuTj00GwJadvGA3FhFZJKWgFBMS9dYZlXGHx0n2b724hQOfZK4pdeflHcnxUSGjJPt2Mjuxe6nJqia4MOSCQeLWRtuX4dKzS1HEpQgAYO0Ha1GxaMVcr3M59rJkPy/jRJoGNs29UgH3deOvUdOvJqLjo1G2sOaj/Fmp5itKU6ThWdIzlPQsaZA42pVvh923M57WG394vFjOMTv6Y8sOEVmEuy/vosmqJvjrxl8o9EMh2E+1x7X/runczaSaOE+beiXraawjpD7oVH3uGWPYfmO71nLV+Bn1Fidj6VqpKwC2CuiqdbnWGBQ8KPeKyExm+/3VD/7z/XH43uFcztBNSY/MpOlB3AON1yPdMT0kIovw2Z7PcCL6BE5EZy4Z883hb1DCo4RO56taSQDNOWqO9zuetbpkMr/o+Gh9w9VLbgmG+hpHDnYOOn2Z9arWS68YVPPvqK/lVL9kffzz+B+9rlNQye3l2Q6KV/2+1keuBwAsP7cch6MOo0yhMhhYe6DWc3ShPieS+grnqqcLSXds2SEii6B6QkndXzf/wtKzS7XU1tSuQjtxOzE1c/zOy7EvdVrN21hfIG/T32Lo7oxZeVVPXGWlnuyc6K+5PuDokNGS/ZENRmJ5++V6xeFsn/FUUXJ6xpw9CqVCTHS2fLRFr2sVRMXcionbs0NnS45lTU63XNuCmSdmYtDOQfl62k+9VfPKsyuZ5Rawnpu1YbJDRBbh7su7+Tpf/ems2NcZk+i5OrqikEshnc6vsawG7sfdz1cM2iw8nTmpYcOAhtjba69kJlwA8JJndmPV96+PyU0ni/slPEqge9Xukvqf1vpU8pe+LlQz7n579FsAwPA9wzOPcamIXKm3zo1pNAavx79GIeeMz1ZOLXGvkl/l+TWzS2q+qP9Fnq9ZUDHZISKz239nv9jikFfqLTO/nv8VAFDTr6bO5995eQdBC4Nyr6gn9YHUIxqMQJtybfBd0+8kddRbdgBgctPJYvfd5/U+1zju5659keOcZB03tOxc5iPrcW/j9L5eQZP1cW83JzdxoHBOyU5+Wgy1jVcb23CsXp9rysBkh4jMShAEtFmXOTGetvE1KrNazMIX9bT/VaueLM07PQ8AcCnmkta6pnLv1T1x+4t6X6BysYzFibNOVJc1mZHJZPhn4D/4/YPfMabhGJQrXE5yvKhrUb1jUR+QnfXLmbMn507bk2+6JDtJaUl5fk0lNLvAdHk6jDQx2SEio0tKTZL8ldprWy/Ipsiw+9ZunHp4SlK3TKEyCC0TKu4varMI7Su0R9I3Sfi68dcaTy6pnjJS/QUdfj8883Xz8UWTHzee30D3rd3x6V+fimW9q/cWt7Mu1qltkjh/T3/0rt4b9nb2sJPZoUKRCgCAAbUG5CkmF4fM11RPwkg3n9f7HAAkn03VE345td4YumXnwN0DWmpSbvg0FhEZVXR8NIIWBkEpKPFD6A8o6lpUfGql/Yb2GvUd7R0xt9Vc1FiWsVRCaJlQfF7/c/G4ak4TAPjp/Z8QVCgIf1z/Q1wsc9v1zIWC13Reo1esqieh8jKPyeOEx5A7yGEns0OlJZU0jtctWVfcVm/ZGVF/hE7XP9LnCLZe24r+tfrrHRsgTbCSUs2TBFqzQbUHoU6JOmLrHJA5WeOrt6/w7qp3tZ6Xr2RHy5idzhU75/l6BRmTHSIyqnWX14lPpHx96Otc6zvZO0lmFs46PqVW8Vri9uDgwTj58CQAID4lYzXvar7VxOP6fjGkK9PxMP4hggrpN3bnVfIrBC0MgofcA8vaaS7f0KVSF8m+eiuLrq9V0rMkvmzwpV5xZfea6k+rARCXzqDsyWQyyar0QGb3Y4cNHbI9Lz+JpbaWnWalm+X5egUZu7GIyKjUH9nVhYeTBzzkHljfZT1+/+B3jaepulbqil86/IJLQy/B3s5efErm3qt7SFWkiusJNQxoqDEWRt2OHjsAAAd6H4AwWYCvmy8A4NTDU+j5R0/cenFL55gvxlxEmjINL5NfShbaVFF/2gqQtuzostCkIfi6+4rbW69tFbeDvIPQtXJXk8Rga26/uJ1rnTbr2iBgfoDkqTxdqVp2VJ9NwHSfF1vDlh0iMqrsWg2q+lSVzB2S9E0SlIJSfES6Z7We2q8nk0kmalNf12rG3zPEbR83nxzj6vBOBwiTM/9yVo2/6P1nxtiaq8+u4vKwy1rPzepBfObsttqWtvBw8pDsq3cpuTnq9wh5Xk19byr23N4DIGMeGABoXKoxjvc7zgHKefT09VOd6j1KeIQR+0fo3TKnatkZ03CMuNp9EdciOZ1C2WCyQ0RGtf7Keq3lw+sOFyfb2/zhZo3lHHTVLCizWX9K+BRxO+pVlLbq2VIlWSpZVxjPSf+/MsfRTDwyUeO4anCxivpf5/p2meWVestOzOsYABlzxzDRsVyqlh07mZ1Oq9tT9tiNRURGk65Mx5GoIwAyJq5rXyFjQPLCNgslsxqryvPCwc5B64DiS7H6PXaedeHQvK4/lKZM0yir719fsq+e7Kgvc2FM2iYOZKJj2VRj3fh7yj+27BCR0UTGRorb54ecR3Xf6uL+z+d+FrezPoqtL2cHZ0l3lqmpr06tTZ0SdST76q1YxT2KGy0udVlbrgDOnGzpVN1YHECef2zZISKjef7mOYCMJ6rUEx0AaBHUAoB0Zee8MsSgzawT9wHQeZByTmtvLW2nubaXk70Tzgw6g9MDTuc4iNqQtLV+2cn4FZAfrcq2Mur1Vd1YbNnJP37SichoFv6T8QRK+cLlNY6VLVwWd7+4i2th1/L9OqqkKj/2996vUfblvi/FdbZyktNij9kt7VCnRB2N7i1j0taKw2Qnf3pU6WHU67Nlx3D4SScio/nvzX8AoPVxbCBjtmRjtWx0qJD93CfZxbKz505J2b47+/DBpg9yPVeV7Lxf/n0AwPjG4zHlvSnoWqlrvsYjGZK2biwmO/nTp0afbI8Nrj0439dny47hcMwOERmNaoHJmS1mmvR1D35yECH+IXqf175CewiTBcimZH65RDyKyPU81azOXSt1xcauG8WZdS2Jtm4sfonmj7YEEsiYamB+m/n4+fzPWo/rStWyw6Q0/5jsEJHBpCvT8ef1P/E2/S3ux93H08SMeUi0dWMZUt0SdXHmyRlxX339orwILROKQ/cO6Vxf1bJjJ7OzyEQH0N6NxQHKhvNu4LsIqxuGpoFNxcf8N324Cd23dgegPdnMjdiyw26sfGOyQ0T58ibtDRztHOFo74iA+QHiHC7qshu3YijqawjldaFMdSPqj5AkO48SHsHf0z/b+goho2XHkpMHba0QnI03//7o9gdm/D0DP7f/Ge8UfUdyrFuVbmga2BR+c/2QrkyHIAh6tabx0XPDYdsYEeVZ7OtYlJpfCh03dsT2G9u1Jjqujq7wdvY2ahzqc+L81O6nfF8v69pRn/71qdaZkVXUW3YslbbYTN29aIu6VOqCs4PPaiQ6Kuor2quSYl1tv7EdAFt2DMFy/88kIov3++Xf8SL5RY4DecsXLm/0v0xHNRgFAPig4gdwsnfK9/XSFNKJAQ/eO4i6v9TVWvfOyzu4GHMRQPZjOCxReL9wk83eXJCp1m4DgFRFqs7nnXtyTtxmC1z+sRuLiPJMlyUZ9J3JOC96V++Nqj5VUalYJYNc78PKH2LT1U2SiQK1zbmTpkhD+cWZ45EsuWUnK0vucrMl6hNIvk59rfOyKHdf3RW3mezkn/X8n0lEFud5cv7ntzEEmUyGWsVrGexLwcXRBbs+3pVrPdU8Qirqf8VbuqS0JHOHUCCot/ZtiNyg83nqXb/J6cmGDKlAYrJDRHl279U9jbIZzWdgfOPx+LHtjwCAhyMfmjoso1D/8lGN0cnaLfEk8YkpQ8qXBv4NzB1CgTNi/wid66qmMwAAHzcfI0RTsLAbi4jyJCk1CWefnJWUFXMthvFNxov7YfXCTB2W0cS9jUOqIhXLzy7HVwe+Qni/cI1uvBRFipmi003jUo1xIvoEqvpUNdkyFZSpTKEyOtd9m/5W3G5Tro0xwilQmOwQkV6eJD7B2strxX+MvZ29MTpkNCYenYiVnVaaOTrDqlKsCq7+d1XcH7BjANZeXgsAaLiyoUb9soXKmiy2vNjXax+OPziO5kHNzR1KgbL5w83otrUbiroW1fmcv27+BQBwc3SzqrFglorJDhHpZczBMVgfuV7cj3sbhwnvTsDwesPh5exlxsgMr2FAQ0myo0p0sgrwDECPqj3Q8Z2OpgotT9yc3NC2fFtzh1HgBHgFAAD+ffwvbr+4jfJFcp9kc82lNQA4tspQmOwQkU4EQUCZRWVwP+6+pLxzxc4AYHOJDgBMazYN4Q/Cc139/OzgsxxXQdlSn1Szwo8VoJikYGuNifFuE5FOVl9crZHoALY9MZ2vuy9uDr+J8Y3H51jPw8kyl4ggy+Dr5ivZP3D3QK5z7hR3Lw4AONznsNHiKkjYskNEuRq1fxTmn54v7vt7+uODih+gfOHyqFi0ohkjM43cBpZyHhTKiYuji2T/oy0fIV2Zjntf3ENxj+Ia9SMeRuDp64x15Up7lzZFiDaPyQ4R5ejeq3uSROePbn/g/fLvF6gveC95zl10XLuI9PE69TUA4Nfzv+Lbpt9qHO/xRw9x293J3WRx2TJ2YxEVMCnpKbjw9AIEQcixniAIGHNgDMouynzCaHzj8ehSqUuBSnQA8DFtMqno+Ghxm12khsFkh6iA+Xjbx6j9c23sub0n2zqCIMBuqh3mRMyRlH/f/Htjh2eRbHHwNZnW/1r+L0/nFbQ/LIyFyQ6RDbv14hZar22N4w+O42XyS9x9eRfbrm8DALTf0D7b1p3nbzSXgbj7xd0C212jvrho7+q9zRgJWavRDUfj60Zf63VOo4BGBfb/OUPjmB0iG9ZtSzdcir2EA3cPaD1+99VdlCtcTqM85nWMZP/thLeQO8iNEqM1qOFbQ9ye12qeZL6dTR9uMkdIZIXqlqiba50LTy+I2390+8OY4RQoTHaIbFhuK47Hvo7VSHauPLuC6suqi/vH+x0v0IkOkLGYozBZsxXM0c4R3ap0M0NEZI0SUhIk++rz76iEPwgXtwu7FDZ6TAUFu7GIbNTdl3dzraOtu+rwvcx5PVqVbYUmgU0MGpctCSoUZO4QyIpknabB1dFVo86ys8vEbUd7R6PHVFCwZYfIhvxx7Q98uOVDrcfalGuDIcFDcPbJWay+uBqPEx9rnRlY/THzxW0XGy1WW+Bgx39CSXchASGSfQGarYVuTm4AdOvyIt2xZYfIhmhLdLpX6Q5hsoC9vfaic8XOmN58uri0wdhDYyV1lYISD+IfAAAG1BqACkUqGD9oK6ZtvBNRTpSTlGgR1AIAxAcEZv49E33+7IOU9BT4e/oDAPrX7G+2GG0Rkx0iG3EpRvv4nDmt5miU3Xt1T9zuu70vklIzFht8kvhELJ/dcraBI7QdEQMi8F7p9zDp3UnmDoWsjEwmE7unlIISAPDNkW/w++XfUWJeCUTGRgIAyhYum+01SH9MdoisSKeNnSCbIsORqCNigqJSc3lNcbti0YpY2XElnn71VPxLUV18Sry4/dul3+A+0x2yKTJMPz4dAODj5sPBkTlo4N8AR/seRXCJYHOHQlZIhozHyQUIUCgVYvnL5JeIiosCwFZDQ2OHM5GVOBF9Ajtu7gAAtPithVieOjFVYyDjtc+u5Tg/R50SdXD2yVmN8uXnlgPgUyBExqT6f1MQBLxJe6O1TimvUqYMyeYx2SGyYIIgiP8wNlml/amoH//9UdJSc+rTU7lORPZHtz8QuCAw2+NMdoiMR9Wyczn2MiIeRWitw8HvhsW7SWQBYl7H4E3aG8nq2mmKNDhNz5i599noZ9meu/fOXhy8d1Dc12UV8tz+alRvWiciw7KTZYwgWfDPAvMGUoBwzA6RmQmCgCarmqDsorJ4lPBILL/23zVxu+vmruJ2Lb9akvPVE51afrVQyKWQTq9rL7OX7Lcr307cbhjQULfgiUhvubW8ujm6mSiSgoMtO0Rm9vT1U9x5eQcAEBkbCX9Pf6Qp0jB873Cxzt/Rf4vbR/oeQZoiDVuvbcVnez6TXOvfQf/q/LqXh13GhCMTEFw8GFGvojC39Vzsv7Mfu27vwpT3puTzXRFRdlTdWNm5+tlVE0VScDDZITKz2y9ui9uJqYkAgHGHxuFE9Amt9V0cXODt7I3BwYMlyc7U96bq1c9fuVhl/Nn9T0lZ96rd0b1qd33CJyI9Zdeyc3HIRVQuVpkzJxsBu7GIjCxVkYqT0Sc1HhVXSUrLLH/+5jm+O/Yd5p2el+31VCtw29vZ4/Gox2J5Nd9qBoqYiIxJNWYnqxp+NZjoGAmTHSIjk0+Xo/GqxnCf6S5JeOLfZjxBla5MF8tuv7iNKeGZXUgLWi/QuJ76X4XF3YuL21nH4BCRZcqtG4sMj91YREaU9akm95nukv1ZLWZJJg/L+nTGp7U+hb+nP/pu7wtvZ2/0rt5bclwmk2Fx28U4+fAk2pRrY9jgicgosnZjVSxaEaNDRpspmoLBrC07x48fR4cOHVCiRAnIZDJs375dclwQBEyaNAnFixeHi4sLQkNDcfv2bUmdly9folevXvD09IS3tzcGDBiA169fm/BdEGXv/NPzOR4fd3icpGUnKw+5B7pW7orX37zGo1GPMCt0lkad4fWGY0PXDWz+JrIS6i07pb1L43rYdQyoPcCMEdk+syY7SUlJqFGjBpYsWaL1+OzZs7Fo0SIsW7YM//zzD9zc3NC6dWu8fftWrNOrVy9cvXoVBw8exK5du3D8+HEMHjzYVG+BKEf1fq2Xa51URarWcq44TmSb1Ft25PZyM0ZScJi1G6tt27Zo27at1mOCIGDBggWYOHEiOnXqBAD47bff4Ovri+3bt6NHjx64fv069u3bhzNnzqBOnToAgMWLF+P999/HnDlzUKJECZO9F6Ksbr24pVM9bROLCZMFA0dDRJZCfYCy3IHJjilY7ADlqKgoxMTEIDQ0VCzz8vJC/fr1ERGRMb12REQEvL29xUQHAEJDQ2FnZ4d//vnH5DETqbvw9IJkP3lCMk5+ehIAEOiVuVRD1q6uqj5VjR8cEZmNejeW6ulKMi6LTXZiYmIAAL6+vpJyX19f8VhMTAx8fHwkxx0cHFC4cGGxjjYpKSlISEiQ/BDp42niU8n8ONqoZkOWQYb0b9Ph7OCMEP8QnB10FheGXMBndT7Tet6KjisMHi8RWY4LMZl/CHk7e5svkALEYpMdY5o5cya8vLzEn4CAAHOHRFZEEASUmFcCFX6sgIiH2hfxA4DRBzOervD39Ie9XcZj4TKZDMElglHIpRA85B4a53St1BX1SuY+zoeIrNeN5zfE7SIuRcwYScFhscmOn58fACA2NlZSHhsbKx7z8/PDs2fSBRLT09Px8uVLsY4248ePR3x8vPjz8OFDA0dPtiw6PlrcbriyIaYfny624rxJe4Nt17fhWVLm59LPXftnUX3RT5Wt3bYaOFoisjTqi/Uy2TENi012goKC4Ofnh8OHD4tlCQkJ+OeffxASEgIACAkJQVxcHM6dOyfWOXLkCJRKJerXr5/tteVyOTw9PSU/RLq6HHtZsv/t0W8RMD8Ab9LeoOGKhui6uSt852R2v27rvk3rdfrU6GPUOInIMn1e73Nxu4grkx1TMOvTWK9fv8adO3fE/aioKFy8eBGFCxdGqVKlMGLECEyfPh3ly5dHUFAQvv32W5QoUQKdO3cGAFSqVAlt2rTBoEGDsGzZMqSlpWH48OHo0aMHn8Qio4l5rX08WNSrKFyKvSQpK1+4PPw9/bXWd3ZwhrODM96mZ0yl0L5Ce8MGSkQW6d6re+J2YZfCZoyk4DBrsnP27Fk0a9ZM3B81ahQAoG/fvli9ejXGjh2LpKQkDB48GHFxcWjcuDH27dsHZ2dn8Zx169Zh+PDhaNGiBezs7NC1a1csWrTI5O+FCo43aW+0lvfa1kujLLRMqJaamZInJGP1xdX459E/+F+r/xkkPiKybH1r9MXciLkAMv7oIeOTCYJQ4Cf0SEhIgJeXF+Lj49mlRTkSBAHN1jRD+INwdHqnE7b32A6PmR54nap91u7Uiamc2ZiIJARBgN3UjFEkKzuuRP9a/c0ckfXS9fvbYsfsEFma2Sdnw26qHcIfhAMACrkUAoBsE52RDUYy0SEiDeozKLNlxzSY7BDp6OtDX0v2pzWblmP9lPQUY4ZDRFasV7VeKFe4HDq+09HcoRQITHaowBMEAZOPTsbGKxsBAI8THiMpNSnX87QNPF7abqm43cC/geGCJCKbsrbLWtwafgtuTm7mDqVAMOsAZSJLsOHKBkw9PhVAxqKcfbf3RcOAhuLSDsD/97HL7KAUlACALpW6aL3W0DpD0TSwKU4+PIle1TUHLBMRqah3Z5FxMdkhmyYIAlIUKTn2i2+6uknc7ru9LwDg1MNTSFWkwk5mh1/O/YLP9mQu7fB41GP4umXOo+Pi4ILk9GRxv1KxSqhUrJIh3wYREeUDu7HIJkTGRkI2RSZ2RanMPz0fLt+7oOcfPTXOuRRzCbIpMuy4uUPrNeXT5XCc5ihJdACghEcJcfkHIHNywFp+tfL7NoiIyAiY7JDVep36GuMPjcfe23tR79eM9aSyJjVfHfgKALDxykY8jM9cFiT8fjhqLq+p92v+EPqD1rIFrRdg18e79L4eEREZH7uxyOrcj7uPoIVB4v6sk7Mkx9MUaZh2fBqev3kuKS+1oJS4rW2xzSvDrqC4R3EM2jkI265rLvEwvdl0fBXylUa5l7MXvmzwpd7vg4iITIOTCoKTClqTuy/votzicjnWWd1pNfr91U/va7/55g1cHF0Q/zYe3j94i+XD6w7HlGZTOK07EZGF0fX7my07ZPFqL6+NCzEX0Lt6b6y9vDbX+vokOrNazMLL5JcYFDwILo4uADJaai4OuYjJxybj83qfo0WZFnkNnYiILABbdsCWHUuWnJYM1xmu2R5/v/z72HN7T67XWd5+OYbsGqJRHj8uHp5y/s6JiKwRW3bIojyIe4DSC0ujqk9VXB56Wef5JbKOu1FZ3n457GX2aFOuDfzna19VfEKTCWga2BTlCpdDoHcgwh+Eo1LRSihfuDzOPz2PMY3GMNEhIioAmOyQ0a25uEbsWrry7AouxlxEreK6PaadNdmZ1WIWvm4sXbZhduhsjD00FucGn0Pt4rXxJPEJUtJTEFQoSFJvXZd14nb3qt3z8E6IiMgasRsL7MYyNtkUzVYcYXLOHztBEHAp9hKWnV2G5eeWo7h7cTz56omxQiQiIivEbiyyCOH3w7WWK5QKycR86gRBgN1U6RRQJTxKGDw2IiIqGDipIBnVlPApWstvv7yttfzaf9c0Eh0A+KDiBwaNi4iICg4mO2Q0qYpUHL1/FADwSfVP8Gz0M/FY/7/6a9S/HHsZVX6qovVan9f/3DhBEhGRzWOyQ0bT8veW4vZ7pd9DMbdi4v7pR6dRbWk1+M/zx7+P/0W6Mh01ltXQeh1PuSefmiIiojxjskNGc/zBcXG7f82MlpxJ704Sy648u4LHiY9R/9f66Lalm+TcCU0moEVQxmR+67usN0G0RERkqzhAmYwurG6YOK/O1f+uaq3z540/AQAlPUpiZaeVaFW2Fd6mv0XUqyhUKlbJZLESEZHtYcsOGcy+O/swfM9wyKbIJI+bT2s2Tdye+O7EHK/RvUp3tCrbCgDg7ODMRIeIiPKNyQ4ZTJ8/+2DJmSUa5c4OzuJ2Tb+aGFR7ULbXGFpnqFFiIyKigovJDulFKSjxX9J/GuV/Xv8T/73RLAekyQ4AvBv4LgCgbKGykvKTn55E+SLlDRQpERFRBo7ZIb18tf8rLPhnAVZ0XIFPa30qlk89PjXbc7Kug9WrWi/UKVEHZQqVwbbr2/D8zXP0rNoTRVyLGC1uIiIquLhcBLhchC7epr/Fq+RXCJgfAIWgAAAoJykhk8kgCAI8Z3nideprsf6U96Zg8rHJAHJfGoKIiCgvuFwEGVTIihBcjLkoKRu2exiWtV+G+JR4MdG598U9+Lj5wNXRFZ5yTzQr3cwM0RIREWViskO5UigVGokOACw/txyH7h1CnRJ1xDL1lcZHNBhhguiIiIhyxmSHcvXXzb+yPXb31V3cfXXXhNEQERHph09jUa5+Pf+rZL9uibpa663rss4U4RAREemFLTuUo2+PfIu9d/YCAOqUqIMiLkXw4/s/Ik2Rhso/VRbr+bn7oWfVnuYKk4iIKFtMdihbqYpUTP97uri/uO1iNPBvIO5Hj4hG+cUZ8+L8M/AfjUfMiYiILAGTHdJKoVTA538+krJAr0DJfoBXAN5MeAMZZEx0iIjIYjHZIQ13Xt7B9hvbEZ8SL5b91vk3FPcorlHXTsZhX0REZNmY7BjRuEPjcOvFLcxvPR+B3oG5n2ABdtzcgU4bO0nKno1+hmJuxcwUERERUf7wz3Ij2n5jO/688Sfuvbpn7lB0ljXRqVOiDhMdIiKyakx2jCjAKwAA8DDhoZkj0Y22lUOO9ztuhkiIiIgMh91YRhTgmZHs3H15V/yvAAHlCpczZ1jZ2nZ9m7g9r9U8hJYJhYujixkjIiIiyj+27BjR2/S3ADJWBL8YcxHlFpdD+cXl0XZdWzEByg9BEHA06ig2XtmIVr+3wtPEp/m63qmHp8TtkSEjUc23Wn5DJCIiMjsmO0a0/cZ2cXtq+FRxe9+dffjqwFf5vv6KCyvQ/Lfm6PlHTxy8dxCNVzXO1/V83DIeNefkgEREZEuY7BiR+vIJf974U3Lsr5t/odKSSkhXpuf5+oN2DpLs33t1D+MPjcfN5zcR9SpKo/6Omzuw+9bubK+XpkwDALg7uec5JiIiIkvDZMeIPqj0gUbZ+i7rxe0bz2/kmHxk9cu5XyCbIhN/tJl1chYqLqmIMovKYPDOwTj/9DxkU2Tota0XOm3shPYb2uPP639qPTdNkZHsONo56hwTERGRpWOyY2TvBr4r2e9etTsmvTtJ3NdnUr7BuwZrLX874a3W8l/O/4Lgn4MBAOsjM5OsLpu7YPE/iyV1j0QdwdTjGV1tjvZMdoiIyHYw2TGy3R9nttwUcy0GO5kdvnvvOzQMaAgAeJP2RqfrRDyM0Fo+s8VMyB3kSP82HcvaLdM5ri/2fYE+f/ZBwPwAyKbI0OK3FuKxrMtCEBERWTM+em5k7k7u+LXDr7jx/Ab+1+p/AACZTIairkUBZCzNoCIIAur8UgdO9k440ucI7sfdx5TwKRjTcAwarsxIjkp7l8b1sOuYc2oOPOWeCKsbBgCwt7PHkDpDMKTOEADAizcvUPR/Ga9Rp0QdlPQoibbl2qJzxc7wm+sHAPj98u8a8c5oPgNf1P/CSHeDiIjI9GSCtpnkCpiEhAR4eXkhPj4enp6eJnnNaeHTMOlYZndW2rdpmHhkIn44+UOO540OGS0mTblRKBWQyWQaXWWrLqzCpzs+lZS5O7nj9IDTqOJTRcd3QEREZF66fn8z2YF5kp1zT86hzi91xH1HO0fxaaicKCYpDLL45snokzhw9wAGBQ+Cv6d/vq9HRERkarp+f7Mby0wqFKkg2dcl0elepbvBVhlvVKoRGpVqZJBrERERWTIOUDYTD7kHTn56El/U0xwfs7HrRnxS/RNxv1FARlIyrvE4k8VHRERkK9iNBfN0Y6lLV6ZjwuEJWBu5Fhu7bkSTwCYAgFRFKgRBgNxBbvKYiIiILB3H7OjB3MkOERER6U/X7292YxEREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsEBERkU2zmWRnyZIlKF26NJydnVG/fn38+++/5g6JiIiILIBNJDubNm3CqFGjMHnyZJw/fx41atRA69at8ezZM3OHRkRERGZmE8nOvHnzMGjQIPTv3x+VK1fGsmXL4OrqipUrV5o7NCIiIjIzq092UlNTce7cOYSGhopldnZ2CA0NRUREhBkjIyIiIktg9QuBPn/+HAqFAr6+vpJyX19f3LhxQ+s5KSkpSElJEfcTEhKMGiMRERGZj9W37OTFzJkz4eXlJf4EBASYOyQiIiIyEqtPdooWLQp7e3vExsZKymNjY+Hn56f1nPHjxyM+Pl78efjwoSlCJSIiIjOw+mTHyckJwcHBOHz4sFimVCpx+PBhhISEaD1HLpfD09NT8kNERES2yerH7ADAqFGj0LdvX9SpUwf16tXDggULkJSUhP79+5s7NCIiIjIzm0h2unfvjv/++w+TJk1CTEwMatasiX379mkMWs6OIAgAOFCZiIjImqi+t1Xf49mRCbnVKAAePXrEQcpERERW6uHDh/D398/2OJMdZIzxefLkCTw8PCCTyTSOJyQkICAgAA8fPuT4nlzwXumO90p3vFe6473SHe+V7iz1XgmCgMTERJQoUQJ2dtkPQ7aJbqz8srOzyzEjVOFgZt3xXumO90p3vFe6473SHe+V7izxXnl5eeVax+qfxiIiIiLKCZMdIiIismlMdnQgl8sxefJkyOVyc4di8XivdMd7pTveK93xXumO90p31n6vOECZiIiIbBpbdoiIiMimMdkhIiIim8Zkh4iIiGwakx0iIiKyaQUi2Zk5cybq1q0LDw8P+Pj4oHPnzrh586akztu3bxEWFoYiRYrA3d0dXbt2RWxsrKTOF198geDgYMjlctSsWVPjdY4dO4ZOnTqhePHicHNzQ82aNbFu3TpjvjWDM9W9Unfnzh14eHjA29vbwO/GuEx5rwRBwJw5c1ChQgXI5XKULFkS33//vbHemsGZ8l7t378fDRo0gIeHB4oVK4auXbvi/v37RnpnhmeIe3Xp0iX07NkTAQEBcHFxQaVKlbBw4UKN1zp27Bhq164NuVyOcuXKYfXq1cZ+ewZlqnu1bds2tGzZEsWKFYOnpydCQkKwf/9+k7xHQzHl50rl5MmTcHBwyPU7wBQKRLITHh6OsLAwnD59GgcPHkRaWhpatWqFpKQksc7IkSOxc+dObNmyBeHh4Xjy5Am6dOmica1PP/0U3bt31/o6p06dQvXq1fHHH3/g8uXL6N+/P/r06YNdu3YZ7b0ZmqnulUpaWhp69uyJJk2aGPy9GJsp79WXX36JX3/9FXPmzMGNGzewY8cO1KtXzyjvyxhMda+ioqLQqVMnNG/eHBcvXsT+/fvx/PlzrdexVIa4V+fOnYOPjw/Wrl2Lq1evYsKECRg/fjx+/PFHsU5UVBTatWuHZs2a4eLFixgxYgQGDhxoVV/iprpXx48fR8uWLbFnzx6cO3cOzZo1Q4cOHXDhwgWTvt/8MNW9UomLi0OfPn3QokULk7y/XAkF0LNnzwQAQnh4uCAIghAXFyc4OjoKW7ZsEetcv35dACBERERonD958mShRo0aOr3W+++/L/Tv398gcZuDse/V2LFjhd69ewurVq0SvLy8DB2+SRnrXl27dk1wcHAQbty4YbTYTc1Y92rLli2Cg4ODoFAoxLIdO3YIMplMSE1NNfwbMYH83iuVzz77TGjWrJm4P3bsWKFKlSqSOt27dxdat25t4HdgOsa6V9pUrlxZmDJlimECNwNj36vu3bsLEydO1Ov70pgKRMtOVvHx8QCAwoULA8jIVtPS0hAaGirWqVixIkqVKoWIiIh8v5bqdayRMe/VkSNHsGXLFixZssRwAZuRse7Vzp07UaZMGezatQtBQUEoXbo0Bg4ciJcvXxr2DZiQse5VcHAw7OzssGrVKigUCsTHx+P3339HaGgoHB0dDfsmTMRQ9yrrv0URERGSawBA69at8/1vnjkZ615lpVQqkZiYyH/bof1erVq1Cvfu3cPkyZONEHneFLiFQJVKJUaMGIFGjRqhatWqAICYmBg4OTlpjBnx9fVFTExMnl9r8+bNOHPmDJYvX56fkM3GmPfqxYsX6NevH9auXWtxi8rlhTHv1b179/DgwQNs2bIFv/32GxQKBUaOHIkPP/wQR44cMeTbMAlj3qugoCAcOHAA3bp1w5AhQ6BQKBASEoI9e/YY8i2YjKHu1alTp7Bp0ybs3r1bLIuJiYGvr6/GNRISEpCcnAwXFxfDvhkjM+a9ymrOnDl4/fo1unXrZrD4TcmY9+r27dsYN24c/v77bzg4WE6KYTmRmEhYWBiuXLmCEydOGPV1jh49iv79++OXX35BlSpVjPpaxmLMezVo0CB8/PHHePfddw1+bXMw5r1SKpVISUnBb7/9hgoVKgAAVqxYgeDgYNy8eRPvvPOOwV/TmIx5r2JiYjBo0CD07dsXPXv2RGJiIiZNmoQPP/wQBw8ehEwmM/hrGpMh7tWVK1fQqVMnTJ48Ga1atTJgdJbFVPdq/fr1mDJlCv766y/4+Pjk+bXMyVj3SqFQ4OOPP8aUKVPEf6ssRYHqxho+fDh27dqFo0ePwt/fXyz38/NDamoq4uLiJPVjY2Ph5+en9+uEh4ejQ4cOmD9/Pvr06ZPfsM3C2PfqyJEjmDNnDhwcHODg4IABAwYgPj4eDg4OWLlypaHehkkY+14VL14cDg4Okn88KlWqBACIjo7OX/AmZux7tWTJEnh5eWH27NmoVasW3n33XaxduxaHDx/GP//8Y6i3YRKGuFfXrl1DixYtMHjwYEycOFFyzM/PT+Npt9jYWHh6elpdq46x75XKxo0bMXDgQGzevFmjC9BaGPNeJSYm4uzZsxg+fLj4b/vUqVNx6dIlODg4mLcl2tyDhkxBqVQKYWFhQokSJYRbt25pHFcNzNq6datYduPGjTwNuj169Kjg5uYm/PjjjwaL35RMda+uXbsmREZGij/Tp08XPDw8hMjISOHly5cGfU/GYqp7tX//fgGAcOfOHbHs4sWLAgDh5s2bhnkzRmaqezVq1CihXr16krInT54IAISTJ0/m/42YgKHu1ZUrVwQfHx9hzJgxWl9n7NixQtWqVSVlPXv2tKoByqa6V4IgCOvXrxecnZ2F7du3G/ZNmIgp7pVCoZD8ux4ZGSkMGzZMeOedd4TIyEjh9evXxnlzOigQyc6wYcMELy8v4dixY8LTp0/Fnzdv3oh1hg4dKpQqVUo4cuSIcPbsWSEkJEQICQmRXOf27dvChQsXhCFDhggVKlQQLly4IFy4cEFISUkRBEEQjhw5Iri6ugrjx4+XvM6LFy9M+n7zw1T3KitrfBrLVPdKoVAItWvXFt59913h/PnzwtmzZ4X69esLLVu2NOn7zQ9T3avDhw8LMplMmDJlinDr1i3h3LlzQuvWrYXAwEDJa1kyQ9yryMhIoVixYkLv3r0l13j27JlY5969e4Krq6swZswY4fr168KSJUsEe3t7Yd++fSZ9v/lhqnu1bt06wcHBQViyZImkTlxcnEnfb36Y6l5lZSlPYxWIZAeA1p9Vq1aJdZKTk4XPPvtMKFSokODq6ip88MEHwtOnTyXXadq0qdbrREVFCYIgCH379tV6vGnTpqZ7s/lkqnuVlTUmO6a8V48fPxa6dOkiuLu7C76+vkK/fv2sKok25b3asGGDUKtWLcHNzU0oVqyY0LFjR+H69esmeqf5Z4h7NXnyZK3XCAwMlLzW0aNHhZo1awpOTk5CmTJlJK9hDUx1r7L73PXt29d0bzafTPm5UmcpyY5MEAQh174uIiIiIitVoAYoExERUcHDZIeIiIhsGpMdIiIismlMdoiIiMimMdkhIiIim8Zkh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEii9evXz/IZDLIZDI4OjrC19cXLVu2xMqVK6FUKnW+zurVq+Ht7W28QInIIjHZISKr0KZNGzx9+hT379/H3r170axZM3z55Zdo37490tPTzR0eEVkwJjtEZBXkcjn8/PxQsmRJ1K5dG9988w3++usv7N27F6tXrwYAzJs3D9WqVYObmxsCAgLw2Wef4fXr1wCAY8eOoX///oiPjxdbib777jsAQEpKCkaPHo2SJUvCzc0N9evXx7Fjx8zzRonI4JjsEJHVat68OWrUqIFt27YBAOzs7LBo0SJcvXoVa9aswZEjRzB27FgAQMOGDbFgwQJ4enri6dOnePr0KUaPHg0AGD58OCIiIrBx40ZcvnwZH330Edq0aYPbt2+b7b0RkeFwIVAisnj9+vVDXFwctm/frnGsR48euHz5Mq5du6ZxbOvWrRg6dCieP38OIGPMzogRIxAXFyfWiY6ORpkyZRAdHY0SJUqI5aGhoahXrx5mzJhh8PdDRKblYO4AiIjyQxAEyGQyAMChQ4cwc+ZM3LhxAwkJCUhPT8fbt2/x5s0buLq6aj0/MjISCoUCFSpUkJSnpKSgSJEiRo+fiIyPyQ4RWbXr168jKCgI9+/fR/v27TFs2DB8//33KFy4ME6cOIEBAwYgNTU122Tn9evXsLe3x7lz52Bvby855u7uboq3QERGxmSHiKzWkSNHEBkZiZEjR+LcuXNQKpWYO3cu7OwyhiNu3rxZUt/JyQkKhUJSVqtWLSgUCjx79gxNmjQxWexEZDpMdojIKqSkpCAmJgYKhQKxsbHYt28fZs6cifbt26NPnz64cuUK0tLSsHjxYnTo0AEnT57EsmXLJNcoXbo0Xr9+jcOHD6NGjRpwdXVFhQoV0KtXL/Tp0wdz585FrVq18N9//+Hw4cOoXr062rVrZ6Z3TESGwqexiMgq7Nu3D8WLF0fp0qXRpk0bHD16FIsWLcJff/0Fe3t71KhRA/PmzcMPP/yAqlWrYt26dZg5c6bkGg0bNsTQoUPRvXt3FCtWDLNnzwYArFq1Cn369MFXX32Fd955B507d8aZM2dQqlQpc7xVIjIwPo1FRERENo0tO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZNCY7REREZNOY7BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsEBERkU1jskNEREQ2jckOERER2bT/A2EoowVXHfi9AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"model = NeuralProphet(\n",
" batch_size=16\n",
")\n",
"\n",
"model.fit(df)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 800,
"referenced_widgets": [
"ac0b31fd93d645df816e32dd03db3a9c",
"667f7f6bb77545c7a320acfb122ebffe",
"ebd6bcc3962c4d889c8a9d1050bbf29f",
"1499201784ae493a935b1b7ffabed47a",
"101448c965f3447b8a98371b2046f149",
"9c4706a11b7549cd85cfa38a2e9d3c2b",
"97175ecf776045c688b0ac6f683e15ca",
"2606fda4551845aa8f4187c98e2be0ef",
"cf05a3cb55d240e095ef37cf9ab481a9",
"022ddaa407d243f686533133f6428f7a",
"43569d7f8ba74de58188e9883ed05274",
"b656724e7bf248e6b67ae4c8b1e10fb6",
"6a4ee6d4b48d4d978d8f6137e335dff5",
"764432ea141f40658a427db8b7d663ea",
"c8484205633b4872b02acfd408393903",
"dcfb69ac6568466ebb28cc1ce27e9d3d",
"10bd797bde9d4125aea91bb1025f34e2",
"d1fd9d2a9b9742c18ee78bec892eea2c",
"d20b187f26a34f9eaa7518132d15ab75",
"7e74b73096764f0b91d121ff5a3aaaed",
"5daf73f645e24b829c9ca9d1efed156b",
"b483976d7d2f4e1da70b9001f9ecbca9",
"5c2ba4fd8145403d8fb1fbb293645830",
"c0727cb1c17b4763b8b3c172df96ce37",
"ab6b14e7dafa4789bb905e280454b351",
"ac5572e3692849deb95dd03a73f6e0a6",
"4b8f7c2a07e84a4799e36afacd04b255",
"83816f64bebd488192efe2a56f76919d",
"24fe29d648d44be2980a62f534be63e5",
"88fed278282547c0a3095b70b5777da6",
"01fc1d5643eb495d924d538e43ee97de",
"11af1c84daf8453e9134c8d70403f9f7",
"8bb6cfd4b4af403f995da2569235eb26"
]
},
"id": "qN8u0WjtVcBa",
"outputId": "e4cd6ecd-f396-4781-8651-1bbb546758f8"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"WARNING - (NP.forecaster.fit) - When Global modeling with local normalization, metrics are displayed in normalized scale.\n",
"WARNING:NP.forecaster:When Global modeling with local normalization, metrics are displayed in normalized scale.\n",
"INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n",
"INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n",
"INFO - (NP.df_utils._infer_frequency) - Dataframe freq automatically defined as B\n",
"INFO:NP.df_utils:Dataframe freq automatically defined as B\n",
"INFO - (NP.config.init_data_params) - Setting normalization to global as only one dataframe provided for training.\n",
"INFO:NP.config:Setting normalization to global as only one dataframe provided for training.\n",
"INFO - (NP.utils.set_auto_seasonalities) - Disabling daily seasonality. Run NeuralProphet with daily_seasonality=True to override this.\n",
"INFO:NP.utils:Disabling daily seasonality. Run NeuralProphet with daily_seasonality=True to override this.\n",
"INFO - (NP.config.set_auto_batch_epoch) - Auto-set epochs to 80\n",
"INFO:NP.config:Auto-set epochs to 80\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Training: | | 0/? [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "ac0b31fd93d645df816e32dd03db3a9c"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"WARNING - (NP.config.set_lr_finder_args) - Learning rate finder: The number of batches (190) is too small than the required number for the learning rate finder (237). The results might not be optimal.\n",
"WARNING:NP.config:Learning rate finder: The number of batches (190) is too small than the required number for the learning rate finder (237). The results might not be optimal.\n",
"WARNING:pytorch_lightning.loggers.tensorboard:Missing logger folder: /content/lightning_logs\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Finding best initial lr: 0%| | 0/237 [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "b656724e7bf248e6b67ae4c8b1e10fb6"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Training: | | 0/? [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "5c2ba4fd8145403d8fb1fbb293645830"
}
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" train_loss reg_loss MAE RMSE Loss RegLoss epoch\n",
"0 0.257815 0.0 161.843307 198.325989 0.257037 0.0 0\n",
"1 0.064576 0.0 61.339188 77.733116 0.064361 0.0 1\n",
"2 0.043747 0.0 41.796520 58.027061 0.043614 0.0 2\n",
"3 0.041203 0.0 38.488132 55.222210 0.041149 0.0 3\n",
"4 0.040950 0.0 38.130337 55.034222 0.040834 0.0 4\n",
".. ... ... ... ... ... ... ...\n",
"75 0.037180 0.0 29.907446 51.254337 0.037688 0.0 75\n",
"76 0.037252 0.0 29.722521 50.836533 0.037107 0.0 76\n",
"77 0.037119 0.0 29.651352 50.263657 0.036974 0.0 77\n",
"78 0.037155 0.0 30.015465 51.179806 0.037334 0.0 78\n",
"79 0.037137 0.0 29.835432 50.769505 0.036995 0.0 79\n",
"\n",
"[80 rows x 7 columns]"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
train_loss
\n",
"
reg_loss
\n",
"
MAE
\n",
"
RMSE
\n",
"
Loss
\n",
"
RegLoss
\n",
"
epoch
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0.257815
\n",
"
0.0
\n",
"
161.843307
\n",
"
198.325989
\n",
"
0.257037
\n",
"
0.0
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
0.064576
\n",
"
0.0
\n",
"
61.339188
\n",
"
77.733116
\n",
"
0.064361
\n",
"
0.0
\n",
"
1
\n",
"
\n",
"
\n",
"
2
\n",
"
0.043747
\n",
"
0.0
\n",
"
41.796520
\n",
"
58.027061
\n",
"
0.043614
\n",
"
0.0
\n",
"
2
\n",
"
\n",
"
\n",
"
3
\n",
"
0.041203
\n",
"
0.0
\n",
"
38.488132
\n",
"
55.222210
\n",
"
0.041149
\n",
"
0.0
\n",
"
3
\n",
"
\n",
"
\n",
"
4
\n",
"
0.040950
\n",
"
0.0
\n",
"
38.130337
\n",
"
55.034222
\n",
"
0.040834
\n",
"
0.0
\n",
"
4
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
75
\n",
"
0.037180
\n",
"
0.0
\n",
"
29.907446
\n",
"
51.254337
\n",
"
0.037688
\n",
"
0.0
\n",
"
75
\n",
"
\n",
"
\n",
"
76
\n",
"
0.037252
\n",
"
0.0
\n",
"
29.722521
\n",
"
50.836533
\n",
"
0.037107
\n",
"
0.0
\n",
"
76
\n",
"
\n",
"
\n",
"
77
\n",
"
0.037119
\n",
"
0.0
\n",
"
29.651352
\n",
"
50.263657
\n",
"
0.036974
\n",
"
0.0
\n",
"
77
\n",
"
\n",
"
\n",
"
78
\n",
"
0.037155
\n",
"
0.0
\n",
"
30.015465
\n",
"
51.179806
\n",
"
0.037334
\n",
"
0.0
\n",
"
78
\n",
"
\n",
"
\n",
"
79
\n",
"
0.037137
\n",
"
0.0
\n",
"
29.835432
\n",
"
50.769505
\n",
"
0.036995
\n",
"
0.0
\n",
"
79
\n",
"
\n",
" \n",
"
\n",
"
80 rows × 7 columns
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"model\",\n \"rows\": 80,\n \"fields\": [\n {\n \"column\": \"train_loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.024734652757590632,\n \"min\": 0.03711911663413048,\n \"max\": 0.2578146755695343,\n \"num_unique_values\": 80,\n \"samples\": [\n 0.04833472892642021,\n 0.2578146755695343,\n 0.05231921374797821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"reg_loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MAE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15.487563633635295,\n \"min\": 29.651351928710938,\n \"max\": 161.8433074951172,\n \"num_unique_values\": 80,\n \"samples\": [\n 44.7110595703125\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RMSE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16.75789264357517,\n \"min\": 50.26365661621094,\n \"max\": 198.32598876953125,\n \"num_unique_values\": 80,\n \"samples\": [\n 61.52302169799805\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.024654874360992375,\n \"min\": 0.03697356581687927,\n \"max\": 0.25703734159469604,\n \"num_unique_values\": 80,\n \"samples\": [\n 0.0481775626540184\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RegLoss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"epoch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 23,\n \"min\": 0,\n \"max\": 79,\n \"num_unique_values\": 80,\n \"samples\": [\n 30\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 24
}
]
},
{
"cell_type": "code",
"source": [
"future = model.make_future_dataframe(df, periods=365)\n",
"\n",
"forecast = model.predict(future)\n",
"forecast"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 733,
"referenced_widgets": [
"d06ce2fec5894f48a53d98ed578f7b36",
"6790be45ada946e6939a5e455df41f85",
"881c598033114b43b9af47bfd5b0fe75",
"a9bb522f07274d8ba6270381b8be0184",
"a595b23f6e3947e29dba4074721a50bc",
"7a93e60e33b240b79d6ddfc47451c205",
"365379cde40944d3890947c83cef4dbe",
"560e1d82f1004a1abf85d09418f99ca1",
"84daef2436ff40c3b840631d17d8cd30",
"d12fe3aabccc4fed93312cba77729008",
"f3bc727b1f5048a9b1f9f7dd181bccab"
]
},
"id": "GOo1KRckVnWa",
"outputId": "735da708-8996-4ace-f27d-b71038d073cc"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n",
"INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n",
"INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n",
"INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n",
"INFO - (NP.df_utils.return_df_in_original_format) - Returning df with no ID column\n",
"INFO:NP.df_utils:Returning df with no ID column\n",
"INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 99.726% of the data.\n",
"INFO:NP.df_utils:Major frequency B corresponds to 99.726% of the data.\n",
"INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n",
"INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n",
"INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 99.726% of the data.\n",
"INFO:NP.df_utils:Major frequency B corresponds to 99.726% of the data.\n",
"INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n",
"INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Predicting: | | 0/? [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "d06ce2fec5894f48a53d98ed578f7b36"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"INFO - (NP.df_utils.return_df_in_original_format) - Returning df with no ID column\n",
"INFO:NP.df_utils:Returning df with no ID column\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" ds y yhat1 trend season_yearly season_weekly\n",
"0 2024-06-03 None 298.499237 330.230652 -0.146132 -31.585258\n",
"1 2024-06-04 None 298.712646 330.257996 -0.444604 -31.100739\n",
"2 2024-06-05 None 297.719696 330.285309 -0.727075 -31.838547\n",
"3 2024-06-06 None 296.526001 330.312653 -0.994012 -32.792645\n",
"4 2024-06-07 None 294.799255 330.339996 -1.238992 -34.301754\n",
".. ... ... ... ... ... ...\n",
"360 2025-10-20 None 309.214722 344.010773 -3.076255 -31.719799\n",
"361 2025-10-21 None 309.897675 344.038116 -3.050440 -31.089994\n",
"362 2025-10-22 None 309.157532 344.065460 -3.001611 -31.906309\n",
"363 2025-10-23 None 308.234161 344.092804 -2.930969 -32.927673\n",
"364 2025-10-24 None 307.012329 344.120148 -2.839860 -34.267971\n",
"\n",
"[365 rows x 6 columns]"
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
ds
\n",
"
y
\n",
"
yhat1
\n",
"
trend
\n",
"
season_yearly
\n",
"
season_weekly
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
2024-06-03
\n",
"
None
\n",
"
298.499237
\n",
"
330.230652
\n",
"
-0.146132
\n",
"
-31.585258
\n",
"
\n",
"
\n",
"
1
\n",
"
2024-06-04
\n",
"
None
\n",
"
298.712646
\n",
"
330.257996
\n",
"
-0.444604
\n",
"
-31.100739
\n",
"
\n",
"
\n",
"
2
\n",
"
2024-06-05
\n",
"
None
\n",
"
297.719696
\n",
"
330.285309
\n",
"
-0.727075
\n",
"
-31.838547
\n",
"
\n",
"
\n",
"
3
\n",
"
2024-06-06
\n",
"
None
\n",
"
296.526001
\n",
"
330.312653
\n",
"
-0.994012
\n",
"
-32.792645
\n",
"
\n",
"
\n",
"
4
\n",
"
2024-06-07
\n",
"
None
\n",
"
294.799255
\n",
"
330.339996
\n",
"
-1.238992
\n",
"
-34.301754
\n",
"
\n",
"
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
...
\n",
"
\n",
"
\n",
"
360
\n",
"
2025-10-20
\n",
"
None
\n",
"
309.214722
\n",
"
344.010773
\n",
"
-3.076255
\n",
"
-31.719799
\n",
"
\n",
"
\n",
"
361
\n",
"
2025-10-21
\n",
"
None
\n",
"
309.897675
\n",
"
344.038116
\n",
"
-3.050440
\n",
"
-31.089994
\n",
"
\n",
"
\n",
"
362
\n",
"
2025-10-22
\n",
"
None
\n",
"
309.157532
\n",
"
344.065460
\n",
"
-3.001611
\n",
"
-31.906309
\n",
"
\n",
"
\n",
"
363
\n",
"
2025-10-23
\n",
"
None
\n",
"
308.234161
\n",
"
344.092804
\n",
"
-2.930969
\n",
"
-32.927673
\n",
"
\n",
"
\n",
"
364
\n",
"
2025-10-24
\n",
"
None
\n",
"
307.012329
\n",
"
344.120148
\n",
"
-2.839860
\n",
"
-34.267971
\n",
"
\n",
" \n",
"
\n",
"
365 rows × 6 columns
\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
"\n",
" \n",
"\n",
" \n",
"
\n",
"\n",
"\n",
"
\n",
" \n",
"\n",
"\n",
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "forecast",
"repr_error": "Out of range float values are not JSON compliant: nan"
}
},
"metadata": {},
"execution_count": 26
}
]
},
{
"cell_type": "code",
"source": [
"actual_prediction = model.predict(df)\n",
"\n",
"plt.plot(df['ds'], df['y'], label='actual', c='g')\n",
"plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label='prediction_actual', c='r')\n",
"plt.plot(forecast['ds'], forecast['yhat1'], label='future_prediction', c='b')\n",
"plt.xlabel('Date')\n",
"plt.ylabel('Stock Price')\n",
"plt.legend()\n",
"\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 655,
"referenced_widgets": [
"78a17c0426cd4008b894f2750ec53c56",
"b44d8f6c8dab419c8f7dea3b8ac118b9",
"e6ef0fbabb844068b66f6e14732299fb",
"afc12827685042ddac43a3946e6b3f32",
"08d8524662f740d68ea69653b7437cad",
"634e8bc4c5fa42949f605bf8e2501ad4",
"3c08f8a6e4d94dbb83de069b8ca9ce42",
"40432f5ba5cd4aad989537427064cb82",
"7fa253063c314d938035f2f6c7dcb476",
"eb99b411fb0d444d8fa5309e46c318c2",
"917b5db3ff2f460fb7598b6d43568ca7"
]
},
"id": "mHDT1dxUVx2y",
"outputId": "1e124dff-4f5b-4044-abd5-54d9d458896c"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n",
"INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n",
"INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n",
"INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n",
"INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n",
"INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n",
"INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n",
"INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Predicting: | | 0/? [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "78a17c0426cd4008b894f2750ec53c56"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"INFO - (NP.df_utils.return_df_in_original_format) - Returning df with no ID column\n",
"INFO:NP.df_utils:Returning df with no ID column\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"