antitheft159 commited on
Commit
516b6c7
1 Parent(s): e4489c3

Create StockPredictor.py

Browse files
Files changed (1) hide show
  1. StockPredictor.py +63 -0
StockPredictor.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !pip install neuralprophet
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+ from neuralprophet import NeuralProphet
7
+
8
+ import warnings
9
+ warnings.filterwarnings('ignore')
10
+
11
+ import os
12
+ for dirname, _, filesnames in os.walk('yourstockdata.csv')
13
+ for filenames in filesnames:
14
+ print(os.path.join(dirname, filename))
15
+
16
+ df = pd.read_csv('youstockdata.csv')
17
+
18
+ df.head()
19
+
20
+ df.info()
21
+
22
+ df['Date'] = pd.to_datetime(df['Date'])
23
+
24
+ df.dtypes
25
+
26
+ df = df[['Date', 'Close']]
27
+
28
+ df.head()
29
+
30
+ df.columns = ['ds', 'y']
31
+
32
+ df.head()
33
+
34
+ plt.plot(df['ds'], df['y'], label='actual', c='g')
35
+ plt.title('Stock Data')
36
+ plt.xlabel('Date')
37
+ plt.ylabel('Stock Price')
38
+ plt.show()
39
+
40
+ model = NeuralProphet(
41
+ batch_size=16
42
+ )
43
+
44
+ model.fit(df)
45
+
46
+ future = model.make_future_dataframe(df, periods=365)
47
+
48
+ forecast = model.predict(future)
49
+ forecast
50
+
51
+ actual_prediction = model.predict(df)
52
+
53
+ plt.plot(df['ds'], df['y'], label='actual', c='g')
54
+ plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label='prediction_actual', c='r')
55
+ plt.plot(forecast['ds'], forecast['yhat1'], label='future_prediction', c='b')
56
+ plt.xlabel('Date')
57
+ plt.ylabel('Stock Price')
58
+ plt.legend()
59
+
60
+ plt.show()
61
+
62
+ model.plot_components(forecast)
63
+