diff --git "a/Vecna_Stock_Predictor.ipynb" "b/Vecna_Stock_Predictor.ipynb" new file mode 100644--- /dev/null +++ "b/Vecna_Stock_Predictor.ipynb" @@ -0,0 +1,4092 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "ac0b31fd93d645df816e32dd03db3a9c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_667f7f6bb77545c7a320acfb122ebffe", + "IPY_MODEL_ebd6bcc3962c4d889c8a9d1050bbf29f", + "IPY_MODEL_1499201784ae493a935b1b7ffabed47a" + ], + "layout": "IPY_MODEL_101448c965f3447b8a98371b2046f149" + } + }, + "667f7f6bb77545c7a320acfb122ebffe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9c4706a11b7549cd85cfa38a2e9d3c2b", + "placeholder": "​", + "style": "IPY_MODEL_97175ecf776045c688b0ac6f683e15ca", + "value": "Epoch 80: 100%" + } + }, + "ebd6bcc3962c4d889c8a9d1050bbf29f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2606fda4551845aa8f4187c98e2be0ef", + "max": 80, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cf05a3cb55d240e095ef37cf9ab481a9", + "value": 80 + } + }, + "1499201784ae493a935b1b7ffabed47a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_022ddaa407d243f686533133f6428f7a", + "placeholder": "​", + "style": "IPY_MODEL_43569d7f8ba74de58188e9883ed05274", + "value": " 80/80 [00:00<00:00, 18976.60it/s]" + } + }, + "101448c965f3447b8a98371b2046f149": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "100%" + } + }, + "9c4706a11b7549cd85cfa38a2e9d3c2b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97175ecf776045c688b0ac6f683e15ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2606fda4551845aa8f4187c98e2be0ef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf05a3cb55d240e095ef37cf9ab481a9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "022ddaa407d243f686533133f6428f7a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43569d7f8ba74de58188e9883ed05274": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b656724e7bf248e6b67ae4c8b1e10fb6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a4ee6d4b48d4d978d8f6137e335dff5", + "IPY_MODEL_764432ea141f40658a427db8b7d663ea", + "IPY_MODEL_c8484205633b4872b02acfd408393903" + ], + "layout": "IPY_MODEL_dcfb69ac6568466ebb28cc1ce27e9d3d" + } + }, + "6a4ee6d4b48d4d978d8f6137e335dff5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10bd797bde9d4125aea91bb1025f34e2", + "placeholder": "​", + "style": "IPY_MODEL_d1fd9d2a9b9742c18ee78bec892eea2c", + "value": "Finding best initial lr: 100%" + } + }, + "764432ea141f40658a427db8b7d663ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d20b187f26a34f9eaa7518132d15ab75", + "max": 237, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7e74b73096764f0b91d121ff5a3aaaed", + "value": 237 + } + }, + "c8484205633b4872b02acfd408393903": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5daf73f645e24b829c9ca9d1efed156b", + "placeholder": "​", + "style": "IPY_MODEL_b483976d7d2f4e1da70b9001f9ecbca9", + "value": " 237/237 [04:28<00:00, 58.11it/s]" + } + }, + "dcfb69ac6568466ebb28cc1ce27e9d3d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "10bd797bde9d4125aea91bb1025f34e2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d1fd9d2a9b9742c18ee78bec892eea2c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d20b187f26a34f9eaa7518132d15ab75": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e74b73096764f0b91d121ff5a3aaaed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5daf73f645e24b829c9ca9d1efed156b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b483976d7d2f4e1da70b9001f9ecbca9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c2ba4fd8145403d8fb1fbb293645830": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0727cb1c17b4763b8b3c172df96ce37", + "IPY_MODEL_ab6b14e7dafa4789bb905e280454b351", + "IPY_MODEL_ac5572e3692849deb95dd03a73f6e0a6" + ], + "layout": "IPY_MODEL_4b8f7c2a07e84a4799e36afacd04b255" + } + }, + "c0727cb1c17b4763b8b3c172df96ce37": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83816f64bebd488192efe2a56f76919d", + "placeholder": "​", + "style": "IPY_MODEL_24fe29d648d44be2980a62f534be63e5", + "value": "Training: " + } + }, + "ab6b14e7dafa4789bb905e280454b351": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_88fed278282547c0a3095b70b5777da6", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_01fc1d5643eb495d924d538e43ee97de", + "value": 0 + } + }, + "ac5572e3692849deb95dd03a73f6e0a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_11af1c84daf8453e9134c8d70403f9f7", + "placeholder": "​", + "style": "IPY_MODEL_8bb6cfd4b4af403f995da2569235eb26", + "value": " 0/? [02:51<?, ?it/s, v_num=0, train_loss=0.0371, reg_loss=0.000, MAE=29.80, RMSE=50.80, Loss=0.037, RegLoss=0.000]" + } + }, + "4b8f7c2a07e84a4799e36afacd04b255": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "100%" + } + }, + "83816f64bebd488192efe2a56f76919d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "24fe29d648d44be2980a62f534be63e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "88fed278282547c0a3095b70b5777da6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "01fc1d5643eb495d924d538e43ee97de": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11af1c84daf8453e9134c8d70403f9f7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8bb6cfd4b4af403f995da2569235eb26": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d06ce2fec5894f48a53d98ed578f7b36": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6790be45ada946e6939a5e455df41f85", + "IPY_MODEL_881c598033114b43b9af47bfd5b0fe75", + "IPY_MODEL_a9bb522f07274d8ba6270381b8be0184" + ], + "layout": "IPY_MODEL_a595b23f6e3947e29dba4074721a50bc" + } + }, + "6790be45ada946e6939a5e455df41f85": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a93e60e33b240b79d6ddfc47451c205", + "placeholder": "​", + "style": "IPY_MODEL_365379cde40944d3890947c83cef4dbe", + "value": "Predicting DataLoader 0: 100%" + } + }, + "881c598033114b43b9af47bfd5b0fe75": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_560e1d82f1004a1abf85d09418f99ca1", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_84daef2436ff40c3b840631d17d8cd30", + "value": 1 + } + }, + "a9bb522f07274d8ba6270381b8be0184": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d12fe3aabccc4fed93312cba77729008", + "placeholder": "​", + "style": "IPY_MODEL_f3bc727b1f5048a9b1f9f7dd181bccab", + "value": " 1/1 [00:00<00:00, 77.68it/s]" + } + }, + "a595b23f6e3947e29dba4074721a50bc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "100%" + } + }, + "7a93e60e33b240b79d6ddfc47451c205": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "365379cde40944d3890947c83cef4dbe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "560e1d82f1004a1abf85d09418f99ca1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84daef2436ff40c3b840631d17d8cd30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d12fe3aabccc4fed93312cba77729008": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3bc727b1f5048a9b1f9f7dd181bccab": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "78a17c0426cd4008b894f2750ec53c56": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b44d8f6c8dab419c8f7dea3b8ac118b9", + "IPY_MODEL_e6ef0fbabb844068b66f6e14732299fb", + "IPY_MODEL_afc12827685042ddac43a3946e6b3f32" + ], + "layout": "IPY_MODEL_08d8524662f740d68ea69653b7437cad" + } + }, + "b44d8f6c8dab419c8f7dea3b8ac118b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_634e8bc4c5fa42949f605bf8e2501ad4", + "placeholder": "​", + "style": "IPY_MODEL_3c08f8a6e4d94dbb83de069b8ca9ce42", + "value": "Predicting DataLoader 0: 100%" + } + }, + "e6ef0fbabb844068b66f6e14732299fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40432f5ba5cd4aad989537427064cb82", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7fa253063c314d938035f2f6c7dcb476", + "value": 3 + } + }, + "afc12827685042ddac43a3946e6b3f32": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eb99b411fb0d444d8fa5309e46c318c2", + "placeholder": "​", + "style": "IPY_MODEL_917b5db3ff2f460fb7598b6d43568ca7", + "value": " 3/3 [00:00<00:00, 91.19it/s]" + } + }, + "08d8524662f740d68ea69653b7437cad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": "inline-flex", + "flex": null, + "flex_flow": "row wrap", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "100%" + } + }, + "634e8bc4c5fa42949f605bf8e2501ad4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c08f8a6e4d94dbb83de069b8ca9ce42": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "40432f5ba5cd4aad989537427064cb82": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": "2", + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7fa253063c314d938035f2f6c7dcb476": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "eb99b411fb0d444d8fa5309e46c318c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "917b5db3ff2f460fb7598b6d43568ca7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "code", + "source": [ + "!pip install neuralprophet\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from neuralprophet import NeuralProphet\n", + "\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pN8hfmfwTtVK", + "outputId": "45381579-10d3-4507-ab8c-df30ac5ef76f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: neuralprophet in /usr/local/lib/python3.10/dist-packages (0.9.0)\n", + "Requirement already satisfied: captum>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (0.7.0)\n", + "Requirement already satisfied: holidays>=0.41 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (0.52)\n", + "Requirement already satisfied: kaleido==0.2.1 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (0.2.1)\n", + "Requirement already satisfied: matplotlib>=3.5.3 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (3.7.1)\n", + "Requirement already satisfied: numpy<2.0.0,>=1.25.0 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (1.25.2)\n", + "Requirement already satisfied: pandas>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (2.0.3)\n", + "Requirement already satisfied: plotly>=5.13.1 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (5.15.0)\n", + "Requirement already satisfied: pytorch-lightning>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (2.3.2)\n", + "Requirement already satisfied: tensorboard>=2.11.2 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (2.15.2)\n", + "Requirement already satisfied: torch>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (2.3.0+cu121)\n", + "Requirement already satisfied: torchmetrics>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (1.4.0.post0)\n", + "Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/lib/python3.10/dist-packages (from neuralprophet) (4.12.2)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from captum>=0.6.0->neuralprophet) (4.66.4)\n", + "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from holidays>=0.41->neuralprophet) (2.8.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5.3->neuralprophet) (1.2.1)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5.3->neuralprophet) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5.3->neuralprophet) (4.53.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5.3->neuralprophet) (1.4.5)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5.3->neuralprophet) (24.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5.3->neuralprophet) (9.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.5.3->neuralprophet) (3.1.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0.0->neuralprophet) (2023.4)\n", + "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=2.0.0->neuralprophet) (2024.1)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly>=5.13.1->neuralprophet) (8.4.2)\n", + "Requirement already satisfied: PyYAML>=5.4 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning>=2.0.0->neuralprophet) (6.0.1)\n", + "Requirement already satisfied: fsspec[http]>=2022.5.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning>=2.0.0->neuralprophet) (2023.6.0)\n", + "Requirement already satisfied: lightning-utilities>=0.10.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning>=2.0.0->neuralprophet) (0.11.3.post0)\n", + "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (1.4.0)\n", + "Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (1.64.1)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (2.27.0)\n", + "Requirement already satisfied: google-auth-oauthlib<2,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (1.2.0)\n", + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (3.6)\n", + "Requirement already satisfied: protobuf!=4.24.0,>=3.19.6 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (3.20.3)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (2.31.0)\n", + "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (67.7.2)\n", + "Requirement already satisfied: six>1.9 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (1.16.0)\n", + "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (0.7.2)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.11.2->neuralprophet) (3.0.3)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (3.15.4)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (1.12.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (3.3)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (3.1.4)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (8.9.2.26)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (2.20.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (12.1.105)\n", + "Requirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch>=2.0.0->neuralprophet) (2.3.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=2.0.0->neuralprophet) (12.5.82)\n", + "Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]>=2022.5.0->pytorch-lightning>=2.0.0->neuralprophet) (3.9.5)\n", + "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.11.2->neuralprophet) (5.3.3)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.11.2->neuralprophet) (0.4.0)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.11.2->neuralprophet) (4.9)\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib<2,>=0.5->tensorboard>=2.11.2->neuralprophet) (1.3.1)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard>=2.11.2->neuralprophet) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard>=2.11.2->neuralprophet) (3.7)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard>=2.11.2->neuralprophet) (2.0.7)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard>=2.11.2->neuralprophet) (2024.6.2)\n", + "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.11.2->neuralprophet) (2.1.5)\n", + "Requirement already satisfied: mpmath<1.4.0,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=2.0.0->neuralprophet) (1.3.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>=2022.5.0->pytorch-lightning>=2.0.0->neuralprophet) (1.3.1)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>=2022.5.0->pytorch-lightning>=2.0.0->neuralprophet) (23.2.0)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>=2022.5.0->pytorch-lightning>=2.0.0->neuralprophet) (1.4.1)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>=2022.5.0->pytorch-lightning>=2.0.0->neuralprophet) (6.0.5)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>=2022.5.0->pytorch-lightning>=2.0.0->neuralprophet) (1.9.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>=2022.5.0->pytorch-lightning>=2.0.0->neuralprophet) (4.0.3)\n", + "Requirement already satisfied: pyasn1<0.7.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard>=2.11.2->neuralprophet) (0.6.0)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard>=2.11.2->neuralprophet) (3.2.2)\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "E1mh29w3Sy6L" + }, + "outputs": [], + "source": [ + "import os\n", + "for dirname, _, filenames in os.walk('/content/Meta Dataset.csv'):\n", + " for filename in filenames:\n", + " print(os.path.join(dirname, filename))" + ] + }, + { + "cell_type": "code", + "source": [ + "df = pd.read_csv('/content/Meta Dataset.csv')" + ], + "metadata": { + "id": "8c_Ju7QATJoJ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "cAsr-kobUzOy", + "outputId": "3f7ed0dc-3931-439f-a287-ad1025b5eb92" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "0 2012-05-18 42.049999 45.000000 38.000000 38.230000 38.189480 \n", + "1 2012-05-21 36.529999 36.660000 33.000000 34.029999 33.993931 \n", + "2 2012-05-22 32.610001 33.590000 30.940001 31.000000 30.967144 \n", + "3 2012-05-23 31.370001 32.500000 31.360001 32.000000 31.966084 \n", + "4 2012-05-24 32.950001 33.209999 31.770000 33.029999 32.994991 \n", + "\n", + " Volume \n", + "0 573576400 \n", + "1 168192700 \n", + "2 101786600 \n", + "3 73600000 \n", + "4 50237200 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateOpenHighLowCloseAdj CloseVolume
02012-05-1842.04999945.00000038.00000038.23000038.189480573576400
12012-05-2136.52999936.66000033.00000034.02999933.993931168192700
22012-05-2232.61000133.59000030.94000131.00000030.967144101786600
32012-05-2331.37000132.50000031.36000132.00000031.96608473600000
42012-05-2432.95000133.20999931.77000033.02999932.99499150237200
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 3028,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 3028,\n \"samples\": [\n \"2017-03-08\",\n \"2013-05-29\",\n \"2021-09-28\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 105.40700099311348,\n \"min\": 18.08,\n \"max\": 529.280029,\n \"num_unique_values\": 2827,\n \"samples\": [\n 159.559998,\n 106.839996,\n 288.700012\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 106.75387930706763,\n \"min\": 18.27,\n \"max\": 531.48999,\n \"num_unique_values\": 2826,\n \"samples\": [\n 157.339996,\n 161.570007,\n 203.639999\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 104.12406937022928,\n \"min\": 17.549999,\n \"max\": 518.890015,\n \"num_unique_values\": 2832,\n \"samples\": [\n 340.01001,\n 481.299988,\n 151.660004\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 105.48174560418151,\n \"min\": 17.73,\n \"max\": 527.340027,\n \"num_unique_values\": 2863,\n \"samples\": [\n 167.330002,\n 191.619995,\n 91.980003\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 105.40632424799894,\n \"min\": 17.711208,\n \"max\": 527.340027,\n \"num_unique_values\": 2864,\n \"samples\": [\n 163.77623,\n 187.690857,\n 91.882515\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 26104439,\n \"min\": 5467500,\n \"max\": 573576400,\n \"num_unique_values\": 3020,\n \"samples\": [\n 18151900,\n 19732100,\n 39619500\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.info()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "11DeCy8FU3Dd", + "outputId": "4001c9c8-786e-4b1b-ad12-01a88ba9a638" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 3028 entries, 0 to 3027\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Date 3028 non-null object \n", + " 1 Open 3028 non-null float64\n", + " 2 High 3028 non-null float64\n", + " 3 Low 3028 non-null float64\n", + " 4 Close 3028 non-null float64\n", + " 5 Adj Close 3028 non-null float64\n", + " 6 Volume 3028 non-null int64 \n", + "dtypes: float64(5), int64(1), object(1)\n", + "memory usage: 165.7+ KB\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "df['Date'] = pd.to_datetime(df['Date'])" + ], + "metadata": { + "id": "MIbX-diWU5Ph" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df.dtypes" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EyQaxbvyU_BS", + "outputId": "308ab937-3cc1-4ebf-e1c1-9cd24b7cd99d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Date datetime64[ns]\n", + "Open float64\n", + "High float64\n", + "Low float64\n", + "Close float64\n", + "Adj Close float64\n", + "Volume int64\n", + "dtype: object" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df = df[['Date', 'Close']]" + ], + "metadata": { + "id": "lUIxzDpJVBKb" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "U2M2H07qVE1I", + "outputId": "2f379ce0-2e55-4a1e-8fa2-0245055cdf5d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Date Close\n", + "0 2012-05-18 38.230000\n", + "1 2012-05-21 34.029999\n", + "2 2012-05-22 31.000000\n", + "3 2012-05-23 32.000000\n", + "4 2012-05-24 33.029999" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateClose
02012-05-1838.230000
12012-05-2134.029999
22012-05-2231.000000
32012-05-2332.000000
42012-05-2433.029999
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 3028,\n \"fields\": [\n {\n \"column\": \"Date\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2012-05-18 00:00:00\",\n \"max\": \"2024-05-31 00:00:00\",\n \"num_unique_values\": 3028,\n \"samples\": [\n \"2017-03-08 00:00:00\",\n \"2013-05-29 00:00:00\",\n \"2021-09-28 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 105.48174560418151,\n \"min\": 17.73,\n \"max\": 527.340027,\n \"num_unique_values\": 2863,\n \"samples\": [\n 167.330002,\n 191.619995,\n 91.980003\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "df.columns = ['ds', 'y']" + ], + "metadata": { + "id": "JcdIZLAUVIrk" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df.head()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "GPP29rdXVMLY", + "outputId": "0597a9c5-c97c-47f0-d7c2-064c2864ed50" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " ds y\n", + "0 2012-05-18 38.230000\n", + "1 2012-05-21 34.029999\n", + "2 2012-05-22 31.000000\n", + "3 2012-05-23 32.000000\n", + "4 2012-05-24 33.029999" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dsy
02012-05-1838.230000
12012-05-2134.029999
22012-05-2231.000000
32012-05-2332.000000
42012-05-2433.029999
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 3028,\n \"fields\": [\n {\n \"column\": \"ds\",\n \"properties\": {\n \"dtype\": \"date\",\n \"min\": \"2012-05-18 00:00:00\",\n \"max\": \"2024-05-31 00:00:00\",\n \"num_unique_values\": 3028,\n \"samples\": [\n \"2017-03-08 00:00:00\",\n \"2013-05-29 00:00:00\",\n \"2021-09-28 00:00:00\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"y\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 105.48174560418151,\n \"min\": 17.73,\n \"max\": 527.340027,\n \"num_unique_values\": 2863,\n \"samples\": [\n 167.330002,\n 191.619995,\n 91.980003\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "plt.plot(df['ds'], df['y'], label='actual', c='g')\n", + "plt.title('Meta Stock Prices Over TIme')\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Stock Price')\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "F9GyTMI3VO4H", + "outputId": "b9bd9853-6c58-4614-8c0f-e7a27cbd74b6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHHCAYAAABZbpmkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB240lEQVR4nO3dd1gUV9sG8HtpSwcboIKILfaGDUuMii3WaGKJxhJ7MIkaNRqNxhI1vnZj1CS2xK4xxt4Vo2JiF3tDsYGxUESk7M73B98OO+wCu7Cd+3ddXJk5c2b22WHjPpxz5hyZIAgCiIiIiGyUnbkDICIiIjImJjtERERk05jsEBERkU1jskNEREQ2jckOERER2TQmO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZNCY7RGRw7733HqpWrWq21y9dujT69etnttcnIsvCZIfo/61evRoymQwymQwnTpzQOC4IAgICAiCTydC+ffs8vcZPP/2E1atX5zNSTampqVi4cCFq1aoFT09PeHt7o0qVKhg8eDBu3Lgh1jt16hS+++47xMXFGTwGQ+nXr5/4e5DJZPD09ESNGjUwd+5cpKSkmDu8fEtLS8OiRYtQt25deHh4wN3dHXXr1sWiRYuQlpZm7vBEx44dk/wecvoBMv//OXv2rJkjJ9LkYO4AiCyNs7Mz1q9fj8aNG0vKw8PD8ejRI8jl8jxf+6effkLRokUN3urQtWtX7N27Fz179sSgQYOQlpaGGzduYNeuXWjYsCEqVqwIICPZmTJlCvr16wdvb2+DxmBIcrkcv/76KwAgLi4Of/zxB0aPHo0zZ85g48aNuZ5/8+ZN2NlZ3t9ySUlJaNeuHcLDw9G+fXv069cPdnZ22LdvH7788kts27YNu3fvhpubm7lDRaVKlfD7779LysaPHw93d3dMmDDBTFER5ZFARIIgCMKqVasEAEKXLl2EokWLCmlpaZLjgwYNEoKDg4XAwEChXbt2eXqNKlWqCE2bNjVAtJn+/fdfAYDw/fffaxxLT08Xnj9/Lu7/73//EwAIUVFRBo0hq6ZNmwpVqlTJ07l9+/YV3NzcJGUKhUKoU6eOAEB4/Pix1vOUSqXw5s2bPL2mqQwePFgAICxevFjj2I8//igAEIYOHWrSmPS5bzl9flX//5w5c8aA0REZhuX96UNkZj179sSLFy9w8OBBsSw1NRVbt27Fxx9/rPUcpVKJBQsWoEqVKnB2doavry+GDBmCV69eiXVKly6Nq1evIjw8XGz+f++99wAAL1++xOjRo1GtWjW4u7vD09MTbdu2xaVLl3KN9+7duwCARo0aaRyzt7dHkSJFAADfffcdxowZAwAICgoSY7h//z4AID09HdOmTUPZsmUhl8tRunRpfPPNN1q7jvbu3YumTZvCw8MDnp6eqFu3LtavX59jnAcOHICrqyt69uyJ9PT0XN+XOjs7O/FeqeItXbo02rdvj/3796NOnTpwcXHB8uXLxWNZW8/i4uIwcuRIlC5dGnK5HP7+/ujTpw+eP38u1klJScHkyZNRrlw5yOVyBAQEYOzYsRr34ODBg2jcuDG8vb3h7u6Od955B998802O7+HRo0dYsWIFmjdvjuHDh2scDwsLQ7NmzfDrr7/i0aNHAICqVauiWbNmGnWVSiVKliyJDz/8UFKW22cwt/tmaP369YO7uzuio6PRvn17uLu7o2TJkliyZAkAIDIyEs2bN4ebmxsCAwO1fobi4uIwYsQIBAQEQC6Xo1y5cvjhhx+gVCqNEjPZJiY7RFmULl0aISEh2LBhg1i2d+9exMfHo0ePHlrPGTJkCMaMGYNGjRph4cKF6N+/P9atW4fWrVuL4zAWLFgAf39/VKxYEb///jt+//13sTvg3r172L59O9q3b4958+ZhzJgxiIyMRNOmTfHkyZMc4w0MDAQArFu3LsckokuXLujZsycAYP78+WIMxYoVAwAMHDgQkyZNQu3atTF//nw0bdoUM2fO1HjPq1evRrt27fDy5UuMHz8es2bNQs2aNbFv375sX3vXrl3o2LEjPvroI6xduxYODvr3oKuSOlXyBmR0V/Xs2RMtW7bEwoULUbNmTa3nvn79Gk2aNMHixYvRqlUrLFy4EEOHDsWNGzfExEKpVKJjx46YM2cOOnTogMWLF6Nz586YP38+unfvLl7r6tWraN++PVJSUjB16lTMnTsXHTt2xMmTJ3OMf+/evVAoFOjTp0+2dfr06YP09HTxXnbv3h3Hjx9HTEyMpN6JEyfw5MkTye9Gl8+gvvfNEBQKBdq2bYuAgADMnj0bpUuXxvDhw7F69Wq0adMGderUwQ8//AAPDw/06dMHUVFR4rlv3rxB06ZNsXbtWvTp0weLFi1Co0aNMH78eIwaNcpoMZMNMnfTEpGlUG+G//HHHwUPDw+xef+jjz4SmjVrJgiCoNGN9ffffwsAhHXr1kmut2/fPo3y7LoB3r59KygUCklZVFSUIJfLhalTp+YYt1KpFJo2bSoAEHx9fYWePXsKS5YsER48eKBRN7turIsXLwoAhIEDB0rKR48eLQAQjhw5IgiCIMTFxQkeHh5C/fr1heTkZI04VNS7sf744w/B0dFRGDRokMZ71EbVjfXff/8J//33n3Dnzh1hxowZgkwmE6pXry7WCwwMFAAI+/bt07hGYGCg0LdvX3F/0qRJAgBh27ZtGnVVcf/++++CnZ2d8Pfff0uOL1u2TAAgnDx5UhAEQZg/f74AQPjvv/9yfS/qRowYIQAQLly4kG2d8+fPCwCEUaNGCYIgCDdv3tTa7fXZZ58J7u7u4udTn89gTvctN/p2Y/Xt21cAIMyYMUMse/XqleDi4iLIZDJh48aNYvmNGzcEAMLkyZPFsmnTpglubm7CrVu3JK81btw4wd7eXoiOjtb7PVDBxJYdIi26deuG5ORk7Nq1C4mJidi1a1e2XVhbtmyBl5cXWrZsiefPn4s/wcHBcHd3x9GjR3N9PblcLg6oVSgUePHihdg9cv78+RzPlclk2L9/P6ZPn45ChQphw4YNCAsLQ2BgILp3767Tk1d79uwBAI2/lr/66isAwO7duwFkdN8kJiZi3LhxcHZ21ogjqw0bNqB79+4YMmQIli9frvOg4aSkJBQrVgzFihVDuXLl8M033yAkJAR//vmnpF5QUBBat26d6/X++OMP1KhRAx988IHGMVXcW7ZsQaVKlVCxYkXJ77F58+YAIP4eVQO7//rrL726UhITEwEAHh4e2dZRHUtISAAAVKhQATVr1sSmTZvEOgqFAlu3bkWHDh3g4uIixq7PZ1DX+2YoAwcOFLe9vb3xzjvvwM3NDd26dRPL33nnHXh7e+PevXti2ZYtW9CkSRMUKlRI8r5CQ0OhUChw/Phxk70Hsm58GotIi2LFiiE0NBTr16/HmzdvoFAoJOMj1N2+fRvx8fHw8fHRevzZs2e5vp5SqcTChQvx008/ISoqCgqFQjym3m2THblcjgkTJmDChAl4+vQpwsPDsXDhQmzevBmOjo5Yu3Ztjuc/ePAAdnZ2KFeunKTcz88P3t7eePDgAYDMriRd5tCJiopC79698dFHH2Hx4sW51lfn7OyMnTt3iu8tKCgI/v7+GvWCgoJ0ut7du3fRtWvXHOvcvn0b169fF7v1slL9Hrt3745ff/0VAwcOxLhx49CiRQt06dIFH374YY7JnCqRUSU92mhLiLp3745vvvkGjx8/RsmSJXHs2DE8e/ZM0rWm72dQ1/tmCM7Ozhr31MvLC/7+/hoJspeXl2SM0e3bt3H58uVcfydEuWGyQ5SNjz/+GIMGDUJMTAzatm2b7aPaSqUSPj4+WLdundbj2f1DrW7GjBn49ttv8emnn2LatGkoXLgw7OzsMGLECL0HYhYvXhw9evRA165dUaVKFWzevBmrV6/WaZyMttaZvCpevDiKFy+OPXv24OzZs6hTp47O59rb2yM0NDTXeqqWDUNQKpWoVq0a5s2bp/V4QECA+JrHjx/H0aNHsXv3buzbtw+bNm1C8+bNceDAAdjb22s9v1KlSgCAy5cvZztG5vLlywCAypUri2Xdu3fH+PHjsWXLFowYMQKbN2+Gl5cX2rRpI4ldn8+gIe9bbrK7H9mVC4IgbiuVSrRs2RJjx47VWrdChQr5D5AKBCY7RNn44IMPMGTIEJw+fVrSjZBV2bJlcejQITRq1CjXL5HskomtW7eiWbNmWLFihaQ8Li4ORYsW1T94AI6OjqhevTpu376N58+fw8/PL9vXDwwMhFKpxO3bt8UvZQCIjY1FXFycOAi6bNmyAIArV65otAJl5ezsjF27dqF58+Zo06YNwsPDUaVKlTy9l/wqW7Ysrly5kmudS5cuoUWLFrkmfXZ2dmjRogVatGiBefPmYcaMGZgwYQKOHj2abZLWtm1b2Nvb4/fff892kPJvv/0GBwcHSSITFBSEevXqYdOmTRg+fDi2bduGzp07S+Z70uczaE3Kli2L169f65T4EuWEY3aIsuHu7o6lS5fiu+++Q4cOHbKt161bNygUCkybNk3jWHp6umTMjJubm9YxNPb29pK/aIGM8QqPHz/ONc7bt28jOjpaozwuLg4REREoVKiQ+Je9arK6rDG8//77ADKeGFOnauVo164dAKBVq1bw8PDAzJkz8fbtW0ndrPEDGd0S+/fvh4+PD1q2bCl2g5la165dcenSJY0xP0Bm3N26dcPjx4/xyy+/aNRJTk5GUlISgIxpArJStdTkNMNzQEAA+vfvj0OHDmHp0qUax5ctW4YjR45gwIABGl123bt3x+nTp7Fy5Uo8f/5c0oWlil3Xz6A16datGyIiIrB//36NY3FxcXpPYUAFF1t2iHLQt2/fXOs0bdoUQ4YMwcyZM3Hx4kW0atUKjo6OuH37NrZs2YKFCxeK432Cg4OxdOlSTJ8+HeXKlYOPjw+aN2+O9u3bY+rUqejfvz8aNmyIyMhIrFu3DmXKlMn19S9duoSPP/4Ybdu2RZMmTVC4cGE8fvwYa9aswZMnT7BgwQKxyyA4OBgAMGHCBPTo0QOOjo7o0KEDatSogb59++Lnn39GXFwcmjZtin///Rdr1qxB586dxblePD09MX/+fAwcOBB169bFxx9/jEKFCuHSpUt48+YN1qxZoxFf0aJFxXlpQkNDceLECZQsWVLn34EhjBkzBlu3bsVHH32ETz/9FMHBwXj58iV27NiBZcuWoUaNGvjkk0+wefNmDB06FEePHkWjRo2gUChw48YNbN68WZyXZurUqTh+/DjatWuHwMBAPHv2DD/99BP8/f01Zt3Oav78+bhx4wY+++wz7Nu3T2zB2b9/P/766y80bdoUc+fO1TivW7duGD16NEaPHo3ChQtrtHTo8xm0JmPGjMGOHTvE2aaDg4ORlJSEyMhIbN26Fffv389zyycVMOZ9GIzIcug6A2x2Myj//PPPQnBwsODi4iJ4eHgI1apVE8aOHSs8efJErBMTEyO0a9dO8PDwEACIj/G+fftW+Oqrr4TixYsLLi4uQqNGjYSIiAihadOmuc64HBsbK8yaNUto2rSpULx4ccHBwUEoVKiQ0Lx5c2Hr1q0a9adNmyaULFlSsLOzkzyGnpaWJkyZMkUICgoSHB0dhYCAAGH8+PHC27dvNa6xY8cOoWHDhoKLi4vg6ekp1KtXT9iwYYN4XNsMynfu3BGKFy8uVKpUKcfHtrXNoKxNTjNZZ330XBAE4cWLF8Lw4cOFkiVLCk5OToK/v7/Qt29fyQzTqampwg8//CBUqVJFkMvlQqFChYTg4GBhypQpQnx8vCAIgnD48GGhU6dOQokSJQQnJyehRIkSQs+ePTUej85OSkqKMH/+fCE4OFhwc3MTXF1dhdq1awsLFiwQUlNTsz2vUaNGWqcHUKfLZ9BYM4Bn9+i5tt9ldjNsa4stMTFRGD9+vFCuXDnByclJKFq0qNCwYUNhzpw5Od4vInUyQdDS9kxERERkIzhmh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEiIiKbxmSHiIiIbBqTHSIiIrJpnFQQGeuvPHnyBB4eHgZdG4iIiIiMRxAEJCYmokSJEjkuxMtkB8CTJ0/ERf6IiIjIujx8+FBjmRV1THYAeHh4AMi4WZ6enmaOhoiIiHSRkJCAgIAA8Xs8O0x2kLkStaenJ5MdIiIiK5PbEBQOUCYiIiKbxmSHiIiIbBqTHSIiIrJpTHaIiIjIpjHZISIiIpvGZIeIiIhsGpMdIiIismlMdoiIiMimMdkhIiIim8Zkh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEiIiKDSE5LNncIWjHZISIionybGj4VrjNccez+MXOHooHJDhEREeXb5GOTAQDDdg8zcySamOwQERGRwdx4fsPcIWhgskNEREQGpVAqzB2CBJMdIiIiMqg0ZZq5Q5BgskNEREQGxZYdIiIismnpynRzhyDBZIeIiIgMSiGwZYeIiIhsTO3itcVttuwQERGRzUhKTQIAuDq6imUcs0NEREQ24btj38F9pjv23dknSXAsrWXHwdwBEBERkXWaEj4FANB2XVu4ObqJ5SmKFHOFpBVbdoiIiCjfktKSMrdTk3KoaXpMdoiIiMig1BMfS8Bkh4iIiAzqdeprc4cgYdZk57vvvoNMJpP8VKxYUTz+9u1bhIWFoUiRInB3d0fXrl0RGxsruUZ0dDTatWsHV1dX+Pj4YMyYMUhPt6yBUURERAWJpXVjmX2AcpUqVXDo0CFx38EhM6SRI0di9+7d2LJlC7y8vDB8+HB06dIFJ0+eBAAoFAq0a9cOfn5+OHXqFJ4+fYo+ffrA0dERM2bMMPl7ISIiKihyeuLqRfILE0aSO7N3Yzk4OMDPz0/8KVq0KAAgPj4eK1aswLx589C8eXMEBwdj1apVOHXqFE6fPg0AOHDgAK5du4a1a9eiZs2aaNu2LaZNm4YlS5YgNTXVnG+LiIjIpm25uiXbY4N2DjJhJLkze7Jz+/ZtlChRAmXKlEGvXr0QHR0NADh37hzS0tIQGhoq1q1YsSJKlSqFiIgIAEBERASqVasGX19fsU7r1q2RkJCAq1evZvuaKSkpSEhIkPwQERGR7p6+fmruEHRm1mSnfv36WL16Nfbt24elS5ciKioKTZo0QWJiImJiYuDk5ARvb2/JOb6+voiJiQEAxMTESBId1XHVsezMnDkTXl5e4k9AQIBh3xgREZGN83Xzzb2ShTDrmJ22bduK29WrV0f9+vURGBiIzZs3w8XFxWivO378eIwaNUrcT0hIYMJDRESkB2cH5xyPC4IAmUxmomhyZvZuLHXe3t6oUKEC7ty5Az8/P6SmpiIuLk5SJzY2Fn5+fgAAPz8/jaezVPuqOtrI5XJ4enpKfoiIiEh3uS0Jse36NhNFkjuLSnZev36Nu3fvonjx4ggODoajoyMOHz4sHr958yaio6MREhICAAgJCUFkZCSePXsm1jl48CA8PT1RuXJlk8dPRERUUKQp03I8HvEowkSR5M6s3VijR49Ghw4dEBgYiCdPnmDy5Mmwt7dHz5494eXlhQEDBmDUqFEoXLgwPD098fnnnyMkJAQNGjQAALRq1QqVK1fGJ598gtmzZyMmJgYTJ05EWFgY5HK5Od8aERGRTcutZSc5LdlEkeTOrMnOo0eP0LNnT7x48QLFihVD48aNcfr0aRQrVgwAMH/+fNjZ2aFr165ISUlB69at8dNPP4nn29vbY9euXRg2bBhCQkLg5uaGvn37YurUqeZ6S0RERAVCbsmOncxyOo/Mmuxs3Lgxx+POzs5YsmQJlixZkm2dwMBA7Nmzx9ChERERUQ7SFDl3Y1lSsmM5kRAREZHViI6PzvE4kx0iIiKyWoIgYNbJWTnWYbJDREREVmvLteyXilBhskNERERWq/vW7hplnd7phI1dM8fiMtkhIiIim9G6bGv82f1P+Lj5iGVH7h9BtaXV8M+jf8wYWQYmO0RERJRn5wefx77e+yCTyVDMrZhYfvbJWVx5dgUNVjTA8rPLzRghkx0iIiLKh1rFa4nbVX2qaq0zdPdQU4WjFZMdIiIiMph25duZOwQNTHaIiIhIZ0vPLM3xuKWsdK6OyQ4RERHpJDI2Ep/t+SzHOjIw2SEiIiIr9fzN81zrZNeyIwiCocPRGZMdIiIi0oncQZ7nc1MUKQaMRD9MdoiIiEgncvvck53surGS05INHY7OmOwQERGRTnRp2cmuGys5nckOERERWTgHOwfJfgP/Bhp12LJDRERENmND1w061xVgvgHKDrlXISIiItKNtm6sRyMfoaRnSTNEk4EtO0RERKSTrI+PKwWlRh31bqzuVbrj1vBbZk10ACY7RERElEfa5s5Rb9kpW6gsyhcpb8qQtGKyQ0RERDrJOu6muEdxjTrqLTuujq5Gj0kXTHaIiIhIb/VK1ss1mWGyQ0RERFZFvduquLtmqw4g7cZiskNERERWq4hLEa3l6t1Ybk5upgonR0x2iIiISCfqY3ZmtJihtQ5bdoiIiMjq+bj5wNfdV+sx9ZYdFwcXU4WUIyY7REREpBNtj5rnJD+rpBsSkx0iIiLSS3brXwHSbixHO0dThJMrJjtERESkE13Wt1JPhJzsnYwZjs6Y7BAREZFetK1/pe2Yoz1bdoiIiMiK6DJm596re+I2W3aIiIjIKuU0ZufUw1PiNsfsEBERkVXRZcyOOrbsEBERkVXKaczOZ3U+E7c5ZoeIiIisii5jdoJLBIvbbNkhIiIiq5TTmB1nB2dxm2N2iIiIyKroMmZHbp85azJbdoiIiMgq5TRmR32JCI7ZISIiIquiy5gd9dYcdmMRERGRVdJ1zE5OLUCm5GDuAIiIiMg66DJmJ8Q/BNV9q6O0d2njB6QjJjtERESkl5xabBztHXFxyEXTBaMDJjtERESkE13G7ACW032lwjE7REREpJecxuxYIiY7REREZNOY7BAREZFO9F0I1FIw2SEiIiK9WNqYnNww2SEiIiKd6DpA2dIw2SEiIiK9cIAyERER2SSO2SEiIqICgWN2iIiIyCZxzA4REREVCByzQ0RERDaJY3aIiIioQOCYHSIiIrJJHLOTT7NmzYJMJsOIESPEsrdv3yIsLAxFihSBu7s7unbtitjYWMl50dHRaNeuHVxdXeHj44MxY8YgPT3dxNETEREVHByzkwdnzpzB8uXLUb16dUn5yJEjsXPnTmzZsgXh4eF48uQJunTpIh5XKBRo164dUlNTcerUKaxZswarV6/GpEmTTP0WiIiIbB7H7OTR69ev0atXL/zyyy8oVKiQWB4fH48VK1Zg3rx5aN68OYKDg7Fq1SqcOnUKp0+fBgAcOHAA165dw9q1a1GzZk20bdsW06ZNw5IlS5Cammqut0RERGSTzjw+AwC4/fK2mSPRj9mTnbCwMLRr1w6hoaGS8nPnziEtLU1SXrFiRZQqVQoREREAgIiICFSrVg2+vr5indatWyMhIQFXr17N9jVTUlKQkJAg+SEiIqKcjTowytwh5ImDOV9848aNOH/+PM6cOaNxLCYmBk5OTvD29paU+/r6IiYmRqyjnuiojquOZWfmzJmYMmVKPqMnIiIia2C2lp2HDx/iyy+/xLp16+Ds7GzS1x4/fjzi4+PFn4cPH5r09YmIiMh0zJbsnDt3Ds+ePUPt2rXh4OAABwcHhIeHY9GiRXBwcICvry9SU1MRFxcnOS82NhZ+fn4AAD8/P42ns1T7qjrayOVyeHp6Sn6IiIjINpkt2WnRogUiIyNx8eJF8adOnTro1auXuO3o6IjDhw+L59y8eRPR0dEICQkBAISEhCAyMhLPnj0T6xw8eBCenp6oXLmyyd8TERERWR6zjdnx8PBA1apVJWVubm4oUqSIWD5gwACMGjUKhQsXhqenJz7//HOEhISgQYMGAIBWrVqhcuXK+OSTTzB79mzExMRg4sSJCAsLg1wuN/l7IiIiIstj1gHKuZk/fz7s7OzQtWtXpKSkoHXr1vjpp5/E4/b29ti1axeGDRuGkJAQuLm5oW/fvpg6daoZoyYiIiJLIhOsde5nA0pISICXlxfi4+M5foeIiEgLpaCE/VR7cV+YbP70Qdfvb7PPs0NERESWLyk1Sdy+98U9M0aiPyY7RERElKvE1EQAgL3MHqW9S5s3GD0x2SEiIqJcJaRkrDbg5uQGmYwLgRIREZnUy+SXmHNqDu6+vGvuUGzWd8e+A5CZ9FgTi34ai4iISBdFZhcBAIw5OMYiBs7aok1XN5k7hDxjyw4REVm1dGW6uUMoENpXaA8A8HDyMHMk+mOyQ0REVi3ubZxk/1nSM+0VKV+8nb0BAJOaTjJvIHnAZIeIiKxa/Nt4yf66y+vMFIltS1WkAgCc7J3MHIn+mOwQEZFVyzpgNvJZpJkisV2CIOBE9AkAgKOdo5mj0R+THSIisjpv0t5gwekFuPfqHuJTpC07sUmxZorKdh2JOoIniU8AAI72THaIiIiMrszCMhi5fyTKLiqr0Y3FMTuGt+f2HnGb3VhEREQmoN56k5yeLDmWkp5i6nBsnvogcHZjERERmVhyWkayYyfL+EpLU6aZMxybtPLiSnHbGu8vkx0iIrJqw3YPA5CxKjcApCms78vY0nWr0k3cfpX8yoyR5A2THSIismopCmm3lTW2PFi6IO8gcfvdwHfNGEneMNkhIiKbwpYdw1MoFQCAEP8Q1Cpey8zR6I/JDhER2ZS36W/NHYLNUQgZyY41tuoATHaIiMhGLGi9AACQmJoIQeBioIakatmxl9mbOZK8YbJDREQ2oYF/AwAZC4NmHcdD+aNq2bG3Y7JDRERkNuWLlBe3sy4hQXm3+9ZuLDmzBADwMOGhmaPJGyY7RERkE1SrcgPAmcdnzBeIjWm/ob24vfriavMFkg9MdoiIyCqcf3oePv/zyfYLVzWpIABMPT7VRFEVLF83+trcIeQJkx0iIrIKbde1xX9v/kP/v/prHMu6XpO/p7+pwrJpW65ukey3KdfGTJHkD5MdIiKyCtkt8Nk0sCn+7v+3pGzb9W2mCMnmDd41WLLvKfc0UyT5w2SHiIisWuNSjVGvZD1zh2GT3iv9nmSfyQ4REZGJ2cvsMaj2IHOHYbOyzqvDZIeIiMjEkr5JQqB3oNZj6hMLrji/Artu7TJVWDbjdepryT6THSIiIiPycPLQKJM7yLOtr1oQ9Pp/1zFw50B02NBBPHYi+gSG7hqKuLdxBo/TlmRNdpwdnM0USf4w2SEiIquQdfxIblIVqQCkE+GdfnQaANBkVRMsP7ccw/cMN1h8tigxNdHcIRgEkx0iIrIKO2/t1Kt+YkrGF3W6Ml0s67Wtl6TOush1+Q/MhmVt2bFWDuYOgIiIyFCaBjZF+INwAECjlY1QplAZ+Ln7icfvvbqHBacXmCk66xD7OhY/n/sZA2oPEBPGEfVHoGe1nmaOLO9kApeGRUJCAry8vBAfHw9PT+scfEVEZOtkU2QaZcJk6VdYYkoiPGfp/u94VZ+qiBwWme/YbEmp+aXwMOEhKhSpgIfxD5GcnoyoL6NQ2ru0uUPToOv3N7uxiIjI4ql3Ram31GTlIdccxJyTK8+u5DkmW6Ua43TrxS0kpycDANyd3M0ZUr4x2SEiIouWlJqE6ceni/tB3kEGvb5CqTDo9WyRtifhrAmTHSIismjdtnbDlPAp4n7PqhljR1wdXbXW71Ojj17X5+PnmSIeRmiUOdg5aKw9Zm2Y7BARkUXbc3uPZP+zup9hRccVuDz0stb6cvvs597RZs6pOXmOzdaMPzxeoyxdmQ6ZTHO8lDVhskNERBZr05VNGmX2dvb4tNanKFu4rNZzzj89r9drzDo5K0+x2aLsFlu1dkx2iIjIYvX4o4fe55x7ek7vc14mv9T7HFvUPKi5uUMwCiY7RERkUS7HXkbY7jDEvo7N0/ky6N/lwqeyMpQpVMbcIRgFJxUkIiKLUmNZDQBAVFyUxrEBtQbker6zg7P4yLSu1B9tL2hOPzqNfx79gy/qf4GIR5oDlG1BvpKdt2/fwtnZOhcFIyIiy/bv438l+3t77dWpm8Xf0x+3X97W67VsPdkRBCHbQcYhK0IAAMU9iuNxwmNThmUyendjKZVKTJs2DSVLloS7uzvu3bsHAPj222+xYsUKgwdIREQFU1JakmS/canGOj0C3SKohUZZIedC+KjyR9mek6ZI0z9AK7Hvzj4U/V9RbL+xPcd6V55dEVeK93b2Nn5gJqR3sjN9+nSsXr0as2fPhpNT5oeuatWq+PXXXw0aHBERFVxv09+K23NbzdV5Ft/ZLWdrlG3ouiHH5Q7OPDmDC08v6B2jNXh/3ft4mfwSH2z6IMd6045PE1u41JOd6c2mZ3OG9dA72fntt9/w888/o1evXrC3txfLa9SogRs3bhg0OCIiImcHZ4wKGaVzfQ+5B2a2mCkp83L2goNd5siN4/2OY2KTieL+lPApqP1zbZtZ5VudAN2XwFS1cJXwKCGWDas7zOAxmZreyc7jx49Rrlw5jXKlUom0NNttBiQiItMo5VVKsu8p13+B5q8bfY09H2dORujs4CxJdtyd3DGt+TSNrq2ElAS9X8ua5Lb2t6obq6RHSbHM0c7RqDGZgt7JTuXKlfH3339rlG/duhW1atUySFBERFRwuTi4SPZT0lP0voZMJoO/p7+47+zgLPnSVi01cTjqsOQ8fWdftjZZB2JnTX5evHkBAChbKHPCRmtfKgLIw9NYkyZNQt++ffH48WMolUps27YNN2/exG+//YZdu3YZI0YiIipAnB2kT/nGp8Tn6TqO9pnJjdxeLmnZUSU7WScT1KfLx1oUdS2K52+eAwCS05Ml9+VN2htJ3RfJGclOnRJ1xDL1+tZK75adTp06YefOnTh06BDc3NwwadIkXL9+HTt37kTLli2NESMRERUgLo4uuVfSgXpLjtxB2mKjSnY+rfmpQV7LUt2Puy8mOgAw99RcyfG7r+5qnGMvs8e7ge+K+3Yy659/OE/z7DRp0gQHDx40dCxEREQG60pS/5KW28vF8ShAZrITWiYUKy+uFMtzG9Nibbpv7S7Zn3p8KqY0y1xB/vYLzfmIinsURzG3Yrgy7IrBEk9z0zvZOXPmDJRKJerXry8p/+eff2Bvb486depkcyYREVH2poVPw+nHp6EQFJLyGr418nQ99S4puYNcMpeOqqvM3s4+23OsnUKp0JiYMaus3VhA5vpYVXyqGCUuc9C7bSosLAwPHz7UKH/8+DHCwsIMEhQRERU83//9Pfbc3oMT0Sck5XntRlHvxnKyd0KqIlXcV80mbC/LkuzYUMvOg/gH2R7bcXMHyi8ur3V5iAdx2Z9nrfRu2bl27Rpq166tUV6rVi1cu3bNIEEREVHBk6LQ/tRV1tYXXQV4BWBkg5HwcPLQSHayu7YtteyoD8jOqtPGTgCAOy/vaBwLfxButJjMRe9kRy6XIzY2FmXKSFdGffr0KRwcuK4oERHpT1siovJ5vc/zfN15reeJ20pBqXHcllt2tL2Xmn41cz1vctPJRojGvPRuG2zVqhXGjx+P+PjMRwHj4uLwzTff8GksIiLKk0sxl7I99kn1TwzyGtq6w7IujmlLLTvqA7JVLsZczPU89Tl2bIXeyc6cOXPw8OFDBAYGolmzZmjWrBmCgoIQExODuXPn5n4BIiKiLHJKMrJbrVtfHd/pCAAo4lJELEtMSZTGYUMtO9m1loXfz7mbKq/dhpZM72SnZMmSuHz5MmbPno3KlSsjODgYCxcuRGRkJAICAvS61tKlS1G9enV4enrC09MTISEh2Lt3r3j87du3CAsLQ5EiReDu7o6uXbsiNjZWco3o6Gi0a9cOrq6u8PHxwZgxY5Cenp71pYiIyACWn12Onn/0NPgq4aZYk6pZUDOcHnAaN4ZnruOomkRPxaZadrL5He24uSPH83Ia62Ot8vSO3NzcMHjw4Hy/uL+/P2bNmoXy5ctDEASsWbMGnTp1woULF1ClShWMHDkSu3fvxpYtW+Dl5YXhw4ejS5cuOHnyJABAoVCgXbt28PPzw6lTp/D06VP06dMHjo6OmDFjRr7jIyIiqaG7hwIAIh5G4P6I+wa7btzbOINdKyf1/aXTpqjm21GxpZYdbd1YQO6TNqqvNm8rdEp2duzYgbZt28LR0RE7duScEXbs2FHnF+/QoYNk//vvv8fSpUtx+vRp+Pv7Y8WKFVi/fj2aN8945n/VqlWoVKkSTp8+jQYNGuDAgQO4du0aDh06BF9fX9SsWRPTpk3D119/je+++w5OTta/ngcRkSXK6bHmvIh/q31JiE7vdDLo62TVq1ovDNgxQNwvCC07ubXc7Lm9B31q9DFGSGajU7LTuXNnxMTEwMfHB507d862nkwmg0KhyPZ4ThQKBbZs2YKkpCSEhITg3LlzSEtLQ2hoqFinYsWKKFWqFCIiItCgQQNERESgWrVq8PX1Feu0bt0aw4YNw9WrV7NdmDQlJQUpKZmPOCYk2PYqt0RElk5by87zMc9RyKWQUV836zISttSyk92YnSnhUzTKqvtWx+XYywCAsY3GGjUuc9BpzI5SqYSPj4+4nd1PXhKdyMhIuLu7Qy6XY+jQofjzzz9RuXJlxMTEwMnJCd7e3pL6vr6+iImJAQDExMRIEh3VcdWx7MycORNeXl7ij75jjYiIyLC0LfZZxLWIyddlsqmWnWy6sbTpUaWHuF3dt7oxwjErvT5FaWlpaNGiBW7f1lxLI6/eeecdXLx4Ef/88w+GDRuGvn37Gn1yQtWj86ofbTNCExGR6SSnJZs7BJuTki6dpNHN0S3buq/evhK3bXGAsl7JjqOjIy5fvmzQAJycnFCuXDkEBwdj5syZqFGjBhYuXAg/Pz+kpqYiLi5OUj82NhZ+fn4AAD8/P42ns1T7qjrayOVy8Qkw1Q8REekna5fPlWdX0G97P9yPu6/3tVSDYpuVbgYAGFR7UL7jywtb6sbKOhNyYZfCWuut7rTaJgclq9O7fbB3795YsWKFMWIBkNFNlpKSguDgYDg6OuLw4cPisZs3byI6OhohISEAgJCQEERGRuLZs2dinYMHD8LT0xOVK1c2WoxERASNBTvfX/c+1lxag7br2up1nUP3DmHRv4sAAO+Vfg/x4+KxvP1yg8WZm3bl24nbttSN9b9T/5PsZ012/uz+JyY2mYg+NfrYVJKnjd5tVenp6Vi5ciUOHTqE4OBguLlJm8XmzZuXzZmaxo8fj7Zt26JUqVJITEzE+vXrcezYMezfvx9eXl4YMGAARo0ahcKFC8PT0xOff/45QkJC0KBBAwAZszlXrlwZn3zyCWbPno2YmBhMnDgRYWFhkMvlubw6ERHlR7oyXdLl8TAhY0jAjec3sjtFq5a/Z86+L7eXw1Nu2tb2VZ1WwWdOxrhUW/7Sd3dyl+x3rtgZnSt2BqB9KQ1boneyc+XKFXEh0Fu3bkmO6TvL5bNnz9CnTx88ffoUXl5eqF69Ovbv3y8uOzF//nzY2dmha9euSElJQevWrfHTTz+J59vb22PXrl0YNmwYQkJC4Obmhr59+2Lq1Kn6vi0iItJTutLwE7ga+pF2XRRzKwYPJw8kpibaVMtOVmULl8XJhye1HrPl9w3kIdk5evSowV48t+4wZ2dnLFmyBEuWLMm2TmBgIPbs2WOwmIiIKHuujq54k/YGgHGSnfWR6/FTu59yr2gkttCyIwgChu0eJu7PaTkHjUo1wtrLa3M8x5bpNWZn06ZN6NWrFz766CMsW7bMWDEREZGFUn8UPKdkZ+KRiSizsAz+S/pPr+tX8amS59jyQ9UzYQstHBdiLmD5ucwxT4ODB6OBfwMkpSVle05wiWBThGY2OrfsLF26FGFhYShfvjxcXFywbds23L17F//73/9yP5mIiGyOerKT9Wme7//+HgDQem1rnB9yXudrLnk/+5Z8Y5Lh/5MdG2jhyLrOmGp5CPXfkbezt6RO/5r9kaZIQ5PAJkaPzxx0btn58ccfMXnyZNy8eRMXL17EmjVrJONniIjI9qknA+rJTtWfqmqtfyHmgl7XL1uobN4CyydbatnJOkBcNYg8KTWzZefL+l9K6tjb2WNY3WGo6qP992jtdE527t27h759+4r7H3/8MdLT0/H06VOjBEZERJZH/akd9WTn7qu7Op1/Mvok7r26J+6/Sn4lOZ71iSFTsaWWnSG7hmgtd3PKfHp6QpMJpgrHIujcjZWSkiJ5zNzOzg5OTk5ITuasl0REBYV6sqPvRHRXn11F41WNAQDC5IykIjld+h2i71O9hmJLLTvZmdViFu6+vIsRDUbA0d7R3OGYlF5PY3377bdwdXUV91NTU/H999/Dy8tLLNNnnh0iIrIu6slOYkoiAN1bQ848OaNRZownuvLCllp21FUqWkncDvQOxL+D/jVjNOajc7Lz7rvv4ubNm5Kyhg0b4t69zOZIc2XkRERkGurJSUJKgkaZNqmKVDjYOSBNobkwZdb1m8zFVr+/VJMGFnQ6JzvHjh0zYhhERGTplIJS0s2jSnayrsGUlXy6HK3KtkKbsm00jql3hc0OnW2gSPUntuzYQDeWDDLxfXxe73MzR2MZbG9pUyIiMoqsLTiJqRndWOrLPWTnwN0DCPQKlJQJgiAmO6W8SmFMozEGilR/4pgdK+/GUk9IY0fHwsfNx8wRWQYmO0REpJOs3VBrLq1B7+q9dT5f/SmsxisbIyktCZWLZSzaHB0fbZgg88hWWnbi38aL23J7rhGpwmSHiIh0krVl50jUEdx9qdsj5wBwOOqwuK1ao+lizEWDxJZfttCyEx0fjcAFma1ncgcmOyp6LRdBREQFV6oiVaNs2vFp2daf03KOMcMxKFto2Tn18JRk39nB2UyRWB69k520NM3R9CrPnz/PVzBERGSZHsQ9wDeHv9EoVw1S1saavmxtoWVHfd0yktL7zvTo0UPrhyE2NhbvvfeeIWIiIiILU2ZRGfx64VeN8lsvbmV7jmpNJmtgCy07qtXoSZPeyU50dDQGDhwoKYuJicF7772HihUrGiwwIiKyHOqTCaq7/vy6RtnEJhMxtuFY9KrWS+frz2g+I8+xGZI1t+yoJzueck8zRmJ59E529uzZg1OnTmHUqFEAgCdPnqBp06aoVq0aNm/ebPAAiYjIsjQNbJrj8Qb+DfBDyx8gd5Dj34G6zdh7++VtQ4SWZ7awXIR6slPYpbAZI7E8ej+NVaxYMRw4cACNG2esb7Jr1y7Url0b69atg50d+wuJiGxdo4BGcHV0xd47e7UeVx+rU7dkXcxpOQejD47O8Zod3+lo0Bj1ZQvLRcS+jhW365SoY8ZILE+espOAgAAcPHgQ69atQ7169bBhwwbY29sbOjYiIrJAro6ukhW0c/NprU9zrRPkHZSfkPLNFlp2/rj+h7j90/s/mTESy6NTy06hQoW0rhvy5s0b7Ny5E0WKFBHLXr58abjoiIjI4tQrWQ/Xnl/L9niFIhUk+4VcCqFCkQo5DmZ2sDPvtG+qlh1rJQgCouKiAADXw66jmFsxM0dkWXT6dC1YsMDIYRARkbUILROK9VfWa5Tf/vw2klKTEOAVoHHM3cldsl+mUBnJjMpmT3as/NFz9Qkffd18zRiJZdLp09W3b19jx0FERFZCJpPByc5JUta9SneUK1wu23OyJjM/hP6Aj7Z8JO5n97SXqVj7o+fqyY6jvaMZI7FMeqfSe/bsgb29PVq3bi0pP3DgABQKBdq2bWuw4IiIyDI52WcmO4VdCuOXDr/kWF99Xa1zg8/BzVE65ic5PdmwAerJllp2zN1KZon0HqA8btw4KBQKjXKlUolx48YZJCgiIrIc6t1NqzqtAgDEp2QuOLm47WJ4yD1yvIb6UhO1i9fW+ELOuiK6qdlSyw6THU16Jzu3b99G5cqVNcorVqyIO3fuGCQoIiKyHF/u+1LcblmmJQAg5nWMWFbUtWiu18i6rlbZwmUxsclEfFDxA1wPu44irkWyOdM0rL1lJ02Z2XJmL+PT0Vnpnf55eXnh3r17KF26tKT8zp07cHPT/VFEIiKyDvfj7ovbqvEg6jP06vIkk9ZFRJtnv4ioqVl7y05yWkY3oNxervXp6YJO75adTp06YcSIEbh7965YdufOHXz11Vfo2NG8k0IREZHhlSlURtxWtRr4e/qLZbp8uVr6F7C1t+wkpiYCQK7diQWV3snO7Nmz4ebmhooVKyIoKAhBQUGoVKkSihQpgjlz5hgjRiIiMqPi7sXFbdXinurJjnoylB1HO8t+QsjaW3a239gOAHj+5rl5A7FQeerGOnXqFA4ePIhLly7BxcUF1atXx7vvvmuM+IiIyIzSlemIjo8GALQt1xaujq4AgEG1B2HMwTEo7V1ap2TH0gfNWnvLzrdHvzV3CBYtT58+mUyGVq1aoVWrVoaOh4iILMSys8swbPcwcb9uibritpezF5STlDp3T9X0q6l1hXRLYe0tO5SzPK2NFR4ejg4dOqBcuXIoV64cOnbsiL///tvQsRERkZkkpCRIEh0AsJNJvzL0GYezuO1iDA0eqvMq6KZmrS07l2Mv48PNH4r7+3vvN2M0lkvvZGft2rUIDQ2Fq6srvvjiC3zxxRdwcXFBixYtsH695vThRERkXXbd2gWvWV4a5VmTHX0UcS2Cpe2Xom7JurlXJp2FrAiRLADq5+5nxmgsl97dWN9//z1mz56NkSNHimVffPEF5s2bh2nTpuHjjz82aIBERGRaQ3YN0Vqen2TH0llrN9abtDeS/SIu5p2vyFLp/cm9d+8eOnTooFHesWNHREVFGSQoIiIyj5/P/YwniU+0HrPpZMdKu7Gy8nHzMXcIFknvT25AQAAOHz6sUX7o0CEEBGiudEtERNYju1YdwMaTHStt2VFX2KUwFwHNht7dWF999RW++OILXLx4EQ0bNgQAnDx5EqtXr8bChQsNHiARERlfUmoSrjy7kmMdW0527O0yJktUX2PK2rxMfmnuECyW3snOsGHD4Ofnh7lz52Lz5s0AgEqVKmHTpk3o1KmTwQMkIiLj6/dXP2y9tjXHOrac7Lg4ZEyW+Db9raT81MNT2HlzJ7577zvIHeTmCI0MIE/z7HzwwQf44IMPDB0LERGZSW6JDiBd6dzWqGaGVl/hHQAarWwEIGMZhm+afGPyuMgw9E7Ty5QpgxcvXmiUx8XFoUyZ3GfRJCIi66G+grZqsUlbdCTqCADgqwNfaT1+IeaCKcPRmfrvZ1fPXWaMxLLpnezcv38fCoVCozwlJQWPHz82SFBERGQZOlfsLG77uvuaLxAzuPn8pritnlRYEi/njPmQLgy5gHYV2pk5GsulczfWjh07xO39+/fDyytzwimFQoHDhw+jdOnSBg2OiIjMq0OFDjj96DRiXsdgSHD2T2rZoq8PfS1uW+pTTgplRuODas0y0k7nZKdz584AMuYi6Nu3r+SYo6MjSpcujblz5xo0OCIiMg07mR2UglKj3NHeEY9GPTJDROanfj8sdSFThZCR7Fhqy5Ol0Pm3p1Rm/NKDgoJw5swZFC1a1GhBERGRabk5uiExNVGj3NHOMls0TEH9ySxLvQ+qhMyWn5QzBL3vTlRUFBMdIiILl5CSgMlHJ+Paf9d0qp/dY9WW2n1jCurJn53MDiejT6L/X/3x/M1zM0YlperGUs0TRNrpnOxERERg1y7pSO/ffvsNQUFB8PHxweDBg5GSkmLwAImISD81l9WE1ywvTD0+FVV+qqLTOWmKNADAojaL0DyouVhuqd03pqA+QDnubRwar2qM1RdX44u9X5gxqgxKQYlNVzYhRZHxvcuWnZzpfHemTp2Kq1evivuRkZEYMGAAQkNDMW7cOOzcuRMzZ840SpBERKSbJ4lPcCn2kt7npSpSAQAd3umAJe8vEcsttfvG0NQH+B67fwwAUMKjhFgWHR8tbt96cctkcWVn582d6PFHD3GfY3ZypnOyc/HiRbRo0ULc37hxI+rXr49ffvkFo0aNwqJFi8QZlYmIyDwexD3I03lpyoyWHUc7R0krgZuTm0HisnTdq3QXt0cfGA1Auk7Wi+TM+eUsYf2sizEXJfvsxsqZzsnOq1ev4OubOcdCeHg42rZtK+7XrVsXDx8+NGx0RERGIAgC+vzZB1PDp5o7FIPbcGWDRlmx/xXD98e/z/YcQRDENaGc7J3ERTEBaeuGLVvcdrG4/Sgh4+kz9fFO6q05lrAyetbfC7uxcqbz3fH19UVUVBQAIDU1FefPn0eDBg3E44mJiXB0LBjNnURk3Y4/OI7fL/+OyccmmzsUk3j+5jkmHp2Y7XFVFxaQMSA5ISVB3C8oyY56C1bb8m2x7OwyM0aTM6WgxOBdgyVl7MbKmc7Jzvvvv49x48bh77//xvjx4+Hq6oomTZqIxy9fvoyyZcsaJUgiIkNS75KwNXn5C/9N2htx29XRFe8UfQcyyFDMtRicHZwNGZ5FC6sbBgDw9/DHsN3Dsq1n7m6s4w+Oa5SxGytnOg+znzZtGrp06YKmTZvC3d0da9asgZOTk3h85cqVaNWqlVGCJCIyJPUvd1vzOFH/ZXsG7RwkbjvZO8HJ3gkvv34prgReUGS38rml+XLflxpl7MbKmc7JTtGiRXH8+HHEx8fD3d0d9vbSLHLLli1wd3c3eIBERIZmy8mO6qmhfjX7YfXF1ZJjgiBAJpNJyh7EPcAf1//QuI63s7exQrRYqlasORFzcqxn7jE7l2Mva5SxGytneqeCXl5eGokOABQuXFjS0kNEZKmG7LLNNZ6UghL/Pv4XAFDGu4zGcfWxOSrqj1QX9C9MXbvsnOzN+12nbRwVW3ZyxrtDRAWKuf8qN6aJRzIHIZctrDmG8nXqa42y2KRYcbugLybp4qjZbTehyQT0qNpDUmbu++TrlvFktPrCrByzkzMmO0RUoJx7es7cIRhFUmoSZp7InNjVx81Ho462ZOdZ0jOjxmVNtLXsuDu5Y3qz6ZIycyY7giDgQswFANLfcUGe6VoXZk12Zs6cibp168LDwwM+Pj7o3Lkzbt68Kanz9u1bhIWFoUiRInB3d0fXrl0RGxsrqRMdHY127drB1dUVPj4+GDNmDNLT0035VojISuy6JV32xlJaeo7dP4Z1l9ch/H54ns5f/O9iyb62L7+ktCSNsgN3D4jbBb0rRFuy42DnoNFqoq0FyBSUghL1f60v7rev0B69q/fGvFbzzBKPNTFrKhgeHo6wsDDUrVsX6enp+Oabb9CqVStcu3YNbm4Zcx6MHDkSu3fvxpYtW+Dl5YXhw4ejS5cuOHnyJABAoVCgXbt28PPzw6lTp/D06VP06dMHjo6OmDFjhjnfHhFZoCnhUyT7SkFp9rEqqYpUNFvTTNw/3OewZH0qXZx/el6yry3Z0day89fNv8TtoXWG6vWatibAM0CjzNHOUeNemusptQ2RG3DmyRlx38PJA79/8LtZYrE2Zk3j9+3bh379+qFKlSqoUaMGVq9ejejoaJw7l9HMHB8fjxUrVmDevHlo3rw5goODsWrVKpw6dQqnT58GABw4cADXrl3D2rVrUbNmTbRt2xbTpk3DkiVLkJqqORiPiAqmiIcR8Jvjp1GuFJRmiEbq3qt7kn311pbcHLp3CGG7w7Dl2pbM83sfQEp65sLMhZwLAdCe7Kj4ufthyntTsj1eELxT9B2NMkd7R41keF3kOvzv5P9MFZYoa0JbUJbyMASLarOMj48HkPFkFwCcO3cOaWlpCA0NFetUrFgRpUqVQkREBICM1dirVasmWcqidevWSEhIkCxcSkQFW8OVDSWDcVUsIdnJ+oi4l9xL53M/+fMT/HT2J3F/WbtlaFm2JbycM69RoUgFAJrJjnoX3sauGyF3kOsTts3x9/TXKNPWsgMAYw+NNUVIElknMzT3QGlrYjHJjlKpxIgRI9CoUSNUrVoVABATEwMnJyd4e3tL6vr6+iImJkaso57oqI6rjmmTkpKChIQEyQ8RFUyWkOzUKVFHsp91LpzsrLu8DjGvpf/OqebHCS4ejFWdVuGfgf+ILQBZkx2FoBC3q/tW1zdsm6NtzJKjvfZkBwAWnl5o0gkIs35WPeWeJntta2cxw7fDwsJw5coVnDhxwuivNXPmTEyZUrCba4kog7mn/gc0uyfUx2XkpPefvTXKVC06MpkM/Wr2A5A5f85/Sf9J6qoW/wT46HJ2HO0cs703I/aPwH9v/sP05tO1Hjc09WRnVINRZp/vx5pYRMvO8OHDsWvXLhw9ehT+/pnNiH5+fkhNTUVcXJykfmxsLPz8/MQ6WZ/OUu2r6mQ1fvx4xMfHiz9crZ3Ith26dyjbY6Zs2bn67KrWR73VHxkHgG3Xt+X5NbR1xRy8dxBAxpezeteVQpnZssNHlzMsbbdUsp9Tyw4AfP939qvJG5r6Z7V/rf4me11bYNZkRxAEDB8+HH/++SeOHDmCoKAgyfHg4GA4Ojri8OHDYtnNmzcRHR2NkJAQAEBISAgiIyPx7FnmPyAHDx6Ep6cnKleurPV15XI5PD09JT9EZJuSUpPw+d7Psz1uqmRnxfkVqLq0KnznSLvdtc1qnJvXqa/RdHVTcX9mi8xkqWwhzckEVZPQAcDL5JfitqRlp4DPnqyS9Yk0RzvNAcpZmWr6AvXfV6WilUzymrbCrMlOWFgY1q5di/Xr18PDwwMxMTGIiYlBcnIygIylKQYMGIBRo0bh6NGjOHfuHPr374+QkBA0aNAAANCqVStUrlwZn3zyCS5duoT9+/dj4sSJCAsLg1xesAfbEdmihacXYsLhCTrXn3BkAm48v5HtcVMlOwN3DhS3o15Fidu7b+0Wt08POC1upynSsr3Wkn+XSFa+Vv/i0zYHjPqYIPVuO/UvT7bsaJdbyw5gus9QVZ+q4ja7HfVj1mRn6dKliI+Px3vvvYfixYuLP5s2bRLrzJ8/H+3bt0fXrl3x7rvvws/PD9u2ZTbx2tvbY9euXbC3t0dISAh69+6NPn36YOrUqeZ4S0RkZCP2j8CMEzNw7b9rOtVf+M/CHI+b4osqOS1Zsv8o4RGAjBaBLpu7iOW1i9cWtxNSEiAIAi7GXNQ4//rz65L99hXaY1yjcdjZc6fW11d/Ci3+bby4rT5AuaBPKJgdBzuHXO+N+n00tG8Of4PpxzPGBKmS055Vexrt9WyVWVN5XZr+nJ2dsWTJEixZsiTbOoGBgdizZ48hQyMiC6TemvHizQudznF1dBVXOR/bcCy8nb3RqWInVPmpCgDTJDvqLShAZldS1hYnR3tH2MnsoBSUWHB6ASoWrSgOQh5YayAWv78Y1ZdWx+2Xt8VzZJDB3s4eM0Ol437UqT+FteD0Aix+P2O25bNPzmZeR8cnwAoaJ3unXO9NujLdKIOFHyc8FsdzjWk4RmztYyuc/njHiMjivU59jYWnF2Li0cyFLlMUKTmckUn9i6F1udZoHtRc8oeWKZKdrH/5P0l8AgCYfWq2WFalmDT5mv73dNTwrSEe//XCryjqWlSS6ABAm3Jtcn395qWbi4nVi+TMJLHTxk76vI0CSZeV0LMms4ay985ecTtVkYo0ZUay42jnaJTXs2VstyQii/fDiR8kiQ4AyQzB2vx5/U80W9MMCSmZ82gFFw8GkNGKIUPGX+umGFya9cvwsz2fQaFUSCYTLOxSWOO8S7GXJPtZu6/cHN2wrP2yXF9/VugscVv1haktLtIkt8997Kex7uOgnYPE7VRFqvg6jvZMdvTFZIeILN6ifxdplF15dgX77+zHmANjMHzPcCSmJEqOjz00FsfuHxP3pzWbJplVWDUOw2+uX47LKBiCti/Dz/d+jiDvzCdQf+7wc67XiYqLkuy//PolSnmVyvU8D7lHjrGQ1KwWmcmhapLGnJjint5+eRuTj00GwJadvGA3FhFZJKWgFBMS9dYZlXGHx0n2b724hQOfZK4pdeflHcnxUSGjJPt2Mjuxe6nJqia4MOSCQeLWRtuX4dKzS1HEpQgAYO0Ha1GxaMVcr3M59rJkPy/jRJoGNs29UgH3deOvUdOvJqLjo1G2sOaj/Fmp5itKU6ThWdIzlPQsaZA42pVvh923M57WG394vFjOMTv6Y8sOEVmEuy/vosmqJvjrxl8o9EMh2E+1x7X/runczaSaOE+beiXraawjpD7oVH3uGWPYfmO71nLV+Bn1Fidj6VqpKwC2CuiqdbnWGBQ8KPeKyExm+/3VD/7z/XH43uFcztBNSY/MpOlB3AON1yPdMT0kIovw2Z7PcCL6BE5EZy4Z883hb1DCo4RO56taSQDNOWqO9zuetbpkMr/o+Gh9w9VLbgmG+hpHDnYOOn2Z9arWS68YVPPvqK/lVL9kffzz+B+9rlNQye3l2Q6KV/2+1keuBwAsP7cch6MOo0yhMhhYe6DWc3ShPieS+grnqqcLSXds2SEii6B6QkndXzf/wtKzS7XU1tSuQjtxOzE1c/zOy7EvdVrN21hfIG/T32Lo7oxZeVVPXGWlnuyc6K+5PuDokNGS/ZENRmJ5++V6xeFsn/FUUXJ6xpw9CqVCTHS2fLRFr2sVRMXcionbs0NnS45lTU63XNuCmSdmYtDOQfl62k+9VfPKsyuZ5Rawnpu1YbJDRBbh7su7+Tpf/ems2NcZk+i5OrqikEshnc6vsawG7sfdz1cM2iw8nTmpYcOAhtjba69kJlwA8JJndmPV96+PyU0ni/slPEqge9Xukvqf1vpU8pe+LlQz7n579FsAwPA9wzOPcamIXKm3zo1pNAavx79GIeeMz1ZOLXGvkl/l+TWzS2q+qP9Fnq9ZUDHZISKz239nv9jikFfqLTO/nv8VAFDTr6bO5995eQdBC4Nyr6gn9YHUIxqMQJtybfBd0+8kddRbdgBgctPJYvfd5/U+1zju5659keOcZB03tOxc5iPrcW/j9L5eQZP1cW83JzdxoHBOyU5+Wgy1jVcb23CsXp9rysBkh4jMShAEtFmXOTGetvE1KrNazMIX9bT/VaueLM07PQ8AcCnmkta6pnLv1T1x+4t6X6BysYzFibNOVJc1mZHJZPhn4D/4/YPfMabhGJQrXE5yvKhrUb1jUR+QnfXLmbMn507bk2+6JDtJaUl5fk0lNLvAdHk6jDQx2SEio0tKTZL8ldprWy/Ipsiw+9ZunHp4SlK3TKEyCC0TKu4varMI7Su0R9I3Sfi68dcaTy6pnjJS/QUdfj8883Xz8UWTHzee30D3rd3x6V+fimW9q/cWt7Mu1qltkjh/T3/0rt4b9nb2sJPZoUKRCgCAAbUG5CkmF4fM11RPwkg3n9f7HAAkn03VE345td4YumXnwN0DWmpSbvg0FhEZVXR8NIIWBkEpKPFD6A8o6lpUfGql/Yb2GvUd7R0xt9Vc1FiWsVRCaJlQfF7/c/G4ak4TAPjp/Z8QVCgIf1z/Q1wsc9v1zIWC13Reo1esqieh8jKPyeOEx5A7yGEns0OlJZU0jtctWVfcVm/ZGVF/hE7XP9LnCLZe24r+tfrrHRsgTbCSUs2TBFqzQbUHoU6JOmLrHJA5WeOrt6/w7qp3tZ6Xr2RHy5idzhU75/l6BRmTHSIyqnWX14lPpHx96Otc6zvZO0lmFs46PqVW8Vri9uDgwTj58CQAID4lYzXvar7VxOP6fjGkK9PxMP4hggrpN3bnVfIrBC0MgofcA8vaaS7f0KVSF8m+eiuLrq9V0rMkvmzwpV5xZfea6k+rARCXzqDsyWQyyar0QGb3Y4cNHbI9Lz+JpbaWnWalm+X5egUZu7GIyKjUH9nVhYeTBzzkHljfZT1+/+B3jaepulbqil86/IJLQy/B3s5efErm3qt7SFWkiusJNQxoqDEWRt2OHjsAAAd6H4AwWYCvmy8A4NTDU+j5R0/cenFL55gvxlxEmjINL5NfShbaVFF/2gqQtuzostCkIfi6+4rbW69tFbeDvIPQtXJXk8Rga26/uJ1rnTbr2iBgfoDkqTxdqVp2VJ9NwHSfF1vDlh0iMqrsWg2q+lSVzB2S9E0SlIJSfES6Z7We2q8nk0kmalNf12rG3zPEbR83nxzj6vBOBwiTM/9yVo2/6P1nxtiaq8+u4vKwy1rPzepBfObsttqWtvBw8pDsq3cpuTnq9wh5Xk19byr23N4DIGMeGABoXKoxjvc7zgHKefT09VOd6j1KeIQR+0fo3TKnatkZ03CMuNp9EdciOZ1C2WCyQ0RGtf7Keq3lw+sOFyfb2/zhZo3lHHTVLCizWX9K+BRxO+pVlLbq2VIlWSpZVxjPSf+/MsfRTDwyUeO4anCxivpf5/p2meWVestOzOsYABlzxzDRsVyqlh07mZ1Oq9tT9tiNRURGk65Mx5GoIwAyJq5rXyFjQPLCNgslsxqryvPCwc5B64DiS7H6PXaedeHQvK4/lKZM0yir719fsq+e7Kgvc2FM2iYOZKJj2VRj3fh7yj+27BCR0UTGRorb54ecR3Xf6uL+z+d+FrezPoqtL2cHZ0l3lqmpr06tTZ0SdST76q1YxT2KGy0udVlbrgDOnGzpVN1YHECef2zZISKjef7mOYCMJ6rUEx0AaBHUAoB0Zee8MsSgzawT9wHQeZByTmtvLW2nubaXk70Tzgw6g9MDTuc4iNqQtLV+2cn4FZAfrcq2Mur1Vd1YbNnJP37SichoFv6T8QRK+cLlNY6VLVwWd7+4i2th1/L9OqqkKj/2996vUfblvi/FdbZyktNij9kt7VCnRB2N7i1j0taKw2Qnf3pU6WHU67Nlx3D4SScio/nvzX8AoPVxbCBjtmRjtWx0qJD93CfZxbKz505J2b47+/DBpg9yPVeV7Lxf/n0AwPjG4zHlvSnoWqlrvsYjGZK2biwmO/nTp0afbI8Nrj0439dny47hcMwOERmNaoHJmS1mmvR1D35yECH+IXqf175CewiTBcimZH65RDyKyPU81azOXSt1xcauG8WZdS2Jtm4sfonmj7YEEsiYamB+m/n4+fzPWo/rStWyw6Q0/5jsEJHBpCvT8ef1P/E2/S3ux93H08SMeUi0dWMZUt0SdXHmyRlxX339orwILROKQ/cO6Vxf1bJjJ7OzyEQH0N6NxQHKhvNu4LsIqxuGpoFNxcf8N324Cd23dgegPdnMjdiyw26sfGOyQ0T58ibtDRztHOFo74iA+QHiHC7qshu3YijqawjldaFMdSPqj5AkO48SHsHf0z/b+goho2XHkpMHba0QnI03//7o9gdm/D0DP7f/Ge8UfUdyrFuVbmga2BR+c/2QrkyHIAh6tabx0XPDYdsYEeVZ7OtYlJpfCh03dsT2G9u1Jjqujq7wdvY2ahzqc+L81O6nfF8v69pRn/71qdaZkVXUW3YslbbYTN29aIu6VOqCs4PPaiQ6Kuor2quSYl1tv7EdAFt2DMFy/88kIov3++Xf8SL5RY4DecsXLm/0v0xHNRgFAPig4gdwsnfK9/XSFNKJAQ/eO4i6v9TVWvfOyzu4GHMRQPZjOCxReL9wk83eXJCp1m4DgFRFqs7nnXtyTtxmC1z+sRuLiPJMlyUZ9J3JOC96V++Nqj5VUalYJYNc78PKH2LT1U2SiQK1zbmTpkhD+cWZ45EsuWUnK0vucrMl6hNIvk59rfOyKHdf3RW3mezkn/X8n0lEFud5cv7ntzEEmUyGWsVrGexLwcXRBbs+3pVrPdU8Qirqf8VbuqS0JHOHUCCot/ZtiNyg83nqXb/J6cmGDKlAYrJDRHl279U9jbIZzWdgfOPx+LHtjwCAhyMfmjoso1D/8lGN0cnaLfEk8YkpQ8qXBv4NzB1CgTNi/wid66qmMwAAHzcfI0RTsLAbi4jyJCk1CWefnJWUFXMthvFNxov7YfXCTB2W0cS9jUOqIhXLzy7HVwe+Qni/cI1uvBRFipmi003jUo1xIvoEqvpUNdkyFZSpTKEyOtd9m/5W3G5Tro0xwilQmOwQkV6eJD7B2strxX+MvZ29MTpkNCYenYiVnVaaOTrDqlKsCq7+d1XcH7BjANZeXgsAaLiyoUb9soXKmiy2vNjXax+OPziO5kHNzR1KgbL5w83otrUbiroW1fmcv27+BQBwc3SzqrFglorJDhHpZczBMVgfuV7cj3sbhwnvTsDwesPh5exlxsgMr2FAQ0myo0p0sgrwDECPqj3Q8Z2OpgotT9yc3NC2fFtzh1HgBHgFAAD+ffwvbr+4jfJFcp9kc82lNQA4tspQmOwQkU4EQUCZRWVwP+6+pLxzxc4AYHOJDgBMazYN4Q/Cc139/OzgsxxXQdlSn1Szwo8VoJikYGuNifFuE5FOVl9crZHoALY9MZ2vuy9uDr+J8Y3H51jPw8kyl4ggy+Dr5ivZP3D3QK5z7hR3Lw4AONznsNHiKkjYskNEuRq1fxTmn54v7vt7+uODih+gfOHyqFi0ohkjM43cBpZyHhTKiYuji2T/oy0fIV2Zjntf3ENxj+Ia9SMeRuDp64x15Up7lzZFiDaPyQ4R5ejeq3uSROePbn/g/fLvF6gveC95zl10XLuI9PE69TUA4Nfzv+Lbpt9qHO/xRw9x293J3WRx2TJ2YxEVMCnpKbjw9AIEQcixniAIGHNgDMouynzCaHzj8ehSqUuBSnQA8DFtMqno+Ghxm12khsFkh6iA+Xjbx6j9c23sub0n2zqCIMBuqh3mRMyRlH/f/Htjh2eRbHHwNZnW/1r+L0/nFbQ/LIyFyQ6RDbv14hZar22N4w+O42XyS9x9eRfbrm8DALTf0D7b1p3nbzSXgbj7xd0C212jvrho7+q9zRgJWavRDUfj60Zf63VOo4BGBfb/OUPjmB0iG9ZtSzdcir2EA3cPaD1+99VdlCtcTqM85nWMZP/thLeQO8iNEqM1qOFbQ9ye12qeZL6dTR9uMkdIZIXqlqiba50LTy+I2390+8OY4RQoTHaIbFhuK47Hvo7VSHauPLuC6suqi/vH+x0v0IkOkLGYozBZsxXM0c4R3ap0M0NEZI0SUhIk++rz76iEPwgXtwu7FDZ6TAUFu7GIbNTdl3dzraOtu+rwvcx5PVqVbYUmgU0MGpctCSoUZO4QyIpknabB1dFVo86ys8vEbUd7R6PHVFCwZYfIhvxx7Q98uOVDrcfalGuDIcFDcPbJWay+uBqPEx9rnRlY/THzxW0XGy1WW+Bgx39CSXchASGSfQGarYVuTm4AdOvyIt2xZYfIhmhLdLpX6Q5hsoC9vfaic8XOmN58uri0wdhDYyV1lYISD+IfAAAG1BqACkUqGD9oK6ZtvBNRTpSTlGgR1AIAxAcEZv49E33+7IOU9BT4e/oDAPrX7G+2GG0Rkx0iG3EpRvv4nDmt5miU3Xt1T9zuu70vklIzFht8kvhELJ/dcraBI7QdEQMi8F7p9zDp3UnmDoWsjEwmE7unlIISAPDNkW/w++XfUWJeCUTGRgIAyhYum+01SH9MdoisSKeNnSCbIsORqCNigqJSc3lNcbti0YpY2XElnn71VPxLUV18Sry4/dul3+A+0x2yKTJMPz4dAODj5sPBkTlo4N8AR/seRXCJYHOHQlZIhozHyQUIUCgVYvnL5JeIiosCwFZDQ2OHM5GVOBF9Ajtu7gAAtPithVieOjFVYyDjtc+u5Tg/R50SdXD2yVmN8uXnlgPgUyBExqT6f1MQBLxJe6O1TimvUqYMyeYx2SGyYIIgiP8wNlml/amoH//9UdJSc+rTU7lORPZHtz8QuCAw2+NMdoiMR9Wyczn2MiIeRWitw8HvhsW7SWQBYl7H4E3aG8nq2mmKNDhNz5i599noZ9meu/fOXhy8d1Dc12UV8tz+alRvWiciw7KTZYwgWfDPAvMGUoBwzA6RmQmCgCarmqDsorJ4lPBILL/23zVxu+vmruJ2Lb9akvPVE51afrVQyKWQTq9rL7OX7Lcr307cbhjQULfgiUhvubW8ujm6mSiSgoMtO0Rm9vT1U9x5eQcAEBkbCX9Pf6Qp0jB873Cxzt/Rf4vbR/oeQZoiDVuvbcVnez6TXOvfQf/q/LqXh13GhCMTEFw8GFGvojC39Vzsv7Mfu27vwpT3puTzXRFRdlTdWNm5+tlVE0VScDDZITKz2y9ui9uJqYkAgHGHxuFE9Amt9V0cXODt7I3BwYMlyc7U96bq1c9fuVhl/Nn9T0lZ96rd0b1qd33CJyI9Zdeyc3HIRVQuVpkzJxsBu7GIjCxVkYqT0Sc1HhVXSUrLLH/+5jm+O/Yd5p2el+31VCtw29vZ4/Gox2J5Nd9qBoqYiIxJNWYnqxp+NZjoGAmTHSIjk0+Xo/GqxnCf6S5JeOLfZjxBla5MF8tuv7iNKeGZXUgLWi/QuJ76X4XF3YuL21nH4BCRZcqtG4sMj91YREaU9akm95nukv1ZLWZJJg/L+nTGp7U+hb+nP/pu7wtvZ2/0rt5bclwmk2Fx28U4+fAk2pRrY9jgicgosnZjVSxaEaNDRpspmoLBrC07x48fR4cOHVCiRAnIZDJs375dclwQBEyaNAnFixeHi4sLQkNDcfv2bUmdly9folevXvD09IS3tzcGDBiA169fm/BdEGXv/NPzOR4fd3icpGUnKw+5B7pW7orX37zGo1GPMCt0lkad4fWGY0PXDWz+JrIS6i07pb1L43rYdQyoPcCMEdk+syY7SUlJqFGjBpYsWaL1+OzZs7Fo0SIsW7YM//zzD9zc3NC6dWu8fftWrNOrVy9cvXoVBw8exK5du3D8+HEMHjzYVG+BKEf1fq2Xa51URarWcq44TmSb1Ft25PZyM0ZScJi1G6tt27Zo27at1mOCIGDBggWYOHEiOnXqBAD47bff4Ovri+3bt6NHjx64fv069u3bhzNnzqBOnToAgMWLF+P999/HnDlzUKJECZO9F6Ksbr24pVM9bROLCZMFA0dDRJZCfYCy3IHJjilY7ADlqKgoxMTEIDQ0VCzz8vJC/fr1ERGRMb12REQEvL29xUQHAEJDQ2FnZ4d//vnH5DETqbvw9IJkP3lCMk5+ehIAEOiVuVRD1q6uqj5VjR8cEZmNejeW6ulKMi6LTXZiYmIAAL6+vpJyX19f8VhMTAx8fHwkxx0cHFC4cGGxjjYpKSlISEiQ/BDp42niU8n8ONqoZkOWQYb0b9Ph7OCMEP8QnB10FheGXMBndT7Tet6KjisMHi8RWY4LMZl/CHk7e5svkALEYpMdY5o5cya8vLzEn4CAAHOHRFZEEASUmFcCFX6sgIiH2hfxA4DRBzOervD39Ie9XcZj4TKZDMElglHIpRA85B4a53St1BX1SuY+zoeIrNeN5zfE7SIuRcwYScFhscmOn58fACA2NlZSHhsbKx7z8/PDs2fSBRLT09Px8uVLsY4248ePR3x8vPjz8OFDA0dPtiw6PlrcbriyIaYfny624rxJe4Nt17fhWVLm59LPXftnUX3RT5Wt3bYaOFoisjTqi/Uy2TENi012goKC4Ofnh8OHD4tlCQkJ+OeffxASEgIACAkJQVxcHM6dOyfWOXLkCJRKJerXr5/tteVyOTw9PSU/RLq6HHtZsv/t0W8RMD8Ab9LeoOGKhui6uSt852R2v27rvk3rdfrU6GPUOInIMn1e73Nxu4grkx1TMOvTWK9fv8adO3fE/aioKFy8eBGFCxdGqVKlMGLECEyfPh3ly5dHUFAQvv32W5QoUQKdO3cGAFSqVAlt2rTBoEGDsGzZMqSlpWH48OHo0aMHn8Qio4l5rX08WNSrKFyKvSQpK1+4PPw9/bXWd3ZwhrODM96mZ0yl0L5Ce8MGSkQW6d6re+J2YZfCZoyk4DBrsnP27Fk0a9ZM3B81ahQAoG/fvli9ejXGjh2LpKQkDB48GHFxcWjcuDH27dsHZ2dn8Zx169Zh+PDhaNGiBezs7NC1a1csWrTI5O+FCo43aW+0lvfa1kujLLRMqJaamZInJGP1xdX459E/+F+r/xkkPiKybH1r9MXciLkAMv7oIeOTCYJQ4Cf0SEhIgJeXF+Lj49mlRTkSBAHN1jRD+INwdHqnE7b32A6PmR54nap91u7Uiamc2ZiIJARBgN3UjFEkKzuuRP9a/c0ckfXS9fvbYsfsEFma2Sdnw26qHcIfhAMACrkUAoBsE52RDUYy0SEiDeozKLNlxzSY7BDp6OtDX0v2pzWblmP9lPQUY4ZDRFasV7VeKFe4HDq+09HcoRQITHaowBMEAZOPTsbGKxsBAI8THiMpNSnX87QNPF7abqm43cC/geGCJCKbsrbLWtwafgtuTm7mDqVAMOsAZSJLsOHKBkw9PhVAxqKcfbf3RcOAhuLSDsD/97HL7KAUlACALpW6aL3W0DpD0TSwKU4+PIle1TUHLBMRqah3Z5FxMdkhmyYIAlIUKTn2i2+6uknc7ru9LwDg1MNTSFWkwk5mh1/O/YLP9mQu7fB41GP4umXOo+Pi4ILk9GRxv1KxSqhUrJIh3wYREeUDu7HIJkTGRkI2RSZ2RanMPz0fLt+7oOcfPTXOuRRzCbIpMuy4uUPrNeXT5XCc5ihJdACghEcJcfkHIHNywFp+tfL7NoiIyAiY7JDVep36GuMPjcfe23tR79eM9aSyJjVfHfgKALDxykY8jM9cFiT8fjhqLq+p92v+EPqD1rIFrRdg18e79L4eEREZH7uxyOrcj7uPoIVB4v6sk7Mkx9MUaZh2fBqev3kuKS+1oJS4rW2xzSvDrqC4R3EM2jkI265rLvEwvdl0fBXylUa5l7MXvmzwpd7vg4iITIOTCoKTClqTuy/votzicjnWWd1pNfr91U/va7/55g1cHF0Q/zYe3j94i+XD6w7HlGZTOK07EZGF0fX7my07ZPFqL6+NCzEX0Lt6b6y9vDbX+vokOrNazMLL5JcYFDwILo4uADJaai4OuYjJxybj83qfo0WZFnkNnYiILABbdsCWHUuWnJYM1xmu2R5/v/z72HN7T67XWd5+OYbsGqJRHj8uHp5y/s6JiKwRW3bIojyIe4DSC0ujqk9VXB56Wef5JbKOu1FZ3n457GX2aFOuDfzna19VfEKTCWga2BTlCpdDoHcgwh+Eo1LRSihfuDzOPz2PMY3GMNEhIioAmOyQ0a25uEbsWrry7AouxlxEreK6PaadNdmZ1WIWvm4sXbZhduhsjD00FucGn0Pt4rXxJPEJUtJTEFQoSFJvXZd14nb3qt3z8E6IiMgasRsL7MYyNtkUzVYcYXLOHztBEHAp9hKWnV2G5eeWo7h7cTz56omxQiQiIivEbiyyCOH3w7WWK5QKycR86gRBgN1U6RRQJTxKGDw2IiIqGDipIBnVlPApWstvv7yttfzaf9c0Eh0A+KDiBwaNi4iICg4mO2Q0qYpUHL1/FADwSfVP8Gz0M/FY/7/6a9S/HHsZVX6qovVan9f/3DhBEhGRzWOyQ0bT8veW4vZ7pd9DMbdi4v7pR6dRbWk1+M/zx7+P/0W6Mh01ltXQeh1PuSefmiIiojxjskNGc/zBcXG7f82MlpxJ704Sy648u4LHiY9R/9f66Lalm+TcCU0moEVQxmR+67usN0G0RERkqzhAmYwurG6YOK/O1f+uaq3z540/AQAlPUpiZaeVaFW2Fd6mv0XUqyhUKlbJZLESEZHtYcsOGcy+O/swfM9wyKbIJI+bT2s2Tdye+O7EHK/RvUp3tCrbCgDg7ODMRIeIiPKNyQ4ZTJ8/+2DJmSUa5c4OzuJ2Tb+aGFR7ULbXGFpnqFFiIyKigovJDulFKSjxX9J/GuV/Xv8T/73RLAekyQ4AvBv4LgCgbKGykvKTn55E+SLlDRQpERFRBo7ZIb18tf8rLPhnAVZ0XIFPa30qlk89PjXbc7Kug9WrWi/UKVEHZQqVwbbr2/D8zXP0rNoTRVyLGC1uIiIquLhcBLhchC7epr/Fq+RXCJgfAIWgAAAoJykhk8kgCAI8Z3nideprsf6U96Zg8rHJAHJfGoKIiCgvuFwEGVTIihBcjLkoKRu2exiWtV+G+JR4MdG598U9+Lj5wNXRFZ5yTzQr3cwM0RIREWViskO5UigVGokOACw/txyH7h1CnRJ1xDL1lcZHNBhhguiIiIhyxmSHcvXXzb+yPXb31V3cfXXXhNEQERHph09jUa5+Pf+rZL9uibpa663rss4U4RAREemFLTuUo2+PfIu9d/YCAOqUqIMiLkXw4/s/Ik2Rhso/VRbr+bn7oWfVnuYKk4iIKFtMdihbqYpUTP97uri/uO1iNPBvIO5Hj4hG+cUZ8+L8M/AfjUfMiYiILAGTHdJKoVTA538+krJAr0DJfoBXAN5MeAMZZEx0iIjIYjHZIQ13Xt7B9hvbEZ8SL5b91vk3FPcorlHXTsZhX0REZNmY7BjRuEPjcOvFLcxvPR+B3oG5n2ABdtzcgU4bO0nKno1+hmJuxcwUERERUf7wz3Ij2n5jO/688Sfuvbpn7lB0ljXRqVOiDhMdIiKyakx2jCjAKwAA8DDhoZkj0Y22lUOO9ztuhkiIiIgMh91YRhTgmZHs3H15V/yvAAHlCpczZ1jZ2nZ9m7g9r9U8hJYJhYujixkjIiIiyj+27BjR2/S3ADJWBL8YcxHlFpdD+cXl0XZdWzEByg9BEHA06ig2XtmIVr+3wtPEp/m63qmHp8TtkSEjUc23Wn5DJCIiMjsmO0a0/cZ2cXtq+FRxe9+dffjqwFf5vv6KCyvQ/Lfm6PlHTxy8dxCNVzXO1/V83DIeNefkgEREZEuY7BiR+vIJf974U3Lsr5t/odKSSkhXpuf5+oN2DpLs33t1D+MPjcfN5zcR9SpKo/6Omzuw+9bubK+XpkwDALg7uec5JiIiIkvDZMeIPqj0gUbZ+i7rxe0bz2/kmHxk9cu5XyCbIhN/tJl1chYqLqmIMovKYPDOwTj/9DxkU2Tota0XOm3shPYb2uPP639qPTdNkZHsONo56hwTERGRpWOyY2TvBr4r2e9etTsmvTtJ3NdnUr7BuwZrLX874a3W8l/O/4Lgn4MBAOsjM5OsLpu7YPE/iyV1j0QdwdTjGV1tjvZMdoiIyHYw2TGy3R9nttwUcy0GO5kdvnvvOzQMaAgAeJP2RqfrRDyM0Fo+s8VMyB3kSP82HcvaLdM5ri/2fYE+f/ZBwPwAyKbI0OK3FuKxrMtCEBERWTM+em5k7k7u+LXDr7jx/Ab+1+p/AACZTIairkUBZCzNoCIIAur8UgdO9k440ucI7sfdx5TwKRjTcAwarsxIjkp7l8b1sOuYc2oOPOWeCKsbBgCwt7PHkDpDMKTOEADAizcvUPR/Ga9Rp0QdlPQoibbl2qJzxc7wm+sHAPj98u8a8c5oPgNf1P/CSHeDiIjI9GSCtpnkCpiEhAR4eXkhPj4enp6eJnnNaeHTMOlYZndW2rdpmHhkIn44+UOO540OGS0mTblRKBWQyWQaXWWrLqzCpzs+lZS5O7nj9IDTqOJTRcd3QEREZF66fn8z2YF5kp1zT86hzi91xH1HO0fxaaicKCYpDLL45snokzhw9wAGBQ+Cv6d/vq9HRERkarp+f7Mby0wqFKkg2dcl0elepbvBVhlvVKoRGpVqZJBrERERWTIOUDYTD7kHTn56El/U0xwfs7HrRnxS/RNxv1FARlIyrvE4k8VHRERkK9iNBfN0Y6lLV6ZjwuEJWBu5Fhu7bkSTwCYAgFRFKgRBgNxBbvKYiIiILB3H7OjB3MkOERER6U/X7292YxEREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsEBERkU2zmWRnyZIlKF26NJydnVG/fn38+++/5g6JiIiILIBNJDubNm3CqFGjMHnyZJw/fx41atRA69at8ezZM3OHRkRERGZmE8nOvHnzMGjQIPTv3x+VK1fGsmXL4OrqipUrV5o7NCIiIjIzq092UlNTce7cOYSGhopldnZ2CA0NRUREhBkjIyIiIktg9QuBPn/+HAqFAr6+vpJyX19f3LhxQ+s5KSkpSElJEfcTEhKMGiMRERGZj9W37OTFzJkz4eXlJf4EBASYOyQiIiIyEqtPdooWLQp7e3vExsZKymNjY+Hn56f1nPHjxyM+Pl78efjwoSlCJSIiIjOw+mTHyckJwcHBOHz4sFimVCpx+PBhhISEaD1HLpfD09NT8kNERES2yerH7ADAqFGj0LdvX9SpUwf16tXDggULkJSUhP79+5s7NCIiIjIzm0h2unfvjv/++w+TJk1CTEwMatasiX379mkMWs6OIAgAOFCZiIjImqi+t1Xf49mRCbnVKAAePXrEQcpERERW6uHDh/D398/2OJMdZIzxefLkCTw8PCCTyTSOJyQkICAgAA8fPuT4nlzwXumO90p3vFe6473SHe+V7iz1XgmCgMTERJQoUQJ2dtkPQ7aJbqz8srOzyzEjVOFgZt3xXumO90p3vFe6473SHe+V7izxXnl5eeVax+qfxiIiIiLKCZMdIiIismlMdnQgl8sxefJkyOVyc4di8XivdMd7pTveK93xXumO90p31n6vOECZiIiIbBpbdoiIiMimMdkhIiIim8Zkh4iIiGwakx0iIiKyaQUi2Zk5cybq1q0LDw8P+Pj4oHPnzrh586akztu3bxEWFoYiRYrA3d0dXbt2RWxsrKTOF198geDgYMjlctSsWVPjdY4dO4ZOnTqhePHicHNzQ82aNbFu3TpjvjWDM9W9Unfnzh14eHjA29vbwO/GuEx5rwRBwJw5c1ChQgXI5XKULFkS33//vbHemsGZ8l7t378fDRo0gIeHB4oVK4auXbvi/v37RnpnhmeIe3Xp0iX07NkTAQEBcHFxQaVKlbBw4UKN1zp27Bhq164NuVyOcuXKYfXq1cZ+ewZlqnu1bds2tGzZEsWKFYOnpydCQkKwf/9+k7xHQzHl50rl5MmTcHBwyPU7wBQKRLITHh6OsLAwnD59GgcPHkRaWhpatWqFpKQksc7IkSOxc+dObNmyBeHh4Xjy5Am6dOmica1PP/0U3bt31/o6p06dQvXq1fHHH3/g8uXL6N+/P/r06YNdu3YZ7b0ZmqnulUpaWhp69uyJJk2aGPy9GJsp79WXX36JX3/9FXPmzMGNGzewY8cO1KtXzyjvyxhMda+ioqLQqVMnNG/eHBcvXsT+/fvx/PlzrdexVIa4V+fOnYOPjw/Wrl2Lq1evYsKECRg/fjx+/PFHsU5UVBTatWuHZs2a4eLFixgxYgQGDhxoVV/iprpXx48fR8uWLbFnzx6cO3cOzZo1Q4cOHXDhwgWTvt/8MNW9UomLi0OfPn3QokULk7y/XAkF0LNnzwQAQnh4uCAIghAXFyc4OjoKW7ZsEetcv35dACBERERonD958mShRo0aOr3W+++/L/Tv398gcZuDse/V2LFjhd69ewurVq0SvLy8DB2+SRnrXl27dk1wcHAQbty4YbTYTc1Y92rLli2Cg4ODoFAoxLIdO3YIMplMSE1NNfwbMYH83iuVzz77TGjWrJm4P3bsWKFKlSqSOt27dxdat25t4HdgOsa6V9pUrlxZmDJlimECNwNj36vu3bsLEydO1Ov70pgKRMtOVvHx8QCAwoULA8jIVtPS0hAaGirWqVixIkqVKoWIiIh8v5bqdayRMe/VkSNHsGXLFixZssRwAZuRse7Vzp07UaZMGezatQtBQUEoXbo0Bg4ciJcvXxr2DZiQse5VcHAw7OzssGrVKigUCsTHx+P3339HaGgoHB0dDfsmTMRQ9yrrv0URERGSawBA69at8/1vnjkZ615lpVQqkZiYyH/bof1erVq1Cvfu3cPkyZONEHneFLiFQJVKJUaMGIFGjRqhatWqAICYmBg4OTlpjBnx9fVFTExMnl9r8+bNOHPmDJYvX56fkM3GmPfqxYsX6NevH9auXWtxi8rlhTHv1b179/DgwQNs2bIFv/32GxQKBUaOHIkPP/wQR44cMeTbMAlj3qugoCAcOHAA3bp1w5AhQ6BQKBASEoI9e/YY8i2YjKHu1alTp7Bp0ybs3r1bLIuJiYGvr6/GNRISEpCcnAwXFxfDvhkjM+a9ymrOnDl4/fo1unXrZrD4TcmY9+r27dsYN24c/v77bzg4WE6KYTmRmEhYWBiuXLmCEydOGPV1jh49iv79++OXX35BlSpVjPpaxmLMezVo0CB8/PHHePfddw1+bXMw5r1SKpVISUnBb7/9hgoVKgAAVqxYgeDgYNy8eRPvvPOOwV/TmIx5r2JiYjBo0CD07dsXPXv2RGJiIiZNmoQPP/wQBw8ehEwmM/hrGpMh7tWVK1fQqVMnTJ48Ga1atTJgdJbFVPdq/fr1mDJlCv766y/4+Pjk+bXMyVj3SqFQ4OOPP8aUKVPEf6ssRYHqxho+fDh27dqFo0ePwt/fXyz38/NDamoq4uLiJPVjY2Ph5+en9+uEh4ejQ4cOmD9/Pvr06ZPfsM3C2PfqyJEjmDNnDhwcHODg4IABAwYgPj4eDg4OWLlypaHehkkY+14VL14cDg4Okn88KlWqBACIjo7OX/AmZux7tWTJEnh5eWH27NmoVasW3n33XaxduxaHDx/GP//8Y6i3YRKGuFfXrl1DixYtMHjwYEycOFFyzM/PT+Npt9jYWHh6elpdq46x75XKxo0bMXDgQGzevFmjC9BaGPNeJSYm4uzZsxg+fLj4b/vUqVNx6dIlODg4mLcl2tyDhkxBqVQKYWFhQokSJYRbt25pHFcNzNq6datYduPGjTwNuj169Kjg5uYm/PjjjwaL35RMda+uXbsmREZGij/Tp08XPDw8hMjISOHly5cGfU/GYqp7tX//fgGAcOfOHbHs4sWLAgDh5s2bhnkzRmaqezVq1CihXr16krInT54IAISTJ0/m/42YgKHu1ZUrVwQfHx9hzJgxWl9n7NixQtWqVSVlPXv2tKoByqa6V4IgCOvXrxecnZ2F7du3G/ZNmIgp7pVCoZD8ux4ZGSkMGzZMeOedd4TIyEjh9evXxnlzOigQyc6wYcMELy8v4dixY8LTp0/Fnzdv3oh1hg4dKpQqVUo4cuSIcPbsWSEkJEQICQmRXOf27dvChQsXhCFDhggVKlQQLly4IFy4cEFISUkRBEEQjhw5Iri6ugrjx4+XvM6LFy9M+n7zw1T3KitrfBrLVPdKoVAItWvXFt59913h/PnzwtmzZ4X69esLLVu2NOn7zQ9T3avDhw8LMplMmDJlinDr1i3h3LlzQuvWrYXAwEDJa1kyQ9yryMhIoVixYkLv3r0l13j27JlY5969e4Krq6swZswY4fr168KSJUsEe3t7Yd++fSZ9v/lhqnu1bt06wcHBQViyZImkTlxcnEnfb36Y6l5lZSlPYxWIZAeA1p9Vq1aJdZKTk4XPPvtMKFSokODq6ip88MEHwtOnTyXXadq0qdbrREVFCYIgCH379tV6vGnTpqZ7s/lkqnuVlTUmO6a8V48fPxa6dOkiuLu7C76+vkK/fv2sKok25b3asGGDUKtWLcHNzU0oVqyY0LFjR+H69esmeqf5Z4h7NXnyZK3XCAwMlLzW0aNHhZo1awpOTk5CmTJlJK9hDUx1r7L73PXt29d0bzafTPm5UmcpyY5MEAQh174uIiIiIitVoAYoExERUcHDZIeIiIhsGpMdIiIismlMdoiIiMimMdkhIiIim8Zkh4iIiGwakx0iIiKyaUx2iIiIyKYx2SEii9evXz/IZDLIZDI4OjrC19cXLVu2xMqVK6FUKnW+zurVq+Ht7W28QInIIjHZISKr0KZNGzx9+hT379/H3r170axZM3z55Zdo37490tPTzR0eEVkwJjtEZBXkcjn8/PxQsmRJ1K5dG9988w3++usv7N27F6tXrwYAzJs3D9WqVYObmxsCAgLw2Wef4fXr1wCAY8eOoX///oiPjxdbib777jsAQEpKCkaPHo2SJUvCzc0N9evXx7Fjx8zzRonI4JjsEJHVat68OWrUqIFt27YBAOzs7LBo0SJcvXoVa9aswZEjRzB27FgAQMOGDbFgwQJ4enri6dOnePr0KUaPHg0AGD58OCIiIrBx40ZcvnwZH330Edq0aYPbt2+b7b0RkeFwIVAisnj9+vVDXFwctm/frnGsR48euHz5Mq5du6ZxbOvWrRg6dCieP38OIGPMzogRIxAXFyfWiY6ORpkyZRAdHY0SJUqI5aGhoahXrx5mzJhh8PdDRKblYO4AiIjyQxAEyGQyAMChQ4cwc+ZM3LhxAwkJCUhPT8fbt2/x5s0buLq6aj0/MjISCoUCFSpUkJSnpKSgSJEiRo+fiIyPyQ4RWbXr168jKCgI9+/fR/v27TFs2DB8//33KFy4ME6cOIEBAwYgNTU122Tn9evXsLe3x7lz52Bvby855u7uboq3QERGxmSHiKzWkSNHEBkZiZEjR+LcuXNQKpWYO3cu7OwyhiNu3rxZUt/JyQkKhUJSVqtWLSgUCjx79gxNmjQxWexEZDpMdojIKqSkpCAmJgYKhQKxsbHYt28fZs6cifbt26NPnz64cuUK0tLSsHjxYnTo0AEnT57EsmXLJNcoXbo0Xr9+jcOHD6NGjRpwdXVFhQoV0KtXL/Tp0wdz585FrVq18N9//+Hw4cOoXr062rVrZ6Z3TESGwqexiMgq7Nu3D8WLF0fp0qXRpk0bHD16FIsWLcJff/0Fe3t71KhRA/PmzcMPP/yAqlWrYt26dZg5c6bkGg0bNsTQoUPRvXt3FCtWDLNnzwYArFq1Cn369MFXX32Fd955B507d8aZM2dQqlQpc7xVIjIwPo1FRERENo0tO0RERGTTmOwQERGRTWOyQ0RERDaNyQ4RERHZNCY7REREZNOY7BAREZFNY7JDRERENo3JDhEREdk0JjtERERk05jsEBERkU1jskNEREQ2jckOERER2bT/A2EoowVXHfi9AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "model = NeuralProphet(\n", + " batch_size=16\n", + ")\n", + "\n", + "model.fit(df)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 800, + "referenced_widgets": [ + "ac0b31fd93d645df816e32dd03db3a9c", + "667f7f6bb77545c7a320acfb122ebffe", + "ebd6bcc3962c4d889c8a9d1050bbf29f", + "1499201784ae493a935b1b7ffabed47a", + "101448c965f3447b8a98371b2046f149", + "9c4706a11b7549cd85cfa38a2e9d3c2b", + "97175ecf776045c688b0ac6f683e15ca", + "2606fda4551845aa8f4187c98e2be0ef", + "cf05a3cb55d240e095ef37cf9ab481a9", + "022ddaa407d243f686533133f6428f7a", + "43569d7f8ba74de58188e9883ed05274", + "b656724e7bf248e6b67ae4c8b1e10fb6", + "6a4ee6d4b48d4d978d8f6137e335dff5", + "764432ea141f40658a427db8b7d663ea", + "c8484205633b4872b02acfd408393903", + "dcfb69ac6568466ebb28cc1ce27e9d3d", + "10bd797bde9d4125aea91bb1025f34e2", + "d1fd9d2a9b9742c18ee78bec892eea2c", + "d20b187f26a34f9eaa7518132d15ab75", + "7e74b73096764f0b91d121ff5a3aaaed", + "5daf73f645e24b829c9ca9d1efed156b", + "b483976d7d2f4e1da70b9001f9ecbca9", + "5c2ba4fd8145403d8fb1fbb293645830", + "c0727cb1c17b4763b8b3c172df96ce37", + "ab6b14e7dafa4789bb905e280454b351", + "ac5572e3692849deb95dd03a73f6e0a6", + "4b8f7c2a07e84a4799e36afacd04b255", + "83816f64bebd488192efe2a56f76919d", + "24fe29d648d44be2980a62f534be63e5", + "88fed278282547c0a3095b70b5777da6", + "01fc1d5643eb495d924d538e43ee97de", + "11af1c84daf8453e9134c8d70403f9f7", + "8bb6cfd4b4af403f995da2569235eb26" + ] + }, + "id": "qN8u0WjtVcBa", + "outputId": "e4cd6ecd-f396-4781-8651-1bbb546758f8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING - (NP.forecaster.fit) - When Global modeling with local normalization, metrics are displayed in normalized scale.\n", + "WARNING:NP.forecaster:When Global modeling with local normalization, metrics are displayed in normalized scale.\n", + "INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n", + "INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n", + "INFO - (NP.df_utils._infer_frequency) - Dataframe freq automatically defined as B\n", + "INFO:NP.df_utils:Dataframe freq automatically defined as B\n", + "INFO - (NP.config.init_data_params) - Setting normalization to global as only one dataframe provided for training.\n", + "INFO:NP.config:Setting normalization to global as only one dataframe provided for training.\n", + "INFO - (NP.utils.set_auto_seasonalities) - Disabling daily seasonality. Run NeuralProphet with daily_seasonality=True to override this.\n", + "INFO:NP.utils:Disabling daily seasonality. Run NeuralProphet with daily_seasonality=True to override this.\n", + "INFO - (NP.config.set_auto_batch_epoch) - Auto-set epochs to 80\n", + "INFO:NP.config:Auto-set epochs to 80\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Training: | | 0/? [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
train_lossreg_lossMAERMSELossRegLossepoch
00.2578150.0161.843307198.3259890.2570370.00
10.0645760.061.33918877.7331160.0643610.01
20.0437470.041.79652058.0270610.0436140.02
30.0412030.038.48813255.2222100.0411490.03
40.0409500.038.13033755.0342220.0408340.04
........................
750.0371800.029.90744651.2543370.0376880.075
760.0372520.029.72252150.8365330.0371070.076
770.0371190.029.65135250.2636570.0369740.077
780.0371550.030.01546551.1798060.0373340.078
790.0371370.029.83543250.7695050.0369950.079
\n", + "

80 rows × 7 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"model\",\n \"rows\": 80,\n \"fields\": [\n {\n \"column\": \"train_loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.024734652757590632,\n \"min\": 0.03711911663413048,\n \"max\": 0.2578146755695343,\n \"num_unique_values\": 80,\n \"samples\": [\n 0.04833472892642021,\n 0.2578146755695343,\n 0.05231921374797821\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"reg_loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"MAE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15.487563633635295,\n \"min\": 29.651351928710938,\n \"max\": 161.8433074951172,\n \"num_unique_values\": 80,\n \"samples\": [\n 44.7110595703125\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RMSE\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 16.75789264357517,\n \"min\": 50.26365661621094,\n \"max\": 198.32598876953125,\n \"num_unique_values\": 80,\n \"samples\": [\n 61.52302169799805\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Loss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.024654874360992375,\n \"min\": 0.03697356581687927,\n \"max\": 0.25703734159469604,\n \"num_unique_values\": 80,\n \"samples\": [\n 0.0481775626540184\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"RegLoss\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"epoch\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 23,\n \"min\": 0,\n \"max\": 79,\n \"num_unique_values\": 80,\n \"samples\": [\n 30\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "future = model.make_future_dataframe(df, periods=365)\n", + "\n", + "forecast = model.predict(future)\n", + "forecast" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 733, + "referenced_widgets": [ + "d06ce2fec5894f48a53d98ed578f7b36", + "6790be45ada946e6939a5e455df41f85", + "881c598033114b43b9af47bfd5b0fe75", + "a9bb522f07274d8ba6270381b8be0184", + "a595b23f6e3947e29dba4074721a50bc", + "7a93e60e33b240b79d6ddfc47451c205", + "365379cde40944d3890947c83cef4dbe", + "560e1d82f1004a1abf85d09418f99ca1", + "84daef2436ff40c3b840631d17d8cd30", + "d12fe3aabccc4fed93312cba77729008", + "f3bc727b1f5048a9b1f9f7dd181bccab" + ] + }, + "id": "GOo1KRckVnWa", + "outputId": "735da708-8996-4ace-f27d-b71038d073cc" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n", + "INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n", + "INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n", + "INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n", + "INFO - (NP.df_utils.return_df_in_original_format) - Returning df with no ID column\n", + "INFO:NP.df_utils:Returning df with no ID column\n", + "INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 99.726% of the data.\n", + "INFO:NP.df_utils:Major frequency B corresponds to 99.726% of the data.\n", + "INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n", + "INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n", + "INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 99.726% of the data.\n", + "INFO:NP.df_utils:Major frequency B corresponds to 99.726% of the data.\n", + "INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n", + "INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Predicting: | | 0/? [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
dsyyhat1trendseason_yearlyseason_weekly
02024-06-03None298.499237330.230652-0.146132-31.585258
12024-06-04None298.712646330.257996-0.444604-31.100739
22024-06-05None297.719696330.285309-0.727075-31.838547
32024-06-06None296.526001330.312653-0.994012-32.792645
42024-06-07None294.799255330.339996-1.238992-34.301754
.....................
3602025-10-20None309.214722344.010773-3.076255-31.719799
3612025-10-21None309.897675344.038116-3.050440-31.089994
3622025-10-22None309.157532344.065460-3.001611-31.906309
3632025-10-23None308.234161344.092804-2.930969-32.927673
3642025-10-24None307.012329344.120148-2.839860-34.267971
\n", + "

365 rows × 6 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "forecast", + "repr_error": "Out of range float values are not JSON compliant: nan" + } + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "actual_prediction = model.predict(df)\n", + "\n", + "plt.plot(df['ds'], df['y'], label='actual', c='g')\n", + "plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label='prediction_actual', c='r')\n", + "plt.plot(forecast['ds'], forecast['yhat1'], label='future_prediction', c='b')\n", + "plt.xlabel('Date')\n", + "plt.ylabel('Stock Price')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 655, + "referenced_widgets": [ + "78a17c0426cd4008b894f2750ec53c56", + "b44d8f6c8dab419c8f7dea3b8ac118b9", + "e6ef0fbabb844068b66f6e14732299fb", + "afc12827685042ddac43a3946e6b3f32", + "08d8524662f740d68ea69653b7437cad", + "634e8bc4c5fa42949f605bf8e2501ad4", + "3c08f8a6e4d94dbb83de069b8ca9ce42", + "40432f5ba5cd4aad989537427064cb82", + "7fa253063c314d938035f2f6c7dcb476", + "eb99b411fb0d444d8fa5309e46c318c2", + "917b5db3ff2f460fb7598b6d43568ca7" + ] + }, + "id": "mHDT1dxUVx2y", + "outputId": "1e124dff-4f5b-4044-abd5-54d9d458896c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n", + "INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n", + "INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n", + "INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n", + "INFO - (NP.df_utils._infer_frequency) - Major frequency B corresponds to 96.268% of the data.\n", + "INFO:NP.df_utils:Major frequency B corresponds to 96.268% of the data.\n", + "INFO - (NP.df_utils._infer_frequency) - Defined frequency is equal to major frequency - B\n", + "INFO:NP.df_utils:Defined frequency is equal to major frequency - B\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Predicting: | | 0/? [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAGwCAYAAABCV9SaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI4ElEQVR4nO3dd3QUVRsG8GfTe0JCCiWQIL13CEhHehOQItIEQQhSRcEPqSqIVAWx0pQiRaT33ksgdEJJMAhJqKmk73x/LJndye4mu7At2ed3zh5n7tyZuTPE7JtbZYIgCCAiIiIq5GzMXQAiIiIiU2DQQ0RERFaBQQ8RERFZBQY9REREZBUY9BAREZFVYNBDREREVoFBDxEREVkFO3MXwBLI5XI8evQI7u7ukMlk5i4OERER6UAQBCQlJaF48eKwscm/HodBD4BHjx4hMDDQ3MUgIiKi1/DgwQOULFky33wMegC4u7sDULw0Dw8PM5eGiIiIdJGYmIjAwEDxezw/DHoAsUnLw8ODQQ8REVEBo2vXFHZkJiIiIqvAoIeIiIisAoMeIiIisgrs06MjuVyOjIwMcxeDSI2Dg4NOQzWJiKwdgx4dZGRkICoqCnK53NxFIVJjY2OD4OBgODg4mLsoREQWjUFPPgRBQExMDGxtbREYGMi/qMmi5EysGRMTg1KlSnFyTSKiPDDoyUdWVhZevnyJ4sWLw8XFxdzFIVLj6+uLR48eISsrC/b29uYuDhGRxWK1RT6ys7MBgE0HZLFyfjZzflaJiEgzBj06YrMBWSr+bBIR6YZBDxEREVkFBj1ERERkFRj0kMkNGjQI3bp1M3cxiIjIyjDoIY2mT5+OmjVrmrsYRERWJzM7E5nZmeYuRqHEoIeIiMhCyAU5Ki6tiNKLSiNLnmXu4hQ6DHr0JAgCUjJSzPIRBEGvsu7Zswdvv/02vLy84OPjg06dOuHevXvi8f/++w99+/aFt7c3XF1dUbduXZw9exYrV67EjBkzcPnyZchkMshkMqxcuRL379+HTCZDeHi4eI34+HjIZDIcOXIEgGLY9JAhQxAcHAxnZ2dUqFABixcvNsSrJyIq9JIzkhH5IhIxyTF4lPTI3MUpdDg5oZ5eZr6E22w3s9w7eXIyXB1cdc6fkpKC8ePHo3r16khOTsbUqVPx7rvvIjw8HC9fvkSzZs1QokQJbNu2DQEBAbh48SLkcjl69+6Na9euYc+ePThw4AAAwNPTE3FxcfneUy6Xo2TJkti4cSN8fHxw6tQpDBs2DMWKFUOvXr1e+9mJiKyBDMopKGKTY1HKs5QZS1P4MOgpxHr06CHZX758OXx9fXHjxg2cOnUKT548wfnz5+Ht7Q0AKFu2rJjXzc0NdnZ2CAgI0Oue9vb2mDFjhrgfHByM06dPY8OGDQx6iIjyIReUazx2XtcZcZ/m/8cm6Y5Bj55c7F2QPDnZbPfWx507dzB16lScPXsWT58+FRdMjY6ORnh4OGrVqiUGPIa0dOlSLF++HNHR0UhNTUVGRgY7RRMR6SBbUM6s/jjlsRlLUjgx6NGTTCbTq4nJnDp37ozSpUvj119/RfHixSGXy1G1alVkZGTA2dlZ7+vlLLaq2rcoM1M6wmD9+vX49NNPMX/+fISEhMDd3R3fffcdzp49+2YPQ0RkBVRresjw2JG5kHr27BkiIiIwZcoUtGrVCpUqVcKLFy/E49WrV0d4eDieP3+u8XwHBwe1tZx8fX0BADExMWKaaqdmADh58iQaNWqEkSNHolatWihbtqyk8zQREWnHoMe4GPQUUkWKFIGPjw9++eUX3L17F4cOHcL48ePF43379kVAQAC6deuGkydPIjIyEps3b8bp06cBAEFBQYiKikJ4eDiePn2K9PR0ODs7o2HDhpgzZw5u3ryJo0ePYsqUKZL7litXDhcuXMDevXtx+/ZtfPnllzh//rxJn52IqKBi0GNcDHoKKRsbG6xfvx5hYWGoWrUqxo0bh++++0487uDggH379sHPzw8dOnRAtWrVMGfOHNja2gJQdIJu164dWrRoAV9fX6xbtw6AojN0VlYW6tSpg7Fjx+Krr76S3Hf48OHo3r07evfujQYNGuDZs2cYOXKk6R6ciKgAy5Yra9iblm5qxpIUTjJB38lfCqHExER4enoiISEBHh4ekmNpaWmIiopCcHAwnJyczFRCIu34M0pU8GVmZ+J+/H042Tmh1CLFMPUelXpgU69NZi6ZZcvr+1sT1vQQERGZWZf1XVB+SXn8df0vMY0zMhsegx4iIiIz23N3DwBg4v6JYlpGdoa5ilNoMeghIiKyQC8zX5q7CIUOgx4iIiILxKDH8Bj0EBERWaCUzBRzF6HQMWvQM336dHEV75xPxYoVxeNpaWkIDQ2Fj48P3Nzc0KNHD7VFL6Ojo9GxY0e4uLjAz88PEydORFYWO38REVHBxpoewzP7MhRVqlQRV/IGADs7ZZHGjRuHnTt3YuPGjfD09MSoUaPQvXt3nDx5EgCQnZ2Njh07IiAgAKdOnUJMTAwGDBgAe3t7fPPNNyZ/FiIiIn2lZqZqTL8ffx+CIEAmk2k8Tvoze/NWzkreOZ+iRYsCABISEvD7779jwYIFaNmyJerUqYMVK1bg1KlTOHPmDABg3759uHHjBv7880/UrFkT7du3x6xZs7B06VJkZLDXOxERWb4/rvyh9VjOqC4yDLMHPXfu3EHx4sVRpkwZ9OvXD9HR0QCAsLAwZGZmonXr1mLeihUrolSpUuJSCadPn0a1atXg7+8v5mnbti0SExNx/fp1rfdMT09HYmKi5ENERGQOeS09ER4bbrqCWAGzBj0NGjTAypUrsWfPHixbtgxRUVFo0qQJkpKSEBsbCwcHB3h5eUnO8ff3R2xsLAAgNjZWEvDkHM85ps3s2bPh6ekpfgIDAw37YFYmKCgIixYtEvdlMhn++eefN7qmIa5RWDRv3hxjx441dzGIyEh8XXy1HuMEhYZl1qCnffv2eO+991C9enW0bdsWu3btQnx8PDZs2GDU+06ePBkJCQni58GDB0a9n7WJiYlB+/btdco7ffp01KxZ842uYQkGDRqEbt26mbsYRFQA2dlo7167484OE5ak8DN785YqLy8vlC9fHnfv3kVAQAAyMjIQHx8vyRMXF4eAgAAAQEBAgNporpz9nDyaODo6wsPDQ/KxdobsAxUQEABHR0ezX4OIqCDIFrK1Hjv38JwJS1L4WVTQk5ycjHv37qFYsWKoU6cO7O3tcfDgQfF4REQEoqOjERISAgAICQnB1atX8fjxYzHP/v374eHhgcqVKxunkIIApKSY56PH2rDNmzfHqFGjMGrUKHh6eqJo0aL48ssvkbO+bFBQEGbNmoUBAwbAw8MDw4YNAwCcOHECTZo0gbOzMwIDAzF69GikpCjninj8+DE6d+4MZ2dnBAcHY82aNWr3zt009d9//6Fv377w9vaGq6sr6tati7Nnz2LlypWYMWMGLl++LE5ZsHLlSo3XuHr1Klq2bAlnZ2f4+Phg2LBhSE5OFo/n1LTMmzcPxYoVg4+PD0JDQ5GZmanT+/rjjz9Qt25duLu7IyAgAO+//77k5woArl+/jk6dOsHDwwPu7u5o0qQJ7t27h+nTp2PVqlXYunWr+BxHjhzBkSNHIJPJJIF7eHg4ZDIZ7t+/DwB49uwZ+vbtixIlSsDFxQXVqlUTV7QnIuvAJizTMeuQ9U8//RSdO3dG6dKl8ejRI0ybNg22trbo27cvPD09MWTIEIwfPx7e3t7w8PDAJ598gpCQEDRs2BAA0KZNG1SuXBn9+/fH3LlzERsbiylTpiA0NNR4tQQvXwJubsa5dn6SkwFXV52zr1q1CkOGDMG5c+dw4cIFDBs2DKVKlcJHH30EAJg3bx6mTp2KadOmAQDu3buHdu3a4auvvsLy5cvx5MkTMXBasWIFAEVw8ejRIxw+fBj29vYYPXq0WnAgLXIymjVrhhIlSmDbtm0ICAjAxYsXIZfL0bt3b1y7dg179uwRpy3w9PRUu0ZKSgratm2LkJAQnD9/Ho8fP8bQoUMxatQoMUgCgMOHD6NYsWI4fPgw7t69i969e6NmzZri8+YlMzMTs2bNQoUKFfD48WOMHz8egwYNwq5duwAADx8+RNOmTdG8eXMcOnQIHh4eOHnyJLKysvDpp5/i5s2bSExMFN+Tt7c3Tp06le9909LSUKdOHXz++efw8PDAzp070b9/f7z11luoX79+vucTUcHHoMeEBDPq3bu3UKxYMcHBwUEoUaKE0Lt3b+Hu3bvi8dTUVGHkyJFCkSJFBBcXF+Hdd98VYmJiJNe4f/++0L59e8HZ2VkoWrSoMGHCBCEzM1OvciQkJAgAhISEBLVjqampwo0bN4TU1FRFQnKyICjqXEz/SU7W+ZmaNWsmVKpUSZDL5WLa559/LlSqVEkQBEEoXbq00K1bN8k5Q4YMEYYNGyZJO378uGBjYyOkpqYKERERAgDh3Llz4vGbN28KAISFCxeKaQCELVu2CIIgCD///LPg7u4uPHv2TGM5p02bJtSoUUMtXfUav/zyi1CkSBEhWeX5d+7cKdjY2AixsbGCIAjCwIEDhdKlSwtZWVlinvfee0/o3bu3ljeUt/PnzwsAhKSkJEEQBGHy5MlCcHCwkJGRoTH/wIEDha5du0rSDh8+LAAQXrx4IaZdunRJACBERUVpvXfHjh2FCRMmiPvNmjUTxowZozW/2s8oERUoq8JXCZgOrR/SLq/vb03MWtOzfv36PI87OTlh6dKlWLp0qdY8pUuXFv8aNwkXF0WNizm4uOiVvWHDhpJJrUJCQjB//nxkZyvaj+vWrSvJf/nyZVy5ckXSZCUIAuRyOaKionD79m3Y2dmhTp064vGKFSuqjbBTFR4ejlq1asHb21uvsqu6efMmatSoAVeVWq7GjRtDLpcjIiJCHLFXpUoV2NrainmKFSuGq1ev6nSPsLAwTJ8+HZcvX8aLFy8glyuGkEZHR6Ny5coIDw9HkyZNYG9v/9rPoUl2dja++eYbbNiwAQ8fPkRGRgbS09Phoue/NREVXKzpMR2zz8hc4MhkejUxWTLXXM+RnJyM4cOHY/To0Wp5S5Uqhdu3b+t9D2dn59cun75yByQymUwMXvKS03zWtm1brFmzBr6+voiOjkbbtm3FDt6v8xw2Noouc4JKX6zcfYy+++47LF68GIsWLUK1atXg6uqKsWPHcnJNIiuy+eZmcxfBalhUR2YyrLNnz0r2z5w5g3LlyklqQ1TVrl0bN27cQNmyZdU+Dg4OqFixIrKyshAWFiaeExERoTbCTlX16tURHh6O58+fazzu4OAg1jxpU6lSJVy+fFnSofrkyZOwsbFBhQoV8jxXF7du3cKzZ88wZ84cNGnSBBUrVlTrp1S9enUcP35ca8doTc/h66uYeyMmJkZMCw8Pl+Q5efIkunbtig8++AA1atRAmTJlXiu4JKKCa9cdE7ZWWDkGPYVYdHQ0xo8fj4iICKxbtw4//PADxowZozX/559/jlOnTmHUqFEIDw/HnTt3sHXrVowaNQoAUKFCBbRr1w7Dhw/H2bNnERYWhqFDh+ZZC9K3b18EBASgW7duOHnyJCIjI7F582ZxVu2goCBERUUhPDwcT58+RXp6uto1+vXrBycnJwwcOBDXrl3D4cOH8cknn6B///5qk1O+jlKlSsHBwQE//PADIiMjsW3bNsyaNUuSZ9SoUUhMTESfPn1w4cIF3LlzB3/88QciIiLE57hy5QoiIiLw9OlTZGZmomzZsggMDMT06dNx584d7Ny5E/Pnz5dct1y5cti/fz9OnTqFmzdvYvjw4WrTMBBR4bUtYpu5i2BVGPQUYgMGDEBqairq16+P0NBQjBkzRhyarkn16tVx9OhR3L59G02aNEGtWrUwdepUFC9eXMyzYsUKFC9eHM2aNUP37t0xbNgw+Pn5ab2mg4MD9u3bBz8/P3To0AHVqlXDnDlzxNqmHj16oF27dmjRogV8fX01Dtd2cXHB3r178fz5c9SrVw89e/ZEq1atsGTJkjd4O0q+vr5YuXIlNm7ciMqVK2POnDmYN2+eJI+Pjw8OHTokjkarU6cOfv31V7FJ7aOPPkKFChVQt25d+Pr64uTJk7C3t8e6detw69YtVK9eHd9++y2++uoryXWnTJmC2rVro23btmjevLkYIBKRdei6vqtaWuwE6YoC4bHhXHHdQGSCaocDK5WYmAhPT08kJCSoTVSYlpaGqKgoBAcHw8nJyUwl1F/z5s1Rs2ZNyfIQVDgV1J9RIgJkM6QrqN/95C7e8n5LLb20Z2lcG3kNbg5mmjLFQuX1/a0Ja3qIiIgswK3QW3jL+y0AQMOSDSXH/k34F+3XFJyleSwVgx4q9I4fPw43NzetHyIiS1DMvZi4PavFLLXjJ6JPmLI4hRKHrBdSR44cMXcRLEbdunXVRk0REVkaGxnrIYyNQQ8Ves7Ozihbtqy5i0FEJDFh7wTJvmrQI4Msd3YAgFyQMzh6A3xzREREZrDgzALJviTokWkOetKy0oxapsKOQQ8REZEF0KUGh0HPm2HQQ0REZAFUm7S0NW8x6HkzDHqIiIgsAJu3jI9BDxERkQXQpXkrNTPVBCUpvBj0FFKCIGDYsGHw9vaGTCbjkO18BAUFSWavlslk+Oeff97omoa4BhFZhyq+VSS1O2zeMg4GPYXUnj17sHLlSuzYsQMxMTGoWrVqvufwS1opJiYG7dvrNvvp9OnTUbNmzTe6BhFZty4Vukj2tTVvBXkFmaA0hReDnkLq3r17KFasGBo1aoSAgADY2ZluSqaMjAyT3ctY9w0ICICjo6PZr0FE1iG/ZTB7Vu6Jl1+8hI+Lj4lKVDgx6NGTIAApKeb56Lo07KBBg/DJJ58gOjoaMpkMQUFBas03AFCzZk1Mnz4dgKJ5BwDeffdd8Zyca+Ve9Xvs2LFo3ry5uN+8eXOMGjUKY8eORdGiRdG2bVsAwLVr19C+fXu4ubnB398f/fv3x9OnT3V6hpxrjho1Cp6enihatCi+/PJLyS+GoKAgzJo1CwMGDICHh4e4gvyJEyfQpEkTODs7IzAwEKNHj0ZKSop43uPHj9G5c2c4OzsjODgYa9asUbt/7lqv//77D3379oW3tzdcXV1Rt25dnD17FitXrsSMGTNw+fJlyGQyyGQyrFy5UuM1rl69ipYtW8LZ2Rk+Pj4YNmwYkpOTxeM573revHkoVqwYfHx8EBoaiszMTJ3eGREVXAKkv+BVm7fKepfFxvc2wtne2dTFKnQY9Ojp5UvAzc08n5cvdSvj4sWLMXPmTJQsWRIxMTE4f/58vufk5FmxYoXO56hatWoVHBwccPLkSfz000+Ij49Hy5YtUatWLVy4cAF79uxBXFwcevXqpdc17ezscO7cOSxevBgLFizAb7/9Jskzb9481KhRA5cuXcKXX36Je/fuoV27dujRoweuXLmCv/76CydOnMCoUaPEcwYNGoQHDx7g8OHD2LRpE3788Uc8fvxYazmSk5PRrFkzPHz4ENu2bcPly5fx2WefQS6Xo3fv3pgwYQKqVKmCmJgYxMTEoHfv3mrXSElJQdu2bVGkSBGcP38eGzduxIEDByTlAoDDhw/j3r17OHz4MFatWoWVK1eKQRQRFV7F3YtL9lWbt5ztGOwYCpehKIQ8PT3h7u4OW1tbBAQE6HSOr68vAMDLy0vnc1SVK1cOc+fOFfe/+uor1KpVC998842Ytnz5cgQGBuL27dsoX758vtcMDAzEwoULIZPJUKFCBVy9ehULFy7ERx99JOZp2bIlJkxQTuU+dOhQ9OvXD2PHjhXL9f3336NZs2ZYtmwZoqOjsXv3bpw7dw716tUDAPz++++oVKmS1nKsXbsWT548wfnz5+Ht7Q0AkmUt3NzcYGdnl+d7W7t2LdLS0rB69Wq4uroCAJYsWYLOnTvj22+/hb+/PwCgSJEiWLJkCWxtbVGxYkV07NgRBw8elDwzERU+H9f9WOsx1vAYDoMePbm4ACotEia/t6WqU6eOZP/y5cs4fPiwxlXM7927p1PQ07BhQ8lfOyEhIZg/fz6ys7Nha2sLQLGYaO77XrlyRdJkJQgC5HI5oqKicPv2bdjZ2UnKW7FiRXh5eWktR3h4OGrVqiUGPK/j5s2bqFGjhhjwAEDjxo0hl8sREREhBj1VqlQRnw0AihUrhqtXr772fYmoYHCwdZDsqzZvudhb8C//AoZBj55kMkDle6vAsLGxUesop0tfEV3Pc831UpKTk8VajNyKFSumS5F1oum+w4cPx+jRo9XylipVCrdv39b7Hs7Opvsry97eXrIvk8kgl8tNdn8isgxs3jIOBj1WwtfXFzExMeJ+YmIioqKiJHns7e2RnZ2tdt61a9ckaeHh4WpfzrnVrl0bmzdvRlBQ0GuPHDt79qxk/8yZMyhXrpykJkTTfW/cuKF1VfWKFSsiKysLYWFhYvNWREQE4uPjtV6zevXq+O233/D8+XONtT0ODg5q7y23SpUqYeXKlUhJSREDtZMnT8LGxgYVKlTI81wiKtwqFdXevA6wecuQ2JHZSrRs2RJ//PEHjh8/jqtXr2LgwIFqwUNQUBAOHjyI2NhYvHjxQjzvwoULWL16Ne7cuYNp06apBUGahIaG4vnz5+jbty/Onz+Pe/fuYe/evRg8eHC+AUKO6OhojB8/HhEREVi3bh1++OEHjBkzJs9zPv/8c5w6dQqjRo1CeHg47ty5g61bt4odhitUqIB27dph+PDhOHv2LMLCwjB06NA8a3P69u2LgIAAdOvWDSdPnkRkZCQ2b96M06dPi+8tKioK4eHhePr0KdLT09Wu0a9fPzg5OWHgwIG4du0aDh8+jE8++QT9+/cXm7aIyLqU9Vb8cfZzp5/Vjqk2b7Gmx3AY9FiJyZMno1mzZujUqRM6duyIbt264a233pLkmT9/Pvbv34/AwEDUqlULANC2bVt8+eWX+Oyzz1CvXj0kJSVhwIAB+d6vePHiOHnyJLKzs9GmTRtUq1YNY8eOhZeXF2xsdPuxGzBgAFJTU1G/fn2EhoZizJgx4rB0bapXr46jR4/i9u3baNKkCWrVqoWpU6eieHHlyIgVK1agePHiaNasGbp3745hw4bBz89P6zUdHBywb98++Pn5oUOHDqhWrRrmzJkjBo09evRAu3bt0KJFC/j6+mLdunVq13BxccHevXvx/Plz1KtXDz179kSrVq2wZMkSnd4FERVempafUG3ecrTlfF+GIhPymxHJCiQmJsLT0xMJCQnw8PCQHEtLS0NUVBSCg4Ph5ORkphJan+bNm6NmzZpqcwuROv6MEhVM5X4oh7vP7+LkhyfRKLCR5NjZ/86i4e8NAQDD6wzHT51+MkcRLV5e39+asKaHiIjIDHStc7C3ybsPJemOHZnJ5KKjo1G5cmWtx2/cuGHC0hARmZemxUVVm7fsbRn0GAqDHjK54sWL57nqe/HixXHkyBGTlYeIyBxyLz2hSjUQYk2P4TDoIZOzs7PTOqSciMjaaFpRPSZZOcUIa3oMh316dMT+3mSp+LNJVDDl9f/uw8SH4ram5i96PazpyYe9vT1kMhmePHkCX19fjRE5kbkIgoAnT55AJpPlO2EkEVkmTUFN32p9MXLXSABApjz/2fNJNwx68mFra4uSJUviv//+w/37981dHCI1MpkMJUuWzHOmaiKyPHn16fF09BS3M7IzTFEcq8CgRwdubm4oV66cTmtVEZmavb09Ax6iAkxTC4JqGoMew2HQoyNbW1t+sRARkckx6DEcdmQmIiIyA10HITDoMRwGPURERGaU3+gsBj2Gw6CHiIjIDPLqyKyKQY/hMOghIiIyI21TobR9qy0AYGS9kaYsTqHGjsxERERmkF+fnh3v70BMUgwCPQNNVKLCjzU9REREZqStT4+djR0DHgNj0ENERGQGuvbpIcNh0ENERGRGXN7IdBj0EBERmQEXCzY9Bj1ERERmxFXUTYdBDxERkRmwT4/pMeghIiIiq8Cgh4iIyIzYkdl0GPQQERGZATsymx6DHiIiIjNiR2bTYdBDRERkBuzIbHoMeoiIiMyIfXpMh0EPERGRGbBPj+kx6CEiIjIj9ukxHYsJeubMmQOZTIaxY8eKaWlpaQgNDYWPjw/c3NzQo0cPxMXFSc6Ljo5Gx44d4eLiAj8/P0ycOBFZWVkmLj0REZF+2KfH9Cwi6Dl//jx+/vlnVK9eXZI+btw4bN++HRs3bsTRo0fx6NEjdO/eXTyenZ2Njh07IiMjA6dOncKqVauwcuVKTJ061dSPQERE9FrYp8d0zB70JCcno1+/fvj1119RpEgRMT0hIQG///47FixYgJYtW6JOnTpYsWIFTp06hTNnzgAA9u3bhxs3buDPP/9EzZo10b59e8yaNQtLly5FRkaGuR6JiIgoT+lZ6Xic8tjcxbA6Zg96QkND0bFjR7Ru3VqSHhYWhszMTEl6xYoVUapUKZw+fRoAcPr0aVSrVg3+/v5inrZt2yIxMRHXr1/Xes/09HQkJiZKPkRERKay++5ucZt9ekzHzpw3X79+PS5evIjz58+rHYuNjYWDgwO8vLwk6f7+/oiNjRXzqAY8Ocdzjmkze/ZszJgx4w1LT0RE9Hri0+LNXQSrZLaangcPHmDMmDFYs2YNnJycTHrvyZMnIyEhQfw8ePDApPcnIiLrlpyRLG6zQ7PpmC3oCQsLw+PHj1G7dm3Y2dnBzs4OR48exffffw87Ozv4+/sjIyMD8fHxkvPi4uIQEBAAAAgICFAbzZWzn5NHE0dHR3h4eEg+REREpqIa9GTLs81YEutitqCnVatWuHr1KsLDw8VP3bp10a9fP3Hb3t4eBw8eFM+JiIhAdHQ0QkJCAAAhISG4evUqHj9Wdgbbv38/PDw8ULlyZZM/ExERkS5Y02MeZuvT4+7ujqpVq0rSXF1d4ePjI6YPGTIE48ePh7e3Nzw8PPDJJ58gJCQEDRs2BAC0adMGlStXRv/+/TF37lzExsZiypQpCA0NhaOjo8mfiYiISBdpWWnitp2NWbvXWhWLftMLFy6EjY0NevTogfT0dLRt2xY//vijeNzW1hY7duzAiBEjEBISAldXVwwcOBAzZ840Y6mJiIjylpqZKm7bymzNWBLrIhO4+AcSExPh6emJhIQE9u8hIiKjG7ptKH6/9DsAIGlyEtwc3MxcooJJ3+9vs8/TQ0REZG1eZr4EAIxvOJ4Bjwkx6CEiIjKxnI7MFYtWNHNJrAuDHiIiIhPbcXsHALCWx8QY9BARkd5+v/g76v1aD//G/2vuohQ4T18+FYepO9g6mLk01oVBDxER6eXZy2cYun0oLjy6gPZr2pu7OAVOQlqCuG0j49ewKfFtExGRXn4O+1ncvvn0phlLUjBlybPE7Y7lO5qxJNaHQQ8REemF/VDeTKY8EwBQ1KUom7dMjEEPERHpxcfZR7L/KOmRmUpSMOXU9Njb2Ju5JNaHQQ8REeklKSNJsn/r6S0zlaRgOvPfGQCAXJCbuSTWh0EPERHlKzkjGUGLgrD80nIkpidKjj19+dRMpSqYRuwcAQCIS4kzc0msD4MeIiLKV+lFpfFvwr8Ysm2IZIVwAHiR+sJMpSLSD4MeIiLK1/PU5+J2ela65FhOx1wiS8egh4iI9HIh5oJkX3UINpElY9BDRER6ORR1SLKfmc2aHioYGPQQEdEbYU3P6xlVb5S5i2B1GPQQEVG+3B3ctR5jnx792NnYAQAmvT3JzCWxPgx6iIgoX5rWiJJBBgBIzUw1dXEKtGx5NgDA1sbWzCWxPgx6iIgoX5qCno9qfwQAakPYSTtBEMQV1rnYqOnxjRMRUb40fUEHeQUBAJIzGfToSrUp0FbGmh5TY9BDRET50tQU4+HoAQA4cv+IiUtTMKVmpsJrjpe4z+Yt07MzdwGIiMhyRb6IhFyQa6zpOR59HABwP/6+iUtVMB2IPIDULGX/Jy44anoMeoiISKOM7Ay89f1bAJSdllWlZ6erpZF2/yX+J9l3dXA1U0msF5u3iIhIo5SMFHE7p/NtjhF1R2Bcw3Hi/vXH101WroJq5K6R4nZZ77JmLIn1YtBDREQaaZt/p1+1fvix44+SuXvWXVtnqmIVCpzQ0TwY9BARkUZpWWka0ysWrQhAOqKLw9bzV8qzlLidkZ1hxpJYLwY9RESkkaagp1VwK4wPGQ9A++ijLHkWBEHQeMyaqa5Oz6DHPBj0EBGRRqpf0jm+bf0tXOxd1NJzOjonZySjzOIy6LGhh3jsScoTfskDSMlU9pHi+zAPjt4iIiKNNNX0ONo5its5yymo2nF7Bx4kPsCDxAfIlmfjv8T/ELQ4CLWL1UbYsDCjlteSCYIg6RiuKaAk42PQQ0REGmkaku5k56TxeE5TV2a2svPzj+d/FPNcjLkIQRAgk6kPfbcGqVmpkhFw9raco8ccGPQQEZFGG69vVEtTDXpUzT89H23eaoP4tHgxbX/kfkm/n+epz+Hj4mPwclq6l5kvJbU8Xk5e2Pie+rsl42PQQ0REGn1/7nu1NEdbZfNWveL1JMfa/tlWsr/99nbJfu65fqzBoahDaLW6FYbVHgZAETQ+/+y51dZ4mRs7MhMRkUZDag1RS1Ot6dH3i1u16ctatFrdCgDwy8VfAABuDm4MeMyIQQ8REWlU1KUoAOVq6oB681aPSj2gqx23dxikXAWZqz2XnjAnBj1ERKSm09pO+PbktwCkQY+djbRXxMRGE3W+5tQjUw1StoJCLsjV0rjelnmxTw8REUnIBTl23tkp7lfzqwY3BzcUdyuu1jSjOoQ9P9Y2a/P+e/vV0v6N/9cMJaEcDHqIiEjiRPQJyb6znTO2992uMa+DrYPO103OSMalmEuoVazWG5WvoFAdyZZDdYJCMj02bxERkUSzlc0k+3nNKaM6mksXG65veK0yFUSqa5ORZeC/CBERITM7E6cfnEZqZqrasZwOzZroU9MDAHNOztG7bAWVn6ufWlo1v2pmKAnlYNBDREQYv3c8Gi1vhCHb1Iep1y1eV+t5+vTpsRYPEx8iMzsT9+Pvqx1zd3Q3fYFIxD49RESEJeeXAADWXVsnSZ/dajbeLvW21vP0rekp7M49PIcGvzVA09JNUb94fbXjmtYrI9NhTQ8REWk16e1JeR63t7G+NaQEQcDn+z/XuEzHbxd/AwAc+/eYxrXLNA1jJ9N5o6AnLU19BV4iIiocvm75db55NM07890730nm9lH1XuX3CvzMzPvu7cPcU3PRa1MvtWMyKIf0v0h7oXa8zVttjFo2ypveQY9cLsesWbNQokQJuLm5ITIyEgDw5Zdf4vfffzd4AYmIyPhKepSU7Nfwr4Evmnyh07mbe22W7Lvau0IQlOts9aqiDA423tiIkgtLFug5exLTE8XtpPQkrfn+vPKnWtr/mvzPKGUi3egd9Hz11VdYuXIl5s6dCwcHZVtu1apV8dtvvxm0cEREZBplipSR7Hs4euh8breK3fBTx5/EfXtbe2QLyr4r63usx+eNPxf3H6c8xu47u9+gtOal2hl50ZlFkmOqz62Js72zMYpEOtI76Fm9ejV++eUX9OvXD7a2tmJ6jRo1cOvWLYMWjoiITMPF3kWyr88oIxuZDT6q85FkX7UJSyaToYJPBck5BXnUl+r6WY+SHkmOZcmz1PLnNeSfTEvvoOfhw4coW7asWrpcLkdmZsFupyUisla5FxLddWeXXuerTsRnI7NBplz6fbD9tnRG59z3K6hyBzmagp4a/jVMVRyTS00Fli8Hzp1T7GdmAjNmAJ9/Dlhit1+9h6xXrlwZx48fR+nSpSXpmzZtQq1a1jG1OBFRYWPIIEQGmVpn5WF1hmHLrS3ivr4zOVsS1XXJwuPCJcdikmPU8jcr3QwHow4au1gmJwiAi4v241u3ApbWAKR30DN16lQMHDgQDx8+hFwux99//42IiAisXr0aO3bsMEYZiYjIyAwZ9Giq6anuX91o9zOl9Kx0cfV5ALjw6ILk+JW4K2rndK3YFR6OHnjL+y2jl8+U9u7N+3hEBHDmDNCwoWnKowu9m7e6du2K7du348CBA3B1dcXUqVNx8+ZNbN++He+8844xykhEREYS9SIKE/ZOQGxyrCS9f/X+r31NWxtbtZoeW5mtZD+v9bws2aGoQ3ked7aTdlT2cPRApaKVMKbhGHQq38mYRTOqL74ASpYEHjxQprVvn/95ISHGK9PreK0ZmZs0aYL9+/cbuixERGRii84swvfnvldLd3d4/eUSbGW2aqOYbG1steQuWDqs7aAxfcftHdhyc4taDVZieqLFBngjRgA//QScPQvUV588WjRlCjB7tmK7VClFs1a2HhNLx8UB/v5vVlZD0bum5/z58zh79qxa+tmzZ3HhwgUNZxARkaW6GHtRY7pMJtOYnpdBNQehgk8FdKnQRe1Y7hXHVefxKQw6r+uM5eHLcef5HXMXRSfr1ikCHgBo0EB7Prkc+DrXHJU7dwLz5in3P/wQWL9ese3uDkRFAbNmKY8HBAAnThim3G9K76AnNDQUD1Trt155+PAhQkNDDVIoIiIyjRPRmr+NGgc21vtaK7quwM3QmxrnosndvCWgcAU9lkLXGpj335fuR0Rozrd2rXpap07AJJXVSX76CejdW1EDlJgIBAUBn30mPadJE93KZWx6Bz03btxA7dq11dJr1aqFGzduGKRQRERkXn2q9nmt87TVEOVu3iqoNT2aRp3ltaxG1wpdjVKO9HSgWDFAJlMMEY+LU2zb2QFvvaWoodFGU4CjWjOjavr0/Mtir6H1zsEBqFJFmvbyZf7XMja9gx5HR0fExcWppcfExMDOjou2ExEVBq/TvKUqp4krpKSiJ2thqenpVrGbWlruWZlVvel71Oa994DYV33Pp09XNCHliIxUBELaLF2qnnbmjHqaIAD37in316xRz7N5s3pajgMHpPt372rPayp6Bz1t2rTB5MmTkZCQIKbFx8fjiy++0Hv01rJly1C9enV4eHjAw8MDISEh2L1bOTV5WloaQkND4ePjAzc3N/To0UMt4IqOjkbHjh3h4uICPz8/TJw4EVlZ6pNDEREVBt+e+BabbmwydzHytbLrSvzQ/gf80+cfAIWnT4+myQc/O/CZhpwGIgjAtWuKWf9eefoU2L49j3MAzJyp3I6MBGrUAEaOVNQQ/fCD8tjYsYr/3rsHqHytA5AGLf37A337qt+ni3r3LVFAAHDxImBjo+gXVKJE3mU2Bb2Dnnnz5uHBgwcoXbo0WrRogRYtWiA4OBixsbGYP3++XtcqWbIk5syZg7CwMFy4cAEtW7ZE165dcf36dQDAuHHjsH37dmzcuBFHjx7Fo0eP0L17d/H87OxsdOzYERkZGTh16hRWrVqFlStXYurUqfo+FhGRxTv38BwmHZyE9za+h6txVw1yTU9HT4NcJ7cizkUwqv4o+Ln6ASg8o7dyzz+Un4sxGjqKZ2Yqqk0ePVI/pipn9r9q1RTtRSkpAIBly3S79/btwJMniuauK1cU5zmpDC4rXRro1k25n7s4bVQWhF+4UNF8plqzs3y5ojktL7VqKfoZffEF4OOjW7mNSSa8RridkpKCNWvW4PLly3B2dkb16tXRt29f2Gtq2NOTt7c3vvvuO/Ts2RO+vr5Yu3YtevbsCQC4desWKlWqhNOnT6Nhw4bYvXs3OnXqhEePHsH/1Xi4n376CZ9//jmePHkiWRA1L4mJifD09ERCQgI8PHRfZI+IyJR23t6JTusUc724ObghabL2Fb51IQgCbGfaqjU11QqohYvDNY/qehOyGcqmntNDTqNhSQuatU5HHdZ0wO67+i2WKkzL9TXr6qrs4BITI22bUnX0KNC8uXK/e3dg82aotpiVKgVERyv3v/lGEWDo4soVRTyVc73Ro4HFixXbsbGKPkPiM6g8wuHDgJeXIqAxN32/v1+rE46rqyuGDRv2OqdqlZ2djY0bNyIlJQUhISEICwtDZmYmWrduLeapWLEiSpUqJQY9p0+fRrVq1cSABwDatm2LESNG4Pr161qXxUhPT0d6erq4n5iYaNBnISIyBtX+IckZyW98veSMZLWA59zQc6jkW+mNr52fgtq8pW9Nj9p8R0+fSnv0Ll6snAQnN5WARwBw4+9bKJKrNubff4HnzxWdkxs2VAQwugY91apJ97//Xhn0dO6sTP/mG2m+Fi10u74l0ino2bZtG9q3bw97e3ts27Ytz7xd8mrg0+Dq1asICQlBWloa3NzcsGXLFlSuXBnh4eFwcHCAl5eXJL+/vz9iX/Xeio2NlQQ8Ocdzjmkze/ZszMirlxcRkQXK3S/mTSWmq//BV69EPYPeQ5uC2pE5S54Fp0yg5w3gXAngdlHAMxX49oBif3muwc0zmuf6rhkyRLo/Z47moCdX39RxWIjFGAuo9Iv5+2/Ff729pTMf//or8NFHyNPPPyu3P/sMmDtXsZ2ergikVKfd+/DDvK9VkOgU9HTr1g2xsbHw8/NDN9UGwFxkMhmy9ZmmEUCFChUQHh6OhIQEbNq0CQMHDsTRo0f1uoa+Jk+ejPHjx4v7iYmJCAwMNOo9iYjelKGDntSsVINeTx8FtaYnKy0VqV9rPjY8DGj4H3Bp5ggsu6DoeOPl5CXNpKniIC1N2tkGAH78UdwUuvfAD39/onbau+9qLseHH6oHPdHRijhq6FBFLY5qY03//sqgZ8YM9RjMUmZTNgSd/g+Sy+Xw8/MTt7V99A14AMDBwQFly5ZFnTp1MHv2bNSoUQOLFy9GQEAAMjIyEB8fL8kfFxeHgFftnwEBAWqjuXL2A7S1kUIx7D5nxFjOh4jI0uUV9Nx6eguf7vsUT1Ke6Hy99Kx0yb6vi+9rl01fBbGmRxAENNmgviKBqo8uAvOqfyruO9s6KoIaQLHegyZX1BcpxZgx4qZs/TrMKzpHcrhxHnNH2tgAp04p9zdvBgIDgeBg4OBB5YitHKVLK7dzBzyvxhUVGnr92ZCZmYlWrVrhzh3jTbMtl8uRnp6OOnXqwN7eHgcPHhSPRUREIDo6GiGv6vFCQkJw9epVPH78WMyzf/9+eHh4oHLlykYrIxGROcigfc6XlqtaYv7p+ej3dz+driUIAvpsVkxAWNy9OP4b9x+ixkQZpJzajGmg/CK3+Jqe5GSgVSuga1exqWnjjY34Ju/1RgEALj0U77XWI6BPjX6As7Pio7rcuOoEOLmjkORc/bXs7dH05w8kSZvymbUgJEQxSCwzU9H/OS/u7uoVTa9ui8L2VapX0GNvb48rmiLS1zR58mQcO3YM9+/fx9WrVzF58mQcOXIE/fr1g6enJ4YMGYLx48fj8OHDCAsLw+DBgxESEoKGr35w2rRpg8qVK6N///64fPky9u7diylTpiA0NBSOjuqzZhIRFWQu9i5aj8UkxwAA9kfqthj0o6RHuPb4GgAgJSMFJTxKwNXB9c0LmYfpzacb9fr5Sk4G/PyAokWBFy/yzjtwIHDokKI56lXLwalbOi60ff48/JKBi7+opOXU9uRQrV6JiZEe+15lAdhX6z3U6V5anHBw5UrtA75U2dnlP6Q8x9at6mlPn+p2bkGidwPxBx98gN9//90gN3/8+DEGDBiAChUqoFWrVjh//jz27t0rTnK4cOFCdOrUCT169EDTpk0REBCAv3N6bgGwtbXFjh07YGtri5CQEHzwwQcYMGAAZqrOykREVEiortataVFPffyX+J+4nZCekEdOw/Fy8kIFnwoAzNS89eWXiolrnj1T9P7VJi5O2UsYUOS/cwfv/ajsb9qrJzCxreIr9GQg4DkJirl0ci6hsiCnmr59AVtbZf+e+/eVtTuCAPzvf8q8n38ubk6dqjg8cGA+z/ka2rQBqlZV7l+7BhTGnh96D1nPysrC8uXLceDAAdSpUweurtK/DBYsWKDztfILnpycnLB06VIs1TRn9iulS5fGrl27dL4nEVFBpdok9KbNQzk1Q6aWM+zeoM1bggDkt9xDRgawaJFu1/vtN/W08uWh2o2m+9S1eJr6DLIQlQ7Gt24BZcrkf/2FCxX/fdVXFgCwb5+iHSr35Lq5RjAb08WLiqHv5coBhbWxRO+anmvXrqF27dpwd3fH7du3cenSJfETHh5uhCISEREAyAXlKpLZgvaBI/V/rY8hW4doPQ5oXk7BFHL6Jb1WTc+DB4rgJmdq4Hv3FNs2NsCAAdIZ9HK7fFk9beVKzXmnTMmzGFGlPdCnWl/Y2eSqNwgO1lw9snq1cnvZMuVwqDp1lOkTJypqmL76Spmm0qfVFOztFbU9hTXgAV6jpufw4cPGKAcREeVDNVBQDVpyr/J9/tF5nH90Ht++8y2KuhTVeC2zBT1vUtNTqpRy+9VM/aI//gAGD9Y+c17v3uppkycDgwZJ0zIypPtt2wJ790qSBrVIxFEAqZkahvxfuACUL6/cv3QJqFlT0aSVnS2NKFQ73ERGqnfUadZM87PQa9Orpuevv/5Cv3798N577+Gnn34yVpmIiEgD1Zoe1aCl5eqWGvNP2DdB67Xux98Xt5sHNX/jsulKp5oeQVAsBKU6DcpFHZbFaKnyHm7cUNSkLFyoGH0VpTIyLacJStMkttOnK7dPnZLW0rzyslFdxX8zlTMrj2/4au63cuWAnTuBpk0VK3bWrKlIt7PTXIUyT0vnn8xMRb8fMiidg55ly5ahb9++uHDhAu7cuYPQ0FBMnDjRmGUjIiIVkuYtuTIgOBF9QmP+8NhwcfvUg1O4HKts4pl8cLK47WCr2zqFbyQzE9iwAQEv8lnGQRAU7SwlSihWqMyZmVilQ2+eIiIUAU6VKopAafx4xfVydO8unYzm7l3p+arHQkIU/W5UmpyaDgLer/o+AMDRThnEfNNKZa2GDh0U62a1apV/eXMPVwcUHaJ1HXZFetE56FmyZAmmTZuGiIgIhIeHY9WqVfhRZcZIIiIyLtUmobSstDxyKuQERk9SnqDx8sao+XNNjflMEvQ4OAC9e+PAlNuAkEfz1rJlyhqehARFsxWgqDXRZvhw5XbFinl3Jv7zT6BRI+X+/fvK7XPnpOV95dm4j1FlJFAxFDgepJwkcnid4WhWuhm+b/e9JADSi62tdGVPQLqCKBmUzkFPZGQkBqqMk3v//feRlZWFmNzzCxARkVGo1vTosuBoThNSdILyS1T1GjmMHvSoBhMA3r2ZR/NWaKh0/8MPgSNHlPv16ilqg548UfSDEQRFoKQrZ2egZElFTRIAfPyx8liDBsrtJUvEzcgXkbjhB0S8mrB6UM1BAAB3R3ccGXQEnzRQXyJCL1FRiqY4R0fFCLDCtO6DhdE56ElPT5cMT7exsYGDgwNSU823dgsRkTVR7cejS9BT2bcyXma+lKwMnrvTMwCUcC+hlqYmKQn46y/FCCNA0edm5EhFzUl+VIMJADMPa6npuXlT8/mqnZO3b1f8t2hRxWgpQDGCS3UxKW1Ul4HIWek8Z2Zk1cAKAD5QzoDsZCedrtjTyTP/e+nD0VHRATotDahQwbDXJgm9Gg2//PJLuLgoZwTNyMjA119/DU9P5Q+APvP0EBGR7lSDnqSMJAAQZ1XWZNONTdh0YxO+bqlcITNLngVHOKJ5UHMcuX8EgIaVwHPLyJAOxXZxUQYNy5YBDx9q73OTlKSWVPUJEJOerp5XdYBMp07Ajh3qebTVgkyfDvzyizTtyRPgzh1g6VLFjH7160vvlTOia/t2oIvKZI+XLytqhF5Rfe/9q/fXfH8qEHQOepo2bYqIiAhJWqNGjRAZGSnuy/KbHIqIiF6b6tw8OTU91ZZVy/e8/x1SzvCblJEEOxs7BLgphkfPbzMfRZyL5H2BD6TrPokBT45Jk4AJE5Sdb9PTFbUvDg7SuXA8PRX9dAA4PXoM5F7XSXX5hb//lvSrUTzI/6BVsWLAihWKYeuAouakaFHF59V6jRLt2yu3u+Sa3bqa9J3mBD2lPUtj9bvqo7mo4NA56DmSu+qPiIhMSrXGISM7A09f6r84UvH5xdEosBFOPjgJALC3URnZFBenGHEUHKwIOuztFZ2KN27M/8JLlihGIh06pBy11KQJcPy4Ms/Zs4qOxgC8LlwHWqucr7oAZ/XqinuvXQu8/74yfYL2IfgAFHPuDByoGPGlOmJLEzc3zemtW6vN7nzjyQ0AUJ+MkAocvWdkJiIi88g9oaDvd756X0OAIAY8atcMCACuX1c0K71aAxFr1uh24XHjFCtUqg7TVg14ypWT9FepMmWR9PwOHZTbOUsU9e0LjBqlvFaRfGqkAEXAkl/Ak5NP0zqNOX2GXrnw6AIGbR0EAK8/QossBoMeIqICIiM7I/9Mr3xU+yOd8olNW7mHSR89quhYO26cMu30aeUMxrVrKxfJzOGbRxD2ahmIS2UVA2JsslVGkaWkALdvK7bt7IC6dZXHfvhBMULr7bd1eh69jBkj3Y+MBJyknZb331OurC6pFaMCiUEPEVEBcOzfY+i7ua/O+f1dlR1+PVOBt/8FNI0S93LyUmzk9IVR1a8f8Py5cr9BA0W/GUEAwsIAV1flSuH5edUx+Ls+KktJXL2qvE+OnHl5TMHDQxHYhYcrmsRyRoOpUO3vpLrKPRVMDHqIiAqAZiv1W4cp4pli4In3SyD+W+D4CmD7WvV8FXxeNTkdOqR+8O+/ldvDhmleybxTJ80FWLpUua3SRPbUS6Vz8s8/K4apb92qTFNdt8oUHB2BGjW0Lvmgur6Wt7O3qUpFRqJ30JOZqX0K8adP9e9UR0REhvNpyKdY32M9OpfvDAD43zHlsU53ALtci7NX8q2kWBRTTKikuZPv3LmabyiTSYMWQDHL8ciRitqThARJZ+R4D5WgZ+lSoHKuIVy1a2t5MvNQXV+riJMOfYrIoukd9PTp00fjpFJxcXFo3ry5IcpERER5KO+jvTbknbfeQe+qvfFB9Q+w9t01GH9GenzUOQ0nqfZt2b9fc62PZx4T8nXpoqjNqVpV0WRVurQi3dZWOr8PFFObbNNW/HOaCmdeqVnKmh6xKZAKLL2DnujoaAwdOlSSFhsbi+bNm6Piq6GIRERkPH2rau/b42yn6Dsjk8nQ10e9SWzh3lwJWVnSUVbFiyuWelCdq0bTauS5vf++IuCpWjXfrP/TtA6nn5/ivhZGdQmPpqWbmrEkZAh6Bz27du3CqVOnMH78eADAo0eP0KxZM1SrVg0bNmwweAGJiEgqr74lkiHou3ZpzOOmOhnyzp3K7S5dlP12wsKAEyeAZ88MuhaUDDJc03Q51YU/Lci+e/sAAEVdiuYZbFLBoHfQ4+vri3379mHz5s0YP348mjdvjlq1amHdunWwsWG/aCIiY2tQooHGdC8nL9QMqKlMUFmPqvGHyuQuqpPrd+um3J41S7ltbw80bgx4G7bzbs7M/XuOrwS8vBRz7/z3n2TZB0shCALiUhRrjV0afomrDhQCrzW9ZGBgIPbv348mTZrgnXfewR9//MEfBiIiE/F1VZ8PJ+vLLKRlpcHVwVXt2LK6wMViyv01fwNrqwOzDubKWL26gUuqTgbFd0VaUU/gxQuj3+9NqK5I72LvkkdOKih0CnqKFCmiMah5+fIltm/fDh8fHzHtueqcDkRE9MZyDx5xsJWuSVWveD3Y2thKA54rV8TN2W8DabmmmAmJBqaodOXRaakJA8j5LtG4yrqFUW0q5BIUhYNO/4qLFi0ycjGIiEgb1YVGK/hUUJsZ+Pjg47lPASZOFDf/ezWA6t+F01F63HQAwKnlufL37GmIouYrp6ZH0DRTooVh0FP46PSvOHDgQGOXg4iItDgQeUDc3vH+DrWaHsmaUCkpwO7dwD5FB9xUT1cINikAALvBQ4BXQY/EWg2zFpIk6LGVaZ68kAqW1xq9tXdv7jGPwL59+7B7926DFIqIiJSGbVd2SC7uXlz7cghnzigmFnzvPTEpvrSfuO3p7AWhVi318/r0MVhZ88PmLTInvYOeSZMmITs7Wy1dLpdj0qRJBikUEREpqQY5tjJbuNqrd1ZGejoQEqKWfGxUF3Hb1d4VsiNHpBni4zUvL2EkBal5K2c2ZgdbB9jasKanMNA76Llz5w4q5542HEDFihVx9+5dgxSKiIiUVBcPtbOx0zxadskSjefGVS8jbstkMsUMyZmZiokEs7PznmnZCApSTU9CegIA/Va3J8umd9Dj6emJyMhItfS7d+/C1VXDXx9ERPRGavjXELdtZDbA9eu4vxBY/g8Q7FpSceDTT9VPTEjQ3CxjZ6eYOdkMc6sVpJqekTtHmrsIZGB6/8R37doVY8eOxb1798S0u3fvYsKECejSpUseZxIRkT6y5Fn469pf+CnsJwDApMaTIHv5EqhaFaUTgMHhwN1fnICLF6UnZmcDggB4eFhcB9yCVNNzPFrDqDgq0PQOeubOnQtXV1dUrFgRwcHBCA4ORqVKleDj44N58+YZo4xERFZp9vHZ6LNZ2cnYwdYBqFNHksfmzl1p2qZNkhqcxqUaG72c+sip6bF0qZmp+WeiAkfv7uienp44deoU9u/fj8uXL8PZ2RnVq1dH06ZciI2IyFAORh7E1CNTJWkVT90GIiK0nPFKjx6S3ap+VXFmyBmU8Chh6CK+EUtu3rr3/B6qLVMuuLq512YzloYM6bXG4MlkMrRp0wZt2rQxdHmIiKxeamYqWv/RWtxvFgUcWQUA6/M+sWNHjckNSmpeq8scCkLz1vSj05Gapazp8XD0MGNpyJBeqxfb0aNH0blzZ5QtWxZly5ZFly5dcPw42z6JiAzh3gtln8k6D3MCnlyuXAE+/1yaVgAmGSwIHZljkmIk+0VdipqpJGRoegc9f/75J1q3bg0XFxeMHj0ao0ePhrOzM1q1aoW1BeB/OCIiS3Yp5pKkaeXCrxoytW4NVKsGzJkD/PwzUK8ecPOmYji6hSsINT25+bqoL/BKBZPezVtff/015s6di3Hjxolpo0ePxoIFCzBr1iy8//77Bi0gEZE1+fH8j+J2QJKWTDt2KLeHDVN8CoiCUNPjbO8s2WdNT+Ghd01PZGQkOnfurJbepUsXREVFGaRQRETW6IezP+C3S7+J+w3/kx5fv+gjQC4HHB1RUOXMLp2ZnSlJz5arz/RvLk52TpJ9ydpmVKDpHfQEBgbi4MGDaukHDhxAYGCgQQpFRGSNRu8ZLdnf8pdy2+tzILpuWZMuGWEMznaKWhTVjsL34++j6HdFMXHfRG2nmZSLvYu5i0BGonfz1oQJEzB69GiEh4ejUaNGAICTJ09i5cqVWLx4scELSERkDfJb6iDBGQiPDTdNYYxILsgBAEvOLcHIeooZj+eenIv4tHjMOz0P37X5zpzFAwA42Djkn4kKJL2DnhEjRiAgIADz58/Hhg0bAACVKlXCX3/9ha5duxq8gERE1iBnccscdR8qt1sMVPzXx9nHhCUyji23tgAAbj69KabdeX7HXMXRSLW/0e1Rt81YEjK015qn591338W7775r6LIQEVmt3DU9wy8ot48EK/7bMrilCUtkOgciD5i7CBI5tVFzWs1BOZ9yZi4NGZLefXrKlCmDZ8+eqaXHx8ejTJkyGs4gIqJ8nTsHYTqwdzXgkAUMvaRIPv2WA66NuIZ1PdahW8Vu5iyh1cgWFJ2qbWSmX5CVjEvvmp779+8jO1u9l316ejoePnyo4QwiIsqPX0vFqNg2kUD6V8r0B9526OVXBVX8qpipZNYnp6bH1sayFmulN6dz0LNt2zZxe+/evfD09BT3s7OzcfDgQQQFBRm0cEREhcHLzJd5jwhat07robNvOaKXEcpkLi72Lmr9l1Rly7MRFR+Ft4q8JU5kaGo5QQ9regofnYOebt26AVDMpjlw4EDJMXt7ewQFBWH+/PkGLRwRUUH2MPEh+m/pj8P3D2N2q9mY9PYkzRnzmNR1U10XFKbfrK72rpKgJyfAyPHZ/s+w4MwCfNn0S8xsMdPUxQOgnDOIQU/ho/O/qFwuh1wuR6lSpfD48WNxXy6XIz09HREREejUqZMxy0pEVKCUXFgSh+8fBgBMPjhZc6bUVM3pAFbUBOQ2BXtentzcHNzE7cT0REQ8la4av+DMAgDArGOzTFquHJ/t/wx/XVdMkGQrY/NWYaN3GBsVFYWiRTklNxFRXnLPOKzVmTPi5uh2wIChimHp4f7Ah12VyzYUFn6ufuL21MNT8TjlsRlLo+67U8p5gljTU/jo/C96+vRp7FBd7wXA6tWrERwcDD8/PwwbNgzp6ekGLyARWaeDkQfxMLHgDo649fSWWtrXx75GQlqCNFEl6FlbDThR1QMQBNQaAUAGFHEuYuSSmtbvXX4Xt4/9ewxpWWlmLE3eGPQUPjr/i86cORPXr18X969evYohQ4agdevWmDRpErZv347Zs2cbpZBEZF323t2L1n+0RsmFJc1dlNd27fE1tbQph6dgyLYh0sQvvhA3n7kq16bKUdgWu1Qdhebl5IXx+8absTRSL1JfSPY5eqvw0TnoCQ8PR6tWrcT99evXo0GDBvj1118xfvx4fP/99+IMzUREb2L33d3mLsIb07aK+JH7RzSmp/t5AwAcbaWLWzYr3cyg5bIE1fyqAQDavNUGN57cMHNplHps6CHZZ01P4aPzv+iLFy/g7+8v7h89ehTt27cX9+vVq4cHDx4YtnREZJVSM7V37i0onr1Un8QVAAI9VRZmPn1a3JzzpWK25Zyh7eeGnsO0ZtO0j/gqwEJKhgDQo9+TieR0Os/BoKfw0flf1N/fH1FRUQCAjIwMXLx4EQ0bNhSPJyUlwd7eXtvpREQ6e5mlfR6XguK/xP9Q+gUQvgx4/4oy3cvJS7kzbpy4Of3pJgDK5SjqlaiH6c2nw8G28C1+6WTnBAB4mGQ5fbay5FlqaU9fPjVDSciYdA56OnTogEmTJuH48eOYPHkyXFxc0KRJE/H4lStX8NZbbxmlkERkXf659Y+5i/DGTj44ifuLgRpxwJq/gaBX3UUkw6DPnlVuvxqkVcy9mOkKaSaOdoomvJ/DfjZzSZT+jf9XLc3SRpbRm9M56Jk1axbs7OzQrFkz/Prrr/j111/h4KD8C2T58uVo06aNUQpJRNZDLsiRnJFs7mK8Ebkgx7OLJyVpGzYq/iuOVrp3Tzy2f4myM6+vi6/Ry2duufstAcD4hubt0JySmaKWZmnNb/TmdJ6RuWjRojh27BgSEhLg5uYGW1tpr/aNGzfCzc1Ny9lERLp5lPTI3EV4Yz+c/QF//C1Nq/cIsJFDORvxTOVsw9eq+AJHFdvmWnrBlHKat1QNqzNMnJjQHHL6kQV5BeF+/H0A6iPpqODTu5eWp6enWsADAN7e3pKaHyKi17Hn7h5x29/VP4+cxpUtz0ZieiIEQfMoLG3SstIwdu9Y1I1RP9bwP5UahdWrxfT7qcrMhW0yQk1ymrdUOds7o2LRiuK+vY1pA46xe8cCAJIzktGhXAcAikCMChezdk2fPXs26tWrB3d3d/j5+aFbt26IiJBOSZ6WlobQ0FD4+PjAzc0NPXr0QFxcnCRPdHQ0OnbsCBcXF/j5+WHixInIylLvlEZElm/cXmXnXmd7Z7OVo+2fbeE5xxM2M20Qmxyr83n34++jVLxy/0njmuL24EuvanpUJ3r18cH3574Xd8sUKfMGpS4YvJ291dLsbewl/Wo01QYZy6Izi3DmP8UkkU9fPsW2Ptvw4vMXKOtd1mRlINMwa9Bz9OhRhIaG4syZM9i/fz8yMzPRpk0bpKQo21bHjRuH7du3Y+PGjTh69CgePXqE7t27i8ezs7PRsWNHZGRk4NSpU1i1ahVWrlyJqVOnmuORiOg1yQU5jtw/IunPk3sxSlM6GHVQ3P417Fedzrnx5Aa23NyCCiqDfq591E3cHnoJSElPBjp3FtMElWHrADAhZMLrFbgAeauI+qAXe1t7ZMqVfWiSMpK0zmlkaKqBNqCYlFAyyo4KDZ379BjDnj17JPsrV66En58fwsLC0LRpUyQkJOD333/H2rVr0bKlYg6LFStWoFKlSjhz5gwaNmyIffv24caNGzhw4AD8/f1Rs2ZNzJo1C59//jmmT5/OJjeiAmLpuaUYvWe0JE3fpiVDufPsjmRfU3NMbpEvIlHlR8Vswy/XK9PvVy+F1dWBAa+GrU/YmyQ5L/utYHF703ubzFq7ZSpveWsIemzs4WTnJAl6W6xqAWGaeX4GqHCyqJmXEhIUa9J4eyuqPsPCwpCZmYnWrVuLeSpWrIhSpUrh9Ku/jk6fPo1q1apJJk5s27YtEhMTJctmqEpPT0diYqLkQ0Tm9fmBz9XSzFXTk3vOFme7/AORT/d9CkDRWdlZ5fT3qryHXSOVv8P+dyRbeXDqVGTLlfutyyjzFWYam7ds7TW+Z01DyYlel8UEPXK5HGPHjkXjxo1RtWpVAEBsbCwcHBzg5eUlyevv74/Y2Fgxj2rAk3M855gms2fPhqenp/gJDAzUmI+ITCc1S30WZnMFPeIIq1depL3QklNBEARsubkFZZ4Dt5aoHFi8GG4Oblg/bJ/mEydNkgRYdjZmrXw3GU39dRxsHTROxBi0OAh3n981RbEAAEcHHTXZvcj0LCboCQ0NxbVr17B+/fr8M7+hyZMnIyEhQfxw+Qwiy6Rt/SpD0hRYDd8xXLI/7ci0PK+RmPAYwgzg3vdAueeqF3p1HZkMwmefSU/65hvA2RnZgrKmx1oWuLSR2aCUZylJmq3MVuuyDx/v+NgUxQIANC3d1GT3ItOziKBn1KhR2LFjBw4fPoySJZWrKgcEBCAjIwPx8fGS/HFxcQgICBDz5B7NlbOfkyc3R0dHeHh4SD5EZD5J6Uka041d0/PXtb9gO9MWE/dNlKSHxYTpfI3M7EyEdaqt+aCjsi+QTGVwRbotgEmKNbVUm7ckszUXcmHDpO9YJpNpDXpUO5UTvQmzBj2CIGDUqFHYsmULDh06hODgYMnxOnXqwN7eHgcPKn/gIyIiEB0djZAQxYJ1ISEhuHr1Kh4/Vk4Xvn//fnh4eKBy5cqmeRAikhAEAX9c/gPXHl/LN++zl89Q5NsiGo8ZO+jps7kPAGDe6XkaO01X8KkgTRAEYMsW4JdfgGxFsLJs+zS0PKk+oeJXX7eVJri6wv5LoPwowGkKgFeTEKo2b1lLTQ+gXFhVlbkW+KxbvC4A5ervVHiZNegJDQ3Fn3/+ibVr18Ld3R2xsbGIjY1Faqqibd/T0xNDhgzB+PHjcfjwYYSFhWHw4MEICQkRFztt06YNKleujP79++Py5cvYu3cvpkyZgtDQUDg65j/igogMb+ednRjwzwBUW5b/l0hYTJikiUeVMYOe3HPv5PTjGbVrlJj2Q/sfACg7MgujRwPduyuarewU/W8qTfseuS3rHICho1eqpWfZAneKAqrzD+Y8uwzaazoKI039ekz5/CeiT2Bl+EoAQHmf8gCAwTUHm+z+ZB5m7TW3bNkyAEDz5s0l6StWrMCgQYMAAAsXLoSNjQ169OiB9PR0tG3bFj/++KOY19bWFjt27MCIESMQEhICV1dXDBw4EDNVpngnItNad22dznlzN211rdAV1fyq4avjXxl1yHrudZVepL2Aq4Mrlp5fKqbVKV4HgKKT9Z2zu1FuyRLJOSfffxvvXFHOKzZ/Xg9MmLAJI/QoR1yyojneFP2XLImmAMeUQU+TFYoFsysVrST+LFhLR3JrZtZ/YV1+oTk5OWHp0qVYunSp1jylS5fGrl27DFk0InoN2fJs7Lm7B2uvrtX5nNyLi/7T5x/ceXYHXx3/yqSjt569fKa22Ke7gzsAwCELKNewg9o5jddJFxVNqK1/k/rQ7UP1PqewMlXQk5CWIG5HvogUJ0XkWluFH8NaIjKYny78hFG7R+Wf8ZU1V9ZgzJ4x4n7btxT9YHIW3TRm0JO7Se2nCz+hY/mOkjT7YycgTNfteo0+BLY1GJ1/xlwuPLqg9zmFVe75kXIYenbkmUelLQE59zX1el9ketbTgExERjf96HS1tPi0eJx/eB7LLy2X1Or8G/8vPtjyARLSlX91L++6HIDyL/6kjCR8cfALo5Q19xfsT2E/ISVD2VT1RcjnwKuZ4FU9cwb6dVdLxqGfU1HUpWie96xXvN7rFdZK3HtxT2N6MbdiBr1PdGK0uP0s9Rl23FashcbmrcKPQQ8RGczTl0/V0op8WwT1f6uPIduGwH22u5gelyKdamJgjYEo7l4cgLSZY/aJ2Xj28pnBy6qpViFnNFeZImXw9SXNI8oCxwFrqwM7yinT3hqt2wKZXLVb6unEp2hftj3+ePePPPOp/lsZovavcWBjcfuT3Z+I22zeKvwY9BCR3k5En8BH2z7Cnrt74DXHC9+e+Fbva+TuwDz3nbnitmP4NVxfAkw9AsjkwINEw08guuuO9n6AlYpWEufRUdVgKJD6atLgzu8DJcYDjlOASPVVFTTqUE69X5A183Hxwa5+u/BB9Q/yzJfTFHnt8TUUnVsUC04veKP7ejhqnpuNNT2FH/+FiUhvOSNffrv0GwBg0sFJGtdTyktiunTNOz9XP8VGejqKteiMYgBmHAHa3gUu1d+Jmrt/A6pUAUboMzZKu+epz7UeK50snS+nwijgjjcgqP6ZKAMevfru1LXZytFWOY1Gtjwbtja2CCkZgtP/nc7jLOvxacinmHd6nlp6Tk3PiJ0j8CLtBSbsmwBfF194OXmhc4XOavnzo20QDfv0FH6s6SEigxi2Q9F0E/QC+PAiYKd56h1RSvJz7F8FvJgDZLx/S3kgV1DT6D9gcKcpwNKlwMiRQNeu+Rfm6VOgaVPFORoIgoDvz6rPr5Ojyn3l2lsHZg7G7aLKgKdRYCNJ3lKepbCt77b8ywTpau1pWWkAgHMPzwFQzglkzfzdlOsotivbTtzOmbVadZqBAf8MQI8NPdSmHtCFtukBrGGFe2vHoIeI9KJthA0ABD8HohYDv28D4r5TPy7W5gAo9+MGtI4CvNIA+/IVFYmZmcCKFXkXYNs2IDEx7zy+vsDx48CoUcDu3WqHD0QeQFKGonmtS4UuGFl3pOR4/6UnxO3WE3+UHJv3jrQmYnDNwQhw07zkTW6qq4jffX4X++/tF5tu2LQirWnZ2mcr1vdQrMWY8zOX+2cvU56psR9ZfrTV9DQs2VDva1HBwqCHiPKXni5u/nbxN63Z1m9SbnunAU65/ghPzUwVr9dgZa6Vx9evB/78U7fyTJig/VhKinR/+HC1LBP2Kc//4u0vsLTMKDT3byCmuSemKTM7OeHBOGWfokq+lSTXqupXVbcyQ7rMxKCtg9B1vbLW6n78fZ2vU1ipBn4Otg7iu80JDDUF3DkzaetDU03P9GbTDT40niwPgx4i0u7WLcUaUU5OgEyGhBexGLFT0fxkZ2OHj+soV7+2zQbq51qCauhF6X5Ok45wMdcBAOjbF/jwQ3G39jBgpLZ+v7/9Jq59hdRUaaDTOVcfjwcPgJfKL8ZseTauPr4KQFGz0OCdQUDlyjg84iyqxgHlVCsOFi8GAJT0KIn1PdZjS+8tal+MPSr10FLIvN15dgepWamvdW5hlXv0VE4QlBPs5EwiqOp13qGmmp5axWrpfR0qeBj0EJFURgbkU/6nCHYqSWs1nn+unHwvS56FWS1nifvvxKj3h/jhVctSkFcQAMWXVrY8G2nt38m3GJeKAcvqK0ZIlRoLyKYDyaVV5mvZtQs4ehRwcQHc3IDq1YGsLODwYfWL3b8PAPj+7PcYv3e8mPxX+f8pArtXri4DbquuNDFKOdFi76q90a1iNwDAmAbKCRVzJlLUV+4vaxle7zqFSe7mpZxpAHKCZWPW9EQ8jdD7OlTwMOghIiVBABwdYfP1NxoPB/+6EY6v/th2zASKrtqI1q/mk9v9m/a/uK+NUK62npaZCucEZc1M+s8/quUXxo8XF+V85AE88FJsb53ZT5mpSxdAdd2+q1cBe5Wagr59xc2sA/swZvcYjNkzBt+fU3ZgfrfPdK1lBgDYaP4V+VXLrzClyRSEDw/P+/w8mHKJjYKiun91HB98HJGjIwEAbg5uABRBz4brG3D72W21c8QmUz1oqumpXay23tehgodBDxEpbd+eb5YPLymastK+BjByJPb/AfWlGo4dEzfrP3eWTNyXvV65GOn39QHHjz5GbjItCwZf8NPeiVrN7Nnipt2YcZJgBwBKZ7rmfX6fPloPuTm4YVbLWagRUEP38pBO3i71NoKLBANQBj0A0HtTb435DVXTU79Efb2vQwUPgx4iUtIyHHyQSvKPu4Cdea0n+tVXQNmy4u7Bqt9JOvB6DFLOSnxrbD9FM5pqsDVsGODqirENxgIAIkdH4uuWXwMA/k34F399qOOXU+nSOFdX+/IFky6pBD39+6tn+Pxz3e5jIKH1Q016v4JAdYi/Nh3WdkC1ZdVw5r8zOl9XU02PLveigo9BDxEpPFUf+tupr6IvzapcfTzbal4iSWHkSKBYMaB8eQCA2x9/iYeK5Pqj3Ns/6NWNOgFhYYp+Oj//DABY2G4hhGkCgosEi0O9t9zagr4lz6nfc9ky6f45RZ6FHZRLSXjlagX5eNdj5c78+aj+VQnlfs+eQM2aeTyk4cggQ/qUdJT0KGmS+xVG1x5fw6hdui90m1PT827Fd/Fe5ffwcZ2P4WDrYKzikQVh0ENECq86+wLAsrqKYGdnBcV+5/Kd0VV7a49S6dJAkVeBRtFXi28ePy4evvyTMuvMpkBGdoYyoXZtoH17jZdVbR4TbICKoQA8PID69RUjtz7+WNGp2d4e2LgRqKeYIfnQyxviee/fUP66k4zQatwY8PXFf3YvIZsGlB4LYMMGHR7WMAQI/MI1gGepuq/PllPTY29rjw3vbcCyTsvyOYMKCwY9RKSgstbUZ+8AVXyrAFCsQzW24VjsKK/hnFOngOXLlfvh4crtUJXmmlu3MO5FRQSqzCk4v5FiDS9d5J4pN8IXQEICcPasYvQWoJiBOSNDUUvzymNllxA0iXzVcVjINULryBEAQEpmCiADor2gaHKjAkWf0W85NT0cMWd9GPQQkcLBg+JmsiNwYdgFCNME3Ai9AR9nH8htgOqqfY4HDQJCQoDBgxWjvgQB8PJSHlcZPYVKlbBgsXJo+JaKQKLTq0BDB7kXJwW0z6qrKsAtAH9WU2z3ua5YGmPRnlyZ7BRzwQytNRSAdPkDKjj0mTog52fndacboIKL854TWauMDEVzkEymmMDvlUmtgF5VekmalHJG01wNAISEBMgePFAs/pmXPL5Qer+qjNF1uHHOPD+qll9ajiG1h+R5no+zDw6WicUHirkIkTkrV4Z3lPMFzWszD63KtELrMq11KhNZFtb0kC5Y00Nkja5fBxwdFfPQ7NsHTJ0qHvqpLuDl6CXJ7uHogYfjH+LZZ88g8/DIP+DJMW6cWtLMpkDmqz+3dB1u3KGc+tTMQ7cPRWxybJ7nyQU5/qyeR4a/lJ2sne2d0b1Sd3g4euhUJrIs7o7uOudlTY/1YtBDZI2qqqwX1bYtsHKluJvgpHm6/+LuxeHt7K3ffSZOVEua3US5Paq+biNubG1s8eLzF/B18ZWk99iQ9xIQckGOLFstB5cvV3a6Jov1x7t/6JRPn3WzWNNjvRj0EFmbx4+1HjoWJANkwMRG6sHKaylWDNiyBQCQZWcDly+AtFeTJp/68JRe9/Fy8sLjidKyn3pwKs9zchaqjPhhuvRAgwaKvkhk8WoFaF4T69F46UJvqhMZ5oc1PdaLQQ+RtemteWZbAPimseLLoJi79kn99NatGyAI+ObANKSqjMwOCQyRTFqoq/ENx+ef6ZWcpR5edGsLDBigSBwyBDh9Wu/7knkUdSkqbh8ffBwXh12EME1AMfdi+LnTz+KxbHm2ztdkTY/1YkdmImvzaoi2JnvLKlYe93T0NPhtVUdbda2geeZnXXSr2A0LziwQ95PSk7T258gJemxkNsCqVYoPFSj+bv7iAq9vl3pbcmxYnWFwsXdB/y39NS5Gqg1reqwXa3qIrMmTJ+LmtUZl4fw/4M6rbjpVRgKQKfruGOPLQPVLaVOvTa99nZwVt3N0Wd9F6yiwnL/+bWSW86vur55/SfZ3vb/LTCUpOBa1W4RF7RZpPGZno/jbXZ+gZ1/kPgCW9XNBpsF/cSJrcuWKuPm/UneRZg+UH62YffmGnyK9hEcJzee+oQ+qfwAAaF2mtfhF9Tpyf1EduX8EUw9PVct3IvoEHiQ+0HiOOZXzLifZb19O8yzUpBt7G0UnMcns3vk4EHkAABAeG26MIpEFs5zfBERkfD/+KG7uKqc5S36dg19XhaIV8PjTx9jdb/cbXadFcAuMqicd9bX47GLJfkpGCpqsUA4Ts5Xp33fIWF6nHxNpl9OB+VHSo3xyqrsff9/ApSFLx6CHyJr8/be4qW0otzHXgfJ19X2jWh5AUWvzQ4cfJGllvctK9r89+a1k35LWttI0uzS9vpx5laLioxCTFKPXufo0iVHhwKCHqDCRy7UfS1Eu+bCxsjJ5Tqs5mNJkCjb03IDKvpXxdKL6auuWrkkpRa1ObHIssuRZCHALkBy3pA6rOcPoAWBxu8V55CRdONo5ittH7h/JN39O53ZA86SXVLhx9BZRYZGUpFh5HABu3wbK5Wq/mjBB3BzwrjJ5YuOJYp+X96q8Z+xSGsUvF3/BiHojUOvnWijnXQ5V/apKjmdmq0+2aC7V/KqJ26MbjDZjSQqHyr7KCF41oNEmPStd3F7QZkEeOakwYtBDVFgUL67cfu89yYrn1x9fR9CqX+H6ar95pXZ4kvIEVf2qWlQn3zfRZ1MfAMCd53dw5/kdybHcNT/mVMS5CGInxMLF3sXcRSkUnOyc0KtKL2y4vgFPXj7JN//d53fFbdU5gMg6FI7fdkQEJCcrty9fBp49E3dD/+gD1zTFX8H/awm8VeQtXBh2ASu7rTRxIQ2nQYkGkv2IZxFqebpU6ILDAw/D19VX7Zg5+bv567VWFOXN39UfADBu7zjJfFCarLm6Rty2pL5eZBoMeogKg5071dPOnIEgCJDNkKHOvmticoo98E6Zd9TzFzB/9fwLLYNb5plnTqs5aB7U3DQFIrNRDV4+2f1Jnnmd7JzEbUvq60WmwaCHqDAYraFvSL9++DlMMU3//H3K5N9rK2pACrrSXqVxcMBBsROzJvqsx0QFl4+zj7i99PxSnPnvjNaRWQlpCQAgzvJM1oVBD1FhEBmpnpaQgBE7R6DhA2nysU8uFqq/cD2dtC+Zofeq8FQg5V5hPeT3EHy2/zO1fE9fPsWis4sAAL4ultXkSabBoIeooLt/X7n99deS9aXa3gFO/66Sd/du1CqmedXqgiqvfhmuDq5aj1HhUcS5iFrawjML1dIORh4UtxPTE41aJrJMDHqICpD99/Zj843NuRL3K7dDQrCxunJQ5p410qxo29Z4hTOTv2/+nX8mKtRKuOu2dEpqlnKNtqj4KGMVhywYgx4iC5aamSqORnn28hna/NkGPTf2xMPEh8pMw4aJmxcreqLX1n6aL9ajB1CImrU0qVe8nrmLQGbwdqm3deqcn9OfBwDK+5Q3ZpHIQjHoIbJQd57dgfdcb9T/rT623NyC/lv6i8f6bO4DnDsHtGolOWdVuKJpa3Q7DRdcscKYxTWbYK9gcdve1t6MJSFzkclk2Nd/X775wmLCxO1Jb08yZpHIQjHoIbJQ807NQ1pWGi48uoDuG7pj913lQp1fzTgBNGgAHDokpmVu3ogrjxWrqP9UN9fFZs8G3AvnvDDHBh9DMbdiWNF1hWTEzpbeW8xYKrJEf1z5AwDQo1IPjuyzUgx6iCzU9cfX0Cga6HAbgMp8a43/BZr9q55/sV+kuPZQtcDawMmTigMzZgCTCu9ftSU9SuLRhEcYVHOQZLmJbhW7ma9QZHaNAxtrPdasdDMTloQsCZehILIgKQ8icSntPuDogNELTqHXDUX6bW+gwqupeE5oaqV67z2ci7kg7i5oswAIagTkMzttYZMpt5w1tsi83vJ+S7KfJc+CDDIIENCrSi8zlYrMjUEPkYXIHjcOrosW4W0Nx8o/B5JaH0LY48sAxkkP9ugBrFuHjV8p/neu7l8dzYKs8y9ZbRPSkXU4PeQ0Qn4PAQBxAEBaVhqy5Fl4mfkSwqsqUx8XH63XoMKNzVtEluDFC9guWpRnFre3W6JZd2XAs6VlMUVNzqZNePQyTkz/pdMvxiqlxetdpTcAoGZATfMWhMyiYcmG+O6d7wAAAgRkZmei0tJKqPJjFXGhUT9XP9jZ8O99a8V/eSITi3wRieLuxSVrAKF3b72v069hDMr9VAOru63Gf4n/iekNSjbI46zCbWqzqShTpAyHrlsxG5nib3lBEPD05VPcj78PAGi8XNHHR3W0H1kfBj1EJrTozCKM26uorRnfcDzGNhyLQI+S0gkGVY0dC7x8Cfwirb3ZVh5IdQCuxF1BzZ9rium1i9U2UskLBhuZDQbUGGDuYpAZyaCYi0qAgOSMZLXjwUUY9FgzNm8RmUhmdiYm7RiHa0sBYTqwa/sClFpUCgf/nCXmeeAB3PxxpqKfzrlzwMKFgIZmrw+7ar5H7jWIiKxNzrpygiBIZmDOEeAaYOoikQVhTQ+Rkf155U842DrA1d4Vv24HqjxRpN9cCth9CSQunCPm7dcdODbiS2CEygWcnYEjR4DmzQEAd4b1xDPXTRrvxblHyNrl1PSsu7YO666tUzsenx5v4hKRJWFND5GBvEh9gY+2fYSLMRfFtJtPbqL/lv7ovak3TkWfRP8r0nNmHQbevaT8a/R4aS0Xb9YMiIsDrl1D9teztGQCsuXZb/IIRAWeLJ+lVnL6+JB1YtBDZAjp6fjpl2H4Pew31Pmljph8/tF5cXv3xtlqp00+ody+5QMkf6HeB0Hk5wdUqYJAj0BJcpcKXcS+PJ/U/+Q1H4CocMip6dFmQZsFJioJWSI2bxG9qadPAV9fTAaQ2RSY1lKR/CjpEQb+M1DMdiyfpa/GfFoZex1c872dq4Mrro24hix5FuLT4tEosBGevHyCf+P/RUhgyBs8CFHBlzN6S5OLwy6iVrFaJiwNWRoGPURvasgQcXPqMWBeI8VqzmW/LyvJ5qY6WbBKH50cE3st1vmWVfyqSPaLuxdHcffiOp9PVFhpa94SplnX7OSkGZu3iHQUlxwHzzme6LGhhzjbKwQB2LZNkq/yE2D0ntGSkSONopXH57ZwUPTR8fIS0z7swtmEiQwhv+Ytsm4Meoh0NOCfAUhMT8TfN/+GzUwbrL+2Hsd2LVPL99cmYPXl1eL+jr478P5V5fHUnt0UG48eAV9+iY87AitqAZWKVjLyExAVfppqeuqXqG+GkpAlkgmCla1IqEFiYiI8PT2RkJAADw8PcxeHLJRshvov06iFQFCChrzTldvPPnsGb5W1fhJT4+Hh5CnuP0h4gKcvn7KvAZEB/HzhZ3y882Nxf033NWjzVhsUdSlqxlKRsej7/c2aHiIdxKfFqycKyoDnoTswrbefeMgnRZmtyL1Hyp2SJSUBDwAEegYy4CEyENWaHgdbB7xf7X0GPCQya9Bz7NgxdO7cGcWLF4dMJsM///wjOS4IAqZOnYpixYrB2dkZrVu3xp07dyR5nj9/jn79+sHDwwNeXl4YMmQIkpPzGPZLpItp0wCZDOjYEZDLsejMIgCAWzqwfQ1wdDkw9owye5e+wN4qyrW0hlxS/PfGyBuQVaumzLh9uwkKT2S9VPv0ONo6mrEkZInMGvSkpKSgRo0aWLp0qcbjc+fOxffff4+ffvoJZ8+ehaurK9q2bYu0tDQxT79+/XD9+nXs378fO3bswLFjxzBs2DBTPQIVFi9fAseOASkpwIQJwMyZivRdu4DvvsOJ6BOQyYGk2UCnO0DTaGDhXuXpV/2As9nK3sqdI4DosdGodC9X21fNmsZ/FiIrpjpk3cHWwYwlIUtk1iHr7du3R/v27TUeEwQBixYtwpQpU9C1q2KhodWrV8Pf3x///PMP+vTpg5s3b2LPnj04f/486tatCwD44Ycf0KFDB8ybNw/Fi2sewpueno709HRxPzEx0cBPRgVKVBRQpoz245MmwXFJCD47qT1L5qv/k1bVAAZeBt5+AMjtigAhpZSZPvjAMOUlIq1Um7ec7Z3NWBKyRBbbpycqKgqxsbFo3bq1mObp6YkGDRrg9OnTAIDTp0/Dy8tLDHgAoHXr1rCxscHZs2e1Xnv27Nnw9PQUP4GBgVrzkhXIK+B5Zd7005hzUPOxr5sot3eUV27buLlLMy7WfR4eIno9++7tE7eLOBUxY0nIElls0BMbGwsA8Pf3l6T7+/uLx2JjY+Hn5yc5bmdnB29vbzGPJpMnT0ZCQoL4efDggYFLTwVGqvoqzJpUeqr92Ixmyu3N2kad37wJeHvrXi4iei0Z2RnidhFnBj0kZbFBjzE5OjrCw8ND8iEr9fXXGpNftmuF1eGrNJ+zZg0glwMJCUB2NjpU6SoeErT9H1Wx4hsWlIh0Ma3ZNHHby8nLfAUhi2SxQU9AQAAAIC4uTpIeFxcnHgsICMDjx48lx7OysvD8+XMxD5EoK0ux/MPDh8o0laDH+zOg9FigyOfAJx+XxsB/BqKcpvU7+/ZVjOzy8ABsbLC863LJ4ZM/TpbmX8AFDolMpZh7MXH7wqMLZiwJWSKLDXqCg4MREBCAgweVHSkSExNx9uxZhIQoFlUMCQlBfHw8wsLCxDyHDh2CXC5HgwYNTF5msnCtWwMtWgAlSypmQ37+XDz0yA144QJEewHxzsCNpzcAAHd9gN9Up9B5+FAR8KjwdvbGVy2+EvcbDJ8J9Oun2JkzBxg3zlhPRES5qPbjsZXZmrEkZInMOiNzcnIy7t69CwCoVasWFixYgBYtWsDb2xulSpXCt99+izlz5mDVqlUIDg7Gl19+iStXruDGjRtwclLMidK+fXvExcXhp59+QmZmJgYPHoy6deti7dq1OpeDMzJbgTNngJBcK5BPmQJ8pQhW/D8Ffhj0F3pv6q3xdPc0IOHrbMhsLPbvBCJ6JWf29Kalm+LooKNmLg0ZU4GakfnChQuoVasWatVS/Ck9fvx41KpVC1OnTgUAfPbZZ/jkk08wbNgw1KtXD8nJydizZ48Y8ADAmjVrULFiRbRq1QodOnTA22+/jV9++cUsz0MWrE8f9bSvlLUzj92AALcAhNYL1Xj6r/3WM+AhKmA4Tw/lZtZ5epo3b468KppkMhlmzpyJmTkTxWng7e2tV60OWaG0NODff7Uejn81aWujwEbYemurxjz85UlUcAR5BeF+/H30qtzL3EUhC8M/Xalgu34dcHKS1NrkOP/wPJ6nPgfu31cmapgRecirwVd2NnZwtNM8bT2DHqKC4+zQs9jedzuG1B5i7qKQhWHQQwVb1apAejrw5ZeKAOiV/ff2o/5v9dF0RVM8eb+bMv+2bUCu5s+/KwNNSilmGLSzUVZ+3v3kLmY2n4nO5Tujbdm2Rn0MIjIcP1c/dCrfSbIkBRFg5uYtojdy5ox0v2FDICkJADBh3wQAwPUn1+F7SSVPYCCierbGmX9Koe+uaFQeCYTWC8XMFoomVHcH5SzKwUWC8WWzL436CEREZDoMesjiHbl/BDFJMehTtY+4rs7G6xvh37sXmqpmTE4GBAHzTs/H1cdXAQDBylHp+KM6MPxrF6RmpQL1gffrK9JvdFgi5lGd44N/JRIRFS4MesgiCYKA60+uw9PREy1WtQAABHoG4u1SbwMAem/oBXm0+nnNPrTBsSDl/pRjyu3P3oEi4FHRoIR0PqeelXti/bX1aBnc0iDPQUREloNBD1mUzPNnYV+/IZ64AM1DgWeuymNX467Cw9EDUS+iUE6lBuduOR+UvfMMAFArBmLQI5MDH4Yr88WpXCvH1j7S0VpOdk7Y8f4OwzwMERFZFNbfk3ktWKCY4Vgmg9CtK+zrNwQA+L0Enn4nzerw73/4cUgN9F/VDTvXKNPbt3uGfz0V24v2KtN7Kfs146a/jWRdrBnNZ0CYJsDfTbqgLRERFV5mnZHZUnBGZjM5fx6oXz/PLM0HAkeDgS63gK3rNeeRTQf+3Az0U3TjgeN0O2QgC8J0ZZ7n2/6Cz8XecLJzQuyEWHg6eRrkEYiIyHwK1IzMZOWaNcs3y5FViiUgtAU8f79avHyKShec/c7DIbjPVyZUrQrvzr0gTBOQ+r9UBjxERFaKQQ8ZzMvMl3h7+dv44ewP6gdv3wbi4pT7L14Aqanq+TRInKP9mNPPv8PR1hHVG3YR05p+vhSYMEGZ6Y8/dLoPEREVbgx6yCAeJj6E6zeuOPngJEbvGY20rDTlwY0bgQoVgIAAYPNmRdru3Rqvk1q7OuTZWYrJBvNTtiw6NP0QSZOT1DokS1SqpMeTEBFRYcWghwyi5MKSkv1xe8Ypd3qprH/Ts6diPp1+/cSk4uOBZed+BAQBzmGXYWNjC0yerPlGmZmKgGjyZODaNQCAva294ti6der5lywBHDUvLUFERNaFQQ+9seSMZLW0n8J+UmxcvKh2TP7hYHH7rypAjAfQpHQTaSZnZ2DePGna3buAnR0wcybwzTfqwUynTuqFGzFCp2cgIqLCj/P00Os7dQo4fx4ba8k0HhYEAbIOHdTSbTZuEre/VMw7iKp+VdUvMHYsEB4O/PknsGED8NZbeZfHzQ04cQJ4WzGBIR4/BmwY1xMRkQKDHno90dFA48YAAK+KAPookrf22Yqu6xXLlh+8vRetVTsva7qMp3S9KwlbW0UnZH06IjduDHAWBiIi0oB/BtPr6dxZ3Hz3FhCQBNjb2KNLBeUoqunftlfm/+QT9JtcQe0y6fbA1RFXjVpUIiIigEEPva4rVyS7ze4DxwYrFrrydvYGAMw5oDw+LOA81jpGINJLmRY0RvHfkh7STtBERETGwOYt0t/t22pJ6zcD2KRYQuJ5qmJhrLcfKI//mnkGAFB2NLDSoz/6D16ENck34WTnBFsbW6MXmYiIiEEP6e3Fu+1R5NV2pg1gL5cef7fiu4jZv0Xc7/C+8lhxzxIYMH41AKCxd2Mjl5SIiEiJzVukl5ikGBS5ESnutxyocvD8eQDA373/xunflcmHgpXbw+oMM3IJiYiINGPQQ1plZGcg93q0y/75n7j9VRPgVKDKwXGvJiQ8dkxyTvqruQMblmyIqc2mGqOoRERE+WLQQxrFJsfCf54/2vzZBnJB2X4VvGCFuH3VH5Cr/gSdPAm8fClZSPTZh33QvVJ3/N3rb5wectoURSciItKIQQ+pSc9Kx8nok4hPi8eByAM4sf47QCYDZDIMDlfme/SOouPy5FYqJ7u6Sq7l891SbO61Ge9Wetf4BSciIsoDOzKTUmwsUufPQaOkxQgvpkiykQNN35+kMfvhocex+85uXCq5ETioYQLB0aMBb28jFpiIiEh3MiF3pw0rlJiYCE9PTyQkJMDDw8PcxTGP2FigWDFxt8VA4EgwMOMQMPWYhvyXLwPVqyv3ZRqWopDLNacTEREZgL7f32zeIgWVgAcADq8CPNI0BzyX/SENeABg+3bp/rZtDHiIiMiiMOixVoIAjBol9tXRJGGOdL/ne0DLAcB/R7erZ+7UCZg9W7G9e7dkmQoiIiJLwOYtWGnz1qJFyiHmOujUF9j5auks+VQ5ZKzFISIiM2PzFulGS8BTUkscdLiKMwDgZuhNBjxERFQgcfSWNbp3T2Nyj17AQ0+g4RDgjMqMyjh9GkkN6gMAbGSMk4mIqGDiN5g16tRJ3JQ7OSK8Uz1UHQH8XVmR9vUXB4ANGxQ7f/8NNGwIG5kNAx4iIirQWNNjRKN3j8a9F/ewuN1ilPUua+7iKN26JW7aTkoHcF7cjx4bjUDPQKAMFJ2diYiICgn+6W5E+yP3Y9edXXiQ8MDcRVG6c0fcXP62m+RQSY+SioCHiIioEGLQY0RFXYoCAJ6+fGq+QqxYoRiSXqaMoubmwAHx0B9vJUuyhg8PN3HhiIiITIdBjxHlBD2RLyKRlpWG1ZdXGy4Aksvzz/PgAfDhh4rtqCjg3XeBkSPFw0eCFP/tWbknjg8+Dh8XH8OUjYiIyAIx6DGiW08VfWcmHZwEv+/8MPCfgfCd64uDn3QCypYF9u9XZs7I0LkPzYuubQFbW8x71x/rrq7TnnHaNOn+1q3S/Vcjz5d1XIa3S72t072JiIgKKk5OCONNTiiboT6fzbs3gL83qCTUqKFYxyrH8+dAkSJar5lxaD8cWrUR930nAk/mavknzGM+nfhNf6LItQ8AcLJBIiIqmDg5oQXZ3PlP9L0CeKUq0yQBDyANeACgf3+N1xIEAU9SnuDFlxMl6a0jgaBFQdhycwtORp9UHkhKyrNsKe80BwDY2dgx4CEiIqvAoMeIuv9+Cmv/BpbtUOy3SvHP/6SdO4HHjyVJvTf1hs1MG/h95wf/U9Igad1m4N+Ef9F9Q3e8veJtTDs8Df7z/PFlV2XEW+8jQOjdS3nSiBHIyM4AoAh6iIiIrAGDHmP68UcAQJ/rgF8ysP17HTsxz52r+G9SEoRu3dDhqw2wzwLejs7/1JnHZuJxymPMOqxMu1ACaN8xXrHy+dateDH/a7RY1QIAkJaVpscDERERFVwMeowl1+iqvzYCzunZ4r7NVGBflyrKDLt2KbfnzweyswEPD8i2bsXAy0DGV8DxFcosWVv/EbebCKUk95Kp3Dr6VYXP3sh9kF3sAtmlrvCe641/E/4FADQObPx6z0dERFTAMOgxFhsb4MoVcbf5v8pD1zs1gGADzOzqpRixJQg4WcUDca4q59vl3exk17SZuH3M7iMI0wREjo4EALS/q8znv+2g1mvUK14PW/ts1XqciIioMGHQY0zVqgFFi6qnz5gBADj54CRkM2R4mPgQb694Gy0H6njd1asBLy/lfmIiACC4SDCEaQJ2On0oHnJ8qzyODz6udonfOv+Gs0PPcm4eIiKyGhyyDuMNWQcA3L8PBAdLkuTybNjOtNWYXZiuwzVTUwEnJ2DiRGDePEVaZqaydkh1NNarf94nKU9wKfYSWga3ZOdlIiIqFDhk3dIEBQHu7sr9c+dgI7PRugBp2w+k+9U/BlpOC1ImnD+vCHgAoGpVZXpcnOK/Z88q0ypXFjd9XX3R5q02DHiIiMhqMegxhYQEYNUq4Pp1oF49AIp1rrb33S7J1jyoOX5fEo0RHYHL/sAP897D83Il8NuYg2LfH9StqzyhTx/l9qJFitqehg2Vadu2GfGhiIiIChY2b8HIzVs6WHh6IcLjwvFTx5/gbO+s38l5TSzIf1oiIirE9P3+ZluHBRgXMu71T27aFDh2TD19797XvyYREVEhxOatgu7VBIgS/v5Amzbq6URERFaMQU9BV6mSetpB7XPzEBERWSsGPQWdjY2ig3SOf/4BqlTRmp2IiMhasU9PYVC5MjstExER5YM1PURERGQVGPQQERGRVSg0Qc/SpUsRFBQEJycnNGjQAOfOnTN3kYiIiMiCFIqg56+//sL48eMxbdo0XLx4ETVq1EDbtm3x+PFjcxeNiIiILEShmJG5QYMGqFevHpYsWQIAkMvlCAwMxCeffIJJkyap5U9PT0d6erq4n5iYiMDAQLPNyExERET6s7oFRzMyMhAWFobWrVuLaTY2NmjdujVOnz6t8ZzZs2fD09NT/AQGBpqquERERGQmBT7oefr0KbKzs+Hv7y9J9/f3R2xsrMZzJk+ejISEBPHz4MEDUxSViIiIzMgq5+lxdHSEo6OjuYtBREREJlTga3qKFi0KW1tbxMXFSdLj4uIQEBBgplIRERGRpSnwQY+DgwPq1KmDgyrrTcnlchw8eBAhISFmLBkRERFZkkLRvDV+/HgMHDgQdevWRf369bFo0SKkpKRg8ODB5i4aERERWYhCEfT07t0bT548wdSpUxEbG4uaNWtiz549ap2biYiIyHoVinl63pS+4/yJiIjI/Kxunh4iIiIiXRSK5q03lVPZlZiYaOaSEBERka5yvrd1bbRi0AMgKSkJADgzMxERUQGUlJQET0/PfPOxTw8UQ9wfPXoEd3d3yGQyrfly1uh68OCB1ff94btQ4rtQ4rtQ4rtQ4rtQ4rtQMsS7EAQBSUlJKF68OGxs8u+xw5oeKNbqKlmypM75PTw8rP6HNQffhRLfhRLfhRLfhRLfhRLfhdKbvgtdanhysCMzERERWQUGPURERGQVGPTowdHREdOmTeNipeC7UMV3ocR3ocR3ocR3ocR3oWSOd8GOzERERGQVWNNDREREVoFBDxEREVkFBj1ERERkFRj0EBERkVWwqqBn9uzZqFevHtzd3eHn54du3bohIiJCkictLQ2hoaHw8fGBm5sbevTogbi4OEme0aNHo06dOnB0dETNmjXV7nPkyBF07doVxYoVg6urK2rWrIk1a9YY89H0Zqp3oeru3btwd3eHl5eXgZ/mzZjyXQiCgHnz5qF8+fJwdHREiRIl8PXXXxvr0fRmynexd+9eNGzYEO7u7vD19UWPHj1w//59Iz3Z6zHE+7h8+TL69u2LwMBAODs7o1KlSli8eLHavY4cOYLatWvD0dERZcuWxcqVK439eHox1bv4+++/8c4778DX1xceHh4ICQnB3r17TfKMujLlz0WOkydPws7OLt/fs6ZmyneRnp6O//3vfyhdujQcHR0RFBSE5cuX61Veqwp6jh49itDQUJw5cwb79+9HZmYm2rRpg5SUFDHPuHHjsH37dmzcuBFHjx7Fo0eP0L17d7Vrffjhh+jdu7fG+5w6dQrVq1fH5s2bceXKFQwePBgDBgzAjh07jPZs+jLVu8iRmZmJvn37okmTJgZ/ljdlyncxZswY/Pbbb5g3bx5u3bqFbdu2oX79+kZ5rtdhqncRFRWFrl27omXLlggPD8fevXvx9OlTjdcxJ0O8j7CwMPj5+eHPP//E9evX8b///Q+TJ0/GkiVLxDxRUVHo2LEjWrRogfDwcIwdOxZDhw61qC97U72LY8eO4Z133sGuXbsQFhaGFi1aoHPnzrh06ZJJnzcvpnoXOeLj4zFgwAC0atXKJM+nD1O+i169euHgwYP4/fffERERgXXr1qFChQr6FViwYo8fPxYACEePHhUEQRDi4+MFe3t7YePGjWKemzdvCgCE06dPq50/bdo0oUaNGjrdq0OHDsLgwYMNUm5jMPa7+Oyzz4QPPvhAWLFiheDp6Wno4huUsd7FjRs3BDs7O+HWrVtGK7uhGetdbNy4UbCzsxOys7PFtG3btgkymUzIyMgw/IMYyJu+jxwjR44UWrRoIe5/9tlnQpUqVSR5evfuLbRt29bAT2A4xnoXmlSuXFmYMWOGYQpuBMZ+F7179xamTJmi13eOuRjrXezevVvw9PQUnj179kbls6qantwSEhIAAN7e3gAU0WZmZiZat24t5qlYsSJKlSqF06dPv/G9cu5jiYz5Lg4dOoSNGzdi6dKlhiuwERnrXWzfvh1lypTBjh07EBwcjKCgIAwdOhTPnz837AMYkLHeRZ06dWBjY4MVK1YgOzsbCQkJ+OOPP9C6dWvY29sb9iEMyFDvI/fvg9OnT0uuAQBt27Z94987xmSsd5GbXC5HUlKSVfz+1PQuVqxYgcjISEybNs0IJTc8Y72Lbdu2oW7dupg7dy5KlCiB8uXL49NPP0Vqaqpe5bPaBUflcjnGjh2Lxo0bo2rVqgCA2NhYODg4qPU58ff3R2xs7Gvfa8OGDTh//jx+/vnnNymy0RjzXTx79gyDBg3Cn3/+WSAW1zPmu4iMjMS///6LjRs3YvXq1cjOzsa4cePQs2dPHDp0yJCPYRDGfBfBwcHYt28fevXqheHDhyM7OxshISHYtWuXIR/BoAz1Pk6dOoW//voLO3fuFNNiY2Ph7++vdo3ExESkpqbC2dnZsA/zhoz5LnKbN28ekpOT0atXL4OV35CM+S7u3LmDSZMm4fjx47Czs/yva2O+i8jISJw4cQJOTk7YsmULnj59ipEjR+LZs2dYsWKFzmW0/LdoJKGhobh27RpOnDhh1PscPnwYgwcPxq+//ooqVaoY9V6vy5jv4qOPPsL777+Ppk2bGvzaxmDMdyGXy5Geno7Vq1ejfPnyAIDff/8dderUQUREhP5t00ZmzHcRGxuLjz76CAMHDkTfvn2RlJSEqVOnomfPnti/fz9kMpnB7/mmDPE+rl27hq5du2LatGlo06aNAUtnWqZ6F2vXrsWMGTOwdetW+Pn5vfa9jMlY7yI7Oxvvv/8+ZsyYIf6+sHTG/LmQy+WQyWRYs2aNuKr6ggUL0LNnT/z44486/2Fglc1bo0aNwo4dO3D48GGULFlSTA8ICEBGRgbi4+Ml+ePi4hAQEKD3fY4ePYrOnTtj4cKFGDBgwJsW2yiM/S4OHTqEefPmwc7ODnZ2dhgyZAgSEhJgZ2end697YzP2uyhWrBjs7Owkv8AqVaoEAIiOjn6zwhuYsd/F0qVL4enpiblz56JWrVpo2rQp/vzzTxw8eBBnz5411GMYjCHex40bN9CqVSsMGzYMU6ZMkRwLCAhQGwEXFxcHDw8Pi6vlMfa7yLF+/XoMHToUGzZsUGv6sxTGfBdJSUm4cOECRo0aJf7+nDlzJi5fvgw7OzuLqx029s9FsWLFUKJECTHgARS/PwVBwH///ad7Qd+oR1ABI5fLhdDQUKF48eLC7du31Y7ndLjatGmTmHbr1q3X6rx7+PBhwdXVVViyZInBym9IpnoXN27cEK5evSp+vvrqK8Hd3V24evWq8Pz5c4M+0+sy1bvYu3evAEC4e/eumBYeHi4AECIiIgzzMG/IVO9i/PjxQv369SVpjx49EgAIJ0+efPMHMRBDvY9r164Jfn5+wsSJEzXe57PPPhOqVq0qSevbt69FdWQ21bsQBEFYu3at4OTkJPzzzz+GfQgDMcW7yM7OlvzuvHr1qjBixAihQoUKwtWrV4Xk5GTjPJyeTPVz8fPPPwvOzs5CUlKSmPbPP/8INjY2wsuXL3Uur1UFPSNGjBA8PT2FI0eOCDExMeJH9YV9/PHHQqlSpYRDhw4JFy5cEEJCQoSQkBDJde7cuSNcunRJGD58uFC+fHnh0qVLwqVLl4T09HRBEATh0KFDgouLizB58mTJfd6017khmepd5GaJo7dM9S6ys7OF2rVrC02bNhUuXrwoXLhwQWjQoIHwzjvvmPR582Kqd3Hw4EFBJpMJM2bMEG7fvi2EhYUJbdu2FUqXLq3XLzBjM8T7uHr1quDr6yt88MEHkms8fvxYzBMZGSm4uLgIEydOFG7evCksXbpUsLW1Ffbs2WPS582Lqd7FmjVrBDs7O2Hp0qWSPPHx8SZ93ryY6l3kZomjt0z1LpKSkoSSJUsKPXv2FK5fvy4cPXpUKFeunDB06FC9ymtVQQ8AjZ8VK1aIeVJTU4WRI0cKRYoUEVxcXIR3331XiImJkVynWbNmGq8TFRUlCIIgDBw4UOPxZs2ame5h82Gqd5GbJQY9pnwXDx8+FLp37y64ubkJ/v7+wqBBgywqGDblu1i3bp1Qq1YtwdXVVfD19RW6dOki3Lx500RPqhtDvI9p06ZpvEbp0qUl9zp8+LBQs2ZNwcHBQShTpozkHpbAVO9C28/OwIEDTfew+TDlz4UqSwx6TPkubt68KbRu3VpwdnYWSpYsKYwfP17vP5JkrwpNREREVKhZZUdmIiIisj4MeoiIiMgqMOghIiIiq8Cgh4iIiKwCgx4iIiKyCgx6iIiIyCow6CEiIiKrwKCHiIiIrAKDHiIiIrIKDHqIyOINGjQIMpkMMpkM9vb28Pf3xzvvvIPly5dDLpfrfJ2VK1fCy8vLeAUlIovGoIeICoR27dohJiYG9+/fx+7du9GiRQuMGTMGnTp1QlZWlrmLR0QFAIMeIioQHB0dERAQgBIlSqB27dr44osvsHXrVuzevRsrV64EACxYsADVqlWDq6srAgMDMXLkSCQnJwMAjhw5gsGDByMhIUGsNZo+fToAID09HZ9++ilKlCgBV1dXNGjQAEeOHDHPgxKR0TDoIaICq2XLlqhRowb+/vtvAICNjQ2+//57XL9+HatWrcKhQ4fw2WefAQAaNWqERYsWwcPDAzExMYiJicGnn34KABg1ahROnz6N9evX48qVK3jvvffQrl073Llzx2zPRkSGx1XWicjiDRo0CPHx8fjnn3/UjvXp0wdXrlzBjRs31I5t2rQJH3/8MZ4+fQpA0adn7NixiI+PF/NER0ejTJkyiI6ORvHixcX01q1bo379+vjmm28M/jxEZB525i4AEdGbEAQBMpkMAHDgwAHMnj0bt27dQmJiIrKyspCWloaXL1/CxcVF4/lXr15FdnY2ypcvL0lPT0+Hj4+P0ctPRKbDoIeICrSbN28iODgY9+/fR6dOnTBixAh8/fXX8Pb2xokTJzBkyBBkZGRoDXqSk5Nha2uLsLAw2NraSo65ubmZ4hGIyEQY9BBRgXXo0CFcvXoV48aNQ1hYGORyOebPnw8bG0V3xQ0bNkjyOzg4IDs7W5JWq1YtZGdn4/Hjx2jSpInJyk5Epsegh4gKhPT0dMTGxiI7OxtxcXHYs2cPZs+ejU6dOmHAgAG4du0aMjMz8cMPP6Bz5844efIkfvrpJ8k1goKCkJycjIMHD6JGjRpwcXFB+fLl0a9fPwwYMADz589HrVq18OTJExw8eBDVq1dHx44dzfTERGRoHL1FRAXCnj17UKxYMQQFBaFdu3Y4fPgwvv/+e2zduhW2traoUaMGFixYgG+//RZVq1bFmjVrMHv2bMk1GjVqhI8//hi9e/eGr68v5s6dCwBYsWIFBgwYgAkTJqBChQro1q0bzp8/j1KlSpnjUYnISDh6i4iIiKwCa3qIiIjIKjDoISIiIqvAoIeIiIisAoMeIiIisgoMeoiIiMgqMOghIiIiq8Cgh4iIiKwCgx4iIiKyCgx6iIiIyCow6CEiIiKrwKCHiIiIrML/ASJ46wjyWEYZAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "model.plot_components(forecast)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 702 + }, + "id": "xvcg1b0XWkoQ", + "outputId": "26a9626a-ec8b-4085-c994-9c2970046735" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING - (NP.plotting.log_warning_resampler_switch_to_valid_env) - Warning: plotly-resampler not supported for the environment you are using. Plotting backend automatically switched to 'plotly' without resampling \n", + "WARNING:NP.plotting:Warning: plotly-resampler not supported for the environment you are using. Plotting backend automatically switched to 'plotly' without resampling \n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "
\n", + "\n", + "" + ] + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file