{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "id": "bzfUqSjG20hg" }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "import plotly.express as px\n", "import matplotlib.pyplot as plt\n", "from matplotlib import style\n", "%matplotlib inline\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "code", "source": [ "df = pd.read_csv('/content/final-v1.csv')" ], "metadata": { "id": "jyGqYwlQ3RS6" }, "execution_count": 4, "outputs": [] }, { "cell_type": "code", "source": [ "df.head(5)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 226 }, "id": "HAJ8qzT93bV8", "outputId": "404dbc1d-38cb-4d8e-c163-91a9710847bc" }, "execution_count": 5, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " edge_followed_by edge_follow username_length username_has_number \\\n", "0 0.001 0.257 13 1 \n", "1 0.000 0.958 9 1 \n", "2 0.000 0.253 12 0 \n", "3 0.000 0.977 10 1 \n", "4 0.000 0.321 11 0 \n", "\n", " full_name_has_number full_name_length is_private is_joined_recently \\\n", "0 1 13 0 0 \n", "1 0 0 0 1 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "4 0 11 1 0 \n", "\n", " has_channel is_business_account has_guides has_external_url is_fake \n", "0 0 0 0 0 1 \n", "1 0 0 0 0 1 \n", "2 0 0 0 0 1 \n", "3 0 0 0 0 1 \n", "4 0 0 0 0 1 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
edge_followed_byedge_followusername_lengthusername_has_numberfull_name_has_numberfull_name_lengthis_privateis_joined_recentlyhas_channelis_business_accounthas_guideshas_external_urlis_fake
00.0010.2571311130000001
10.0000.95891000100001
20.0000.253120000000001
30.0000.977101000000001
40.0000.3211100111000001
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df", "summary": "{\n \"name\": \"df\",\n \"rows\": 785,\n \"fields\": [\n {\n \"column\": \"edge_followed_by\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03610511134706709,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 22,\n \"samples\": [\n 0.001,\n 0.035,\n 0.004\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"edge_follow\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2938452958063848,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 506,\n \"samples\": [\n 0.393,\n 0.322,\n 0.132\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 5,\n \"max\": 26,\n \"num_unique_values\": 21,\n \"samples\": [\n 13,\n 22,\n 19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6,\n \"min\": 0,\n \"max\": 30,\n \"num_unique_values\": 30,\n \"samples\": [\n 29,\n 27\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_channel\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_guides\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 5 } ] }, { "cell_type": "code", "source": [ "df.tail(5)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 226 }, "id": "s44Zl9uk3e0C", "outputId": "bfa00643-983c-4ece-b859-47385e9edd74" }, "execution_count": 6, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " edge_followed_by edge_follow username_length username_has_number \\\n", "780 0.0 0.020 9 0 \n", "781 0.0 0.081 18 1 \n", "782 0.0 0.115 9 0 \n", "783 0.0 0.049 12 0 \n", "784 0.0 0.096 11 0 \n", "\n", " full_name_has_number full_name_length is_private is_joined_recently \\\n", "780 0 14 1 0 \n", "781 0 15 1 0 \n", "782 0 8 1 0 \n", "783 0 28 1 0 \n", "784 0 0 1 0 \n", "\n", " has_channel is_business_account has_guides has_external_url is_fake \n", "780 0 0 0 0 0 \n", "781 0 0 0 0 0 \n", "782 0 0 0 0 0 \n", "783 0 0 0 0 0 \n", "784 0 0 0 0 0 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
edge_followed_byedge_followusername_lengthusername_has_numberfull_name_has_numberfull_name_lengthis_privateis_joined_recentlyhas_channelis_business_accounthas_guideshas_external_urlis_fake
7800.00.020900141000000
7810.00.0811810151000000
7820.00.11590081000000
7830.00.0491200281000000
7840.00.096110001000000
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"edge_followed_by\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"edge_follow\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03787743391519547,\n \"min\": 0.02,\n \"max\": 0.115,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.081\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 9,\n \"max\": 18,\n \"num_unique_values\": 4,\n \"samples\": [\n 18\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10,\n \"min\": 0,\n \"max\": 28,\n \"num_unique_values\": 5,\n \"samples\": [\n 15\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_channel\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_guides\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 6 } ] }, { "cell_type": "code", "source": [ "df.shape" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2f2fagjf3hTW", "outputId": "503864f5-ff9e-4ff7-b538-182224fbf23a" }, "execution_count": 7, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "(785, 13)" ] }, "metadata": {}, "execution_count": 7 } ] }, { "cell_type": "code", "source": [ "df.columns" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "q3fZopfE3iyb", "outputId": "d25efa66-d872-424b-86a5-1a6ad4dafbcd" }, "execution_count": 8, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['edge_followed_by', 'edge_follow', 'username_length',\n", " 'username_has_number', 'full_name_has_number', 'full_name_length',\n", " 'is_private', 'is_joined_recently', 'has_channel',\n", " 'is_business_account', 'has_guides', 'has_external_url', 'is_fake'],\n", " dtype='object')" ] }, "metadata": {}, "execution_count": 8 } ] }, { "cell_type": "code", "source": [ "print(df)\n", "print('dimensions:')\n", "print(df.shape)\n", "print('Information:')\n", "df.info()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gUu_nwTB3krt", "outputId": "df958b37-f6b4-49c6-c53f-a6b8a5e96e58" }, "execution_count": 10, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " edge_followed_by edge_follow username_length username_has_number \\\n", "0 0.001 0.257 13 1 \n", "1 0.000 0.958 9 1 \n", "2 0.000 0.253 12 0 \n", "3 0.000 0.977 10 1 \n", "4 0.000 0.321 11 0 \n", ".. ... ... ... ... \n", "780 0.000 0.020 9 0 \n", "781 0.000 0.081 18 1 \n", "782 0.000 0.115 9 0 \n", "783 0.000 0.049 12 0 \n", "784 0.000 0.096 11 0 \n", "\n", " full_name_has_number full_name_length is_private is_joined_recently \\\n", "0 1 13 0 0 \n", "1 0 0 0 1 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "4 0 11 1 0 \n", ".. ... ... ... ... \n", "780 0 14 1 0 \n", "781 0 15 1 0 \n", "782 0 8 1 0 \n", "783 0 28 1 0 \n", "784 0 0 1 0 \n", "\n", " has_channel is_business_account has_guides has_external_url is_fake \n", "0 0 0 0 0 1 \n", "1 0 0 0 0 1 \n", "2 0 0 0 0 1 \n", "3 0 0 0 0 1 \n", "4 0 0 0 0 1 \n", ".. ... ... ... ... ... \n", "780 0 0 0 0 0 \n", "781 0 0 0 0 0 \n", "782 0 0 0 0 0 \n", "783 0 0 0 0 0 \n", "784 0 0 0 0 0 \n", "\n", "[785 rows x 13 columns]\n", "dimensions:\n", "(785, 13)\n", "Information:\n", "\n", "RangeIndex: 785 entries, 0 to 784\n", "Data columns (total 13 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 edge_followed_by 785 non-null float64\n", " 1 edge_follow 785 non-null float64\n", " 2 username_length 785 non-null int64 \n", " 3 username_has_number 785 non-null int64 \n", " 4 full_name_has_number 785 non-null int64 \n", " 5 full_name_length 785 non-null int64 \n", " 6 is_private 785 non-null int64 \n", " 7 is_joined_recently 785 non-null int64 \n", " 8 has_channel 785 non-null int64 \n", " 9 is_business_account 785 non-null int64 \n", " 10 has_guides 785 non-null int64 \n", " 11 has_external_url 785 non-null int64 \n", " 12 is_fake 785 non-null int64 \n", "dtypes: float64(2), int64(11)\n", "memory usage: 79.9 KB\n" ] } ] }, { "cell_type": "code", "source": [ "print(df.apply(lambda col: col.unique()))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "amrNYI8j3uUd", "outputId": "968bb228-6b15-4d48-8d28-75602a359834" }, "execution_count": 11, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "edge_followed_by [0.001, 0.0, 0.002, 0.005, 0.008, 0.003, 0.006...\n", "edge_follow [0.257, 0.958, 0.253, 0.977, 0.321, 0.917, 0.0...\n", "username_length [13, 9, 12, 10, 11, 15, 7, 8, 17, 14, 20, 18, ...\n", "username_has_number [1, 0]\n", "full_name_has_number [1, 0]\n", "full_name_length [13, 0, 11, 9, 4, 6, 1, 16, 7, 5, 15, 2, 3, 12...\n", "is_private [0, 1]\n", "is_joined_recently [0, 1]\n", "has_channel [0]\n", "is_business_account [0, 1]\n", "has_guides [0, 1]\n", "has_external_url [0, 1]\n", "is_fake [1, 0]\n", "dtype: object\n" ] } ] }, { "cell_type": "code", "source": [ "df.nunique()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 492 }, "id": "ms17DPeN3ysb", "outputId": "5a060be3-27c0-41ac-f745-d4f7990cfbd5" }, "execution_count": 12, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "edge_followed_by 22\n", "edge_follow 506\n", "username_length 21\n", "username_has_number 2\n", "full_name_has_number 2\n", "full_name_length 30\n", "is_private 2\n", "is_joined_recently 2\n", "has_channel 1\n", "is_business_account 2\n", "has_guides 2\n", "has_external_url 2\n", "is_fake 2\n", "dtype: int64" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0
edge_followed_by22
edge_follow506
username_length21
username_has_number2
full_name_has_number2
full_name_length30
is_private2
is_joined_recently2
has_channel1
is_business_account2
has_guides2
has_external_url2
is_fake2
\n", "

" ] }, "metadata": {}, "execution_count": 12 } ] }, { "cell_type": "code", "source": [ "df.corr()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 477 }, "id": "Fs56dEi531lj", "outputId": "d90ffe75-b5d2-455b-a6b5-4010c075e932" }, "execution_count": 13, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " edge_followed_by edge_follow username_length \\\n", "edge_followed_by 1.000000 -0.054259 -0.033704 \n", "edge_follow -0.054259 1.000000 -0.112940 \n", "username_length -0.033704 -0.112940 1.000000 \n", "username_has_number -0.071313 0.160248 -0.160610 \n", "full_name_has_number -0.019349 0.104735 -0.021410 \n", "full_name_length 0.116751 -0.089677 0.277052 \n", "is_private -0.024593 -0.072626 0.117582 \n", "is_joined_recently -0.044327 -0.133170 -0.099414 \n", "has_channel NaN NaN NaN \n", "is_business_account 0.036585 -0.132422 0.132683 \n", "has_guides 0.002749 0.002723 -0.006861 \n", "has_external_url 0.180392 -0.108482 0.112466 \n", "is_fake -0.136808 0.272649 -0.151752 \n", "\n", " username_has_number full_name_has_number \\\n", "edge_followed_by -0.071313 -0.019349 \n", "edge_follow 0.160248 0.104735 \n", "username_length -0.160610 -0.021410 \n", "username_has_number 1.000000 0.217852 \n", "full_name_has_number 0.217852 1.000000 \n", "full_name_length -0.246511 0.250275 \n", "is_private -0.154072 -0.072366 \n", "is_joined_recently 0.127046 0.066941 \n", "has_channel NaN NaN \n", "is_business_account -0.278637 -0.083482 \n", "has_guides -0.048097 -0.012527 \n", "has_external_url -0.237466 -0.039926 \n", "is_fake 0.370164 0.128588 \n", "\n", " full_name_length is_private is_joined_recently \\\n", "edge_followed_by 0.116751 -0.024593 -0.044327 \n", "edge_follow -0.089677 -0.072626 -0.133170 \n", "username_length 0.277052 0.117582 -0.099414 \n", "username_has_number -0.246511 -0.154072 0.127046 \n", "full_name_has_number 0.250275 -0.072366 0.066941 \n", "full_name_length 1.000000 0.064409 -0.216572 \n", "is_private 0.064409 1.000000 -0.071448 \n", "is_joined_recently -0.216572 -0.071448 1.000000 \n", "has_channel NaN NaN NaN \n", "is_business_account 0.323137 -0.134444 -0.172122 \n", "has_guides 0.122848 -0.016999 -0.026889 \n", "has_external_url 0.309318 -0.041399 -0.150433 \n", "is_fake -0.350433 -0.262292 0.276012 \n", "\n", " has_channel is_business_account has_guides \\\n", "edge_followed_by NaN 0.036585 0.002749 \n", "edge_follow NaN -0.132422 0.002723 \n", "username_length NaN 0.132683 -0.006861 \n", "username_has_number NaN -0.278637 -0.048097 \n", "full_name_has_number NaN -0.083482 -0.012527 \n", "full_name_length NaN 0.323137 0.122848 \n", "is_private NaN -0.134444 -0.016999 \n", "is_joined_recently NaN -0.172122 -0.026889 \n", "has_channel NaN NaN NaN \n", "is_business_account NaN 1.000000 0.126443 \n", "has_guides NaN 0.126443 1.000000 \n", "has_external_url NaN 0.289467 0.138415 \n", "is_fake NaN -0.318395 -0.097421 \n", "\n", " has_external_url is_fake \n", "edge_followed_by 0.180392 -0.136808 \n", "edge_follow -0.108482 0.272649 \n", "username_length 0.112466 -0.151752 \n", "username_has_number -0.237466 0.370164 \n", "full_name_has_number -0.039926 0.128588 \n", "full_name_length 0.309318 -0.350433 \n", "is_private -0.041399 -0.262292 \n", "is_joined_recently -0.150433 0.276012 \n", "has_channel NaN NaN \n", "is_business_account 0.289467 -0.318395 \n", "has_guides 0.138415 -0.097421 \n", "has_external_url 1.000000 -0.426830 \n", "is_fake -0.426830 1.000000 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
edge_followed_byedge_followusername_lengthusername_has_numberfull_name_has_numberfull_name_lengthis_privateis_joined_recentlyhas_channelis_business_accounthas_guideshas_external_urlis_fake
edge_followed_by1.000000-0.054259-0.033704-0.071313-0.0193490.116751-0.024593-0.044327NaN0.0365850.0027490.180392-0.136808
edge_follow-0.0542591.000000-0.1129400.1602480.104735-0.089677-0.072626-0.133170NaN-0.1324220.002723-0.1084820.272649
username_length-0.033704-0.1129401.000000-0.160610-0.0214100.2770520.117582-0.099414NaN0.132683-0.0068610.112466-0.151752
username_has_number-0.0713130.160248-0.1606101.0000000.217852-0.246511-0.1540720.127046NaN-0.278637-0.048097-0.2374660.370164
full_name_has_number-0.0193490.104735-0.0214100.2178521.0000000.250275-0.0723660.066941NaN-0.083482-0.012527-0.0399260.128588
full_name_length0.116751-0.0896770.277052-0.2465110.2502751.0000000.064409-0.216572NaN0.3231370.1228480.309318-0.350433
is_private-0.024593-0.0726260.117582-0.154072-0.0723660.0644091.000000-0.071448NaN-0.134444-0.016999-0.041399-0.262292
is_joined_recently-0.044327-0.133170-0.0994140.1270460.066941-0.216572-0.0714481.000000NaN-0.172122-0.026889-0.1504330.276012
has_channelNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
is_business_account0.036585-0.1324220.132683-0.278637-0.0834820.323137-0.134444-0.172122NaN1.0000000.1264430.289467-0.318395
has_guides0.0027490.002723-0.006861-0.048097-0.0125270.122848-0.016999-0.026889NaN0.1264431.0000000.138415-0.097421
has_external_url0.180392-0.1084820.112466-0.237466-0.0399260.309318-0.041399-0.150433NaN0.2894670.1384151.000000-0.426830
is_fake-0.1368080.272649-0.1517520.3701640.128588-0.350433-0.2622920.276012NaN-0.318395-0.097421-0.4268301.000000
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"df\",\n \"rows\": 13,\n \"fields\": [\n {\n \"column\": \"edge_followed_by\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3019330153290216,\n \"min\": -0.13680775047960891,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n 0.18039167346443685,\n 0.0027487605792974523,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"edge_follow\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.32032618427845355,\n \"min\": -0.13317037891635897,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.10848153331203463,\n 0.0027234821464119804,\n -0.054258853252096034\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.31644673288236946,\n \"min\": -0.16060962893999606,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n 0.1124664550691376,\n -0.006861318955189048,\n -0.033703693932309216\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3617701949721209,\n \"min\": -0.27863745599024425,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.23746610864482043,\n -0.04809668291848156,\n -0.07131297171457342\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2961123601561181,\n \"min\": -0.0834815250678617,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.039925892131660624,\n -0.012527159481685037,\n -0.01934875187214717\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.35776106346126996,\n \"min\": -0.35043268814522366,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n 0.309318338209586,\n 0.12284817184007918,\n 0.1167512089705357\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.32159219920981325,\n \"min\": -0.26229211742185954,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.041399451047463544,\n -0.016999493539874802,\n -0.02459348509217303\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3310655400342606,\n \"min\": -0.21657236508946606,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.15043282199094957,\n -0.026889472075542223,\n -0.04432738505974311\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_channel\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.35960934853930476,\n \"min\": -0.31839477879149414,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_guides\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.29331591227576675,\n \"min\": -0.09742121499676613,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3608646723860577,\n \"min\": -0.4268300691494102,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.40707337614717365,\n \"min\": -0.4268300691494102,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 13 } ] }, { "cell_type": "code", "source": [ "df.isnull().sum()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 492 }, "id": "hHHXgtnS33vD", "outputId": "7142635d-a1c5-434f-8178-aedb067f5c7f" }, "execution_count": 14, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "edge_followed_by 0\n", "edge_follow 0\n", "username_length 0\n", "username_has_number 0\n", "full_name_has_number 0\n", "full_name_length 0\n", "is_private 0\n", "is_joined_recently 0\n", "has_channel 0\n", "is_business_account 0\n", "has_guides 0\n", "has_external_url 0\n", "is_fake 0\n", "dtype: int64" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0
edge_followed_by0
edge_follow0
username_length0
username_has_number0
full_name_has_number0
full_name_length0
is_private0
is_joined_recently0
has_channel0
is_business_account0
has_guides0
has_external_url0
is_fake0
\n", "

" ] }, "metadata": {}, "execution_count": 14 } ] }, { "cell_type": "code", "source": [ "df.describe().T" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 477 }, "id": "alGAES6336fG", "outputId": "01842472-8284-43a5-858a-7ff246d1b5bd" }, "execution_count": 15, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " count mean std min 25% 50% 75% \\\n", "edge_followed_by 785.0 0.002223 0.036105 0.0 0.000 0.000 0.000 \n", "edge_follow 785.0 0.401606 0.293845 0.0 0.135 0.336 0.623 \n", "username_length 785.0 11.630573 3.284329 5.0 9.000 11.000 13.000 \n", "username_has_number 785.0 0.644586 0.478944 0.0 0.000 1.000 1.000 \n", "full_name_has_number 785.0 0.109554 0.312532 0.0 0.000 0.000 0.000 \n", "full_name_length 785.0 6.129936 6.943903 0.0 0.000 5.000 11.000 \n", "is_private 785.0 0.184713 0.388312 0.0 0.000 0.000 0.000 \n", "is_joined_recently 785.0 0.361783 0.480823 0.0 0.000 0.000 1.000 \n", "has_channel 785.0 0.000000 0.000000 0.0 0.000 0.000 0.000 \n", "is_business_account 785.0 0.073885 0.261751 0.0 0.000 0.000 0.000 \n", "has_guides 785.0 0.001274 0.035692 0.0 0.000 0.000 0.000 \n", "has_external_url 785.0 0.062420 0.242072 0.0 0.000 0.000 0.000 \n", "is_fake 785.0 0.881529 0.323371 0.0 1.000 1.000 1.000 \n", "\n", " max \n", "edge_followed_by 1.0 \n", "edge_follow 1.0 \n", "username_length 26.0 \n", "username_has_number 1.0 \n", "full_name_has_number 1.0 \n", "full_name_length 30.0 \n", "is_private 1.0 \n", "is_joined_recently 1.0 \n", "has_channel 0.0 \n", "is_business_account 1.0 \n", "has_guides 1.0 \n", "has_external_url 1.0 \n", "is_fake 1.0 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
countmeanstdmin25%50%75%max
edge_followed_by785.00.0022230.0361050.00.0000.0000.0001.0
edge_follow785.00.4016060.2938450.00.1350.3360.6231.0
username_length785.011.6305733.2843295.09.00011.00013.00026.0
username_has_number785.00.6445860.4789440.00.0001.0001.0001.0
full_name_has_number785.00.1095540.3125320.00.0000.0000.0001.0
full_name_length785.06.1299366.9439030.00.0005.00011.00030.0
is_private785.00.1847130.3883120.00.0000.0000.0001.0
is_joined_recently785.00.3617830.4808230.00.0000.0001.0001.0
has_channel785.00.0000000.0000000.00.0000.0000.0000.0
is_business_account785.00.0738850.2617510.00.0000.0000.0001.0
has_guides785.00.0012740.0356920.00.0000.0000.0001.0
has_external_url785.00.0624200.2420720.00.0000.0000.0001.0
is_fake785.00.8815290.3233710.01.0001.0001.0001.0
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"df\",\n \"rows\": 13,\n \"fields\": [\n {\n \"column\": \"count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 785.0,\n \"max\": 785.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 785.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.4412915317173853,\n \"min\": 0.0,\n \"max\": 11.630573248407643,\n \"num_unique_values\": 13,\n \"samples\": [\n 0.062420382165605096\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.9763261374553287,\n \"min\": 0.0,\n \"max\": 6.943903001842641,\n \"num_unique_values\": 13,\n \"samples\": [\n 0.24207173753796538\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"min\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3867504905630723,\n \"min\": 0.0,\n \"max\": 5.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"25%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.485236794166086,\n \"min\": 0.0,\n \"max\": 9.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.135\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"50%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.1917951222727474,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.336\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"75%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.422419244526571,\n \"min\": 0.0,\n \"max\": 13.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.623\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"max\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10.209975011898399,\n \"min\": 0.0,\n \"max\": 30.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 26.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 15 } ] }, { "cell_type": "code", "source": [ "df.drop([\"has_guides\"],axis=1,inplace=True)\n", "df.drop([\"edge_follow\"],axis=1,inplace=True)\n", "df.drop([\"has_channel\"],axis=1,inplace=True)\n", "df.drop([\"edge_followed_by\"],axis=1,inplace=True)" ], "metadata": { "id": "JhH_px8j39hh" }, "execution_count": 16, "outputs": [] }, { "cell_type": "code", "source": [ "df.head(5)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 226 }, "id": "D4HjYEfJ4URK", "outputId": "60b8ba9b-20a0-4ee6-b445-a36ded57b775" }, "execution_count": 17, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " username_length username_has_number full_name_has_number \\\n", "0 13 1 1 \n", "1 9 1 0 \n", "2 12 0 0 \n", "3 10 1 0 \n", "4 11 0 0 \n", "\n", " full_name_length is_private is_joined_recently is_business_account \\\n", "0 13 0 0 0 \n", "1 0 0 1 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "4 11 1 0 0 \n", "\n", " has_external_url is_fake \n", "0 0 1 \n", "1 0 1 \n", "2 0 1 \n", "3 0 1 \n", "4 0 1 " ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
username_lengthusername_has_numberfull_name_has_numberfull_name_lengthis_privateis_joined_recentlyis_business_accounthas_external_urlis_fake
013111300001
1910001001
21200000001
31010000001
411001110001
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "df", "summary": "{\n \"name\": \"df\",\n \"rows\": 785,\n \"fields\": [\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 5,\n \"max\": 26,\n \"num_unique_values\": 21,\n \"samples\": [\n 13,\n 22,\n 19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6,\n \"min\": 0,\n \"max\": 30,\n \"num_unique_values\": 30,\n \"samples\": [\n 29,\n 27\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 17 } ] }, { "cell_type": "code", "source": [ "account = df.groupby(\"is_business_account\")\n", "account = account.size()\n", "account" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 178 }, "id": "U_a8cipo4WT9", "outputId": "151c867d-2149-481f-ecc8-c67d043bbd3a" }, "execution_count": 23, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "is_business_account\n", "0 727\n", "1 58\n", "dtype: int64" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0
is_business_account
0727
158
\n", "

" ] }, "metadata": {}, "execution_count": 23 } ] }, { "cell_type": "code", "source": [ "plt.pie(account.values , labels = (\"Business Account\", \"Personal Account\"), autopct='%1.1f%%',colors=['Lavender','lightgreen'], radius = 1, textprops = {\"fontsize\" : 16})\n", "plt.title(\"Account Type\", c=\"Blue\")\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 375 }, "id": "X3jS5mYW4c2J", "outputId": "6632034b-e44d-4491-d759-962aebc36ae3" }, "execution_count": 24, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAGbCAYAAAAGFxytAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP1klEQVR4nO3deXxTVf7/8fdN2nRfWGXfqoiioCyCsgooyOIoIIjKIu4L4zgqg8oIOvIVUdGfiqMsggqIoIigIKAgsjgKsosIshQUZIfSvUnu749rU2JbaEPTpOnr+Xj0UXLvzb2nKUnePfmccwzTNE0BAAAAKDZboBsAAAAAlFWEaQAAAMBHhGkAAADAR4RpAAAAwEeEaQAAAMBHhGkAAADAR4RpAAAAwEeEaQAAAMBHhGkAAADAR4RpAAAAwEeEaQAh6623JMOQWrUKdEv86//+T5o379zHdexoPR7n+ho92s8NBoAQYpimaQa6EQDgD23aSAcOSHv3Sjt3ShdeGOgW+UdsrNS3rzRt2tmPW7pUOnQo7/batdLrr0tPPSVdckne9iZNrC8AwLmFBboBAOAPe/ZIa9ZIc+dK990nzZghjRoV6FYF1nXXed+OjLTC9HXXWb3WAIDio8wDQEiaMUOqUEHq0cPqtZ0xo+DjTp6UHn1UqldPioiQatWSBg2Sjh7NOyYz0yp9aNjQCqDVq0u9e0u7duUdk5YmPfaYVLu2dZ6LL5Zeflk687O/vXutMoqCepD/Wl4xerS17ddfpSFDpMREKSFBuvNOKT3d+35padJ77+WVaQwZUpxHKs/Uqdb9N2zIv+///k+y26Xff7dud+woXXaZ9OOP0jXXSFFRUv360ttv579vVpb1h8yFF1qPTe3a0vDh1nYAKOvomQYQkmbMsAKvwyENGCD9979WWUPLlnnHpKZK7dpJP/8sDR0qNWtmhej586XffpMqV5ZcLqlnT+nrr6Vbb5UeeUQ6fdoqmdi6VUpKsgLzjTdKy5dLd90lXXGFtHix9MQTVvh89VXff45+/ayQ+sIL0vr10uTJUtWq0osvWvs/+EC6+27pqquke++1tiUl+Xatvn2lhx6yHrsrr/TeN2OGFaBr1szbduKE1L271cYBA6TZs6UHHrAe86FDrWPcbuuxWbXKat8ll0hbtliPyY4dRav1BoCgZgJAiFm3zjQl01y61LrtdptmrVqm+cgj3sc984x13Ny5+c/hdlvf333XOmb8+MKPmTfPOub557339+1rmoZhmr/+at3es8c6burU/OeSTHPUqLzbo0ZZ24YO9T7u5ptNs1Il720xMaY5eHD+c57LnDnWNZYvz9s2YIBp1qhhmi5X3rb16/O3u0MHa9srr+Rty8oyzSuuMM2qVU0zO9va9sEHpmmzmebKld7Xfvtt6/6rVxe/3QAQTCjzABByZsyQLrhAuvZa67ZhSP37S7NmWT3NuT75RGraVLr55vznMIy8YypXloYNK/yYhQutEoi//917/2OPWb3Wixb5/rPcf7/37XbtpGPHpJQU3895NoMGWYM2ly/P2zZjhlXG0aeP97FhYVY9ei6Hw7p9+LBV/iFJc+ZYvdGNGlm9/rlfnTpZ+8+8DgCURYRpACHF5bJC87XXWoMQf/3V+mrVyprJ4uuv847dtcuq+z2bXbus+uewsxTFJSdLNWpIcXHe23NnyEhO9u1nkaQ6dbxvV6hgfT9xwvdzns1111k14bk15m639OGH0t/+lv/nq1FDionx3tawofV9717r+86d0k8/SVWqeH/lHnf4sH9+DgAoLdRMAwgpy5ZJBw9agXrWrPz7Z8yQrr++9Nsl5fVk/9WZveV/ZbcXvN1fk5ra7dJtt0mTJlnzdK9ebfVU33GHb+dzu6XLL5fGjy94f+3avrcVAIIBYRpASJkxwxqgN2FC/n1z50qffmrNOBEVZQ3U27r17OdLSpK+/17KyZHCwws+pm5d6auvrIGJZ/bebt+et1/K61U+edL7/ufTcy0VHtJ9NWiQ9Mor0oIFVolKlSpS1675jztwwJpJ5Mze6R07rO/16lnfk5KkTZukzp1Lvp0AEAwo8wAQMjIyrMDcs6c1M8Vfvx5+2Aq88+dbx/fpYwW9Tz/Nf67cnt8+fawa3zffLPyY7t2t3uW/HvPqq1aAvOEG63Z8vFV//e233se99ZbvP7Nkhdm/BvTzkbtoy+TJVs34rbcWXObidErvvJN3Ozvbul2litS8ubWtXz9rRpNJk/LfPyPDCuMAUJbRMw0gZMyfb4XlG28seH/r1lbQmzHDGpD4xBPSxx9Lt9xiTeXWvLl0/Lh1nrfftgYnDhokvf++9M9/Sj/8YA0ATEuzeqIffNCqJe7Vy6rRfvppq1a4aVNpyRLps8+kf/zDe6q6u++Wxo61vrdoYQXr3N5cXzVvbrVn/Hirjrl+/fNfQn3QIOnxx61/F1biUaOGNUXf3r1WDfRHH0kbN0oTJ+b14g8caE2Zd//91mDDNm2sPzy2b7e2L15sPQ4AUGYFejoRACgpvXqZZmSkaaalFX7MkCGmGR5umkePWrePHTPNhx82zZo1TdPhsKbQGzw4b79pmmZ6umk+/bRp1q9v3bdaNWvau1278o45fdo0H33UmlYuPNw0L7rINF96KW/6vDPPddddppmQYJpxcabZr59pHj5c+NR4R45433/qVGv7nj1527ZvN8327U0zKsraV9Rp8gqaGi/XwYOmabebZsOGBd+3QwfTbNzYmobw6qutx71uXdN88838x2Znm+aLL1rHR0SYZoUKptm8uWk++6xpnjpVtLYCQLAyTNNfw1gAAGXV0aPWrB7PPCP9+9/593fsaB1zrppzAAh11EwDAPKZNs0qxxg4MNAtAYDgRs00AMBj2TJp2zZpzBjpppvyZuUAABSMMA0A8HjuOWnNGmug4BtvBLo1ABD8qJkGAAAAfETNNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4KOwQDcAAMob0zRlmpLbrT+/m4X+W5IMQzIM44x/q4B/5+232SSbzZDdbn0HAPgPYRoASphpmnI6JafT9Hy5XN5B2Yez+tye3FBtt0t2e973sDDr37lBHABQfIZp+vayDgDlncvlHZbP/HdZYrNJYWGGwsPzvsLCCNgAUBSEaQAoApfLVHa29ZWTY4XmUH71tNnkFa4dDoOSEQAoAGEaAArgdOaGZ7eys8teb7M/2O3yCtfh4QYlIgDKPcI0ACiv5zkry62sLKu2GecWEWEoIsJQZKRNdjvBGkD5Q5gGUC6ZplWukZlpBWinM9AtKvvCwqTISJsiI20KDydYAygfCNMAypWcHFMZGW5lZLjpffYju12KiLApMtIqCaEcBECoIkwDCHlOpxWgMzPpgQ4Ew5CnFCQigoGMAEILYRpASHK5TGVmupWRYZVzIHhERRmKjrbJ4WARXgBlH2EaQMhwu60a6IwMawYOBLfwcCtUR0VRBgKg7CJMAyjznE5TaWlupadTBF0WGYYUFWVTdDQDFwGUPYRpAGVWdrZbaWluZWbyMhYqHA6rtzoykt5qAGUDYRpAmWKaprKyrJ5oSjlCl82W11vN0uYAghlhGkCZYJqmMjJMpaW5mJGjnImMNBQXZydUAwhKhGkAQc3tNpWebpVzMC90+UaoBhCMCNMAgpLLlTeokFcpnIlQDSCYEKYBBBXTtEJ0aiohGmcXFWWFarudUA0gcAjTAIJGZqZbKSkuuVyBbgnKkpgYm2JjbaysCCAgCNMAAi4nx1RKiovZOeAzw5BiY22KibExpR6AUkWYBhAwLpep1FQWW0HJsdul+Hi7IiNZqhxA6SBMAyh11EXD3yIjDcXHU08NwP8I0wBKFXXRKC2GYfVSR0fTSw3AfwjTAEqF02nVRWdl8ZKD0uVwGEpIYCo9AP5BmAbgd+npVm80rzYIFAYoAvAXwjQAv3G5TJ06RW80gkd4uNVLHR5OoAZQMgjTAPwiI8OtU6fojUZwiomxKS6OXmoA548wDaBEud1Wb3RmJi8tCG52u5SYaJfDwQBFAL4jTAMoMdnZbp08yUwdKFvi422KibEHuhkAyijCNIDzZprW4iupqSy+grIpKsqqpabsA0BxEaYBnBeXy9TJkywFjrIvLEyqUCGMKfQAFAthGoDPsrLcOnGCQYYIHYZh1VGzHDmAoiJMA/BJero1WwcQimJjbYqNZbYPAOdGmAZQLKZp6vRpt9LSqI9GaHM4DFWoYJfNRqAGUDjCNIAiM02rPppp71BeMH0egHMhTAMoEpfL1IkTLuXk8JKB8ichwa7oaAI1gPwI0wDOKSfH1PHjTrmp7EA5FhtrU1wc81ED8EaYBnBWmZnWQiy8UgAsQw4gP8I0gEKlprp0+jTd0cCZWOAFwJkI0wDyMU1TKSlupacTpIGCREYaSkwkUAMgTAP4C2bsAIrG4TBUsSKBGijvGJoMwMM0TZ06RZAGiiI729SxYy653TxfgPKMnmkAkvKCdEYGLwlAcYSFSRUrhslup4caKI/omQZAkAbOg9MpHTvmlMvF8wcojwjTAJSS4iZIA+fB5ZKOHnXK6eR5BJQ3hGmgnDt1ysWsHUAJcLutHmoCNVC+EKaBciwlhSANlCS3Wzp+nJIPoDwhTAPlVEqKS2lpBGmgpLlcVqBmlg+gfCBMA+UQQRrwL6dTOnHCJSbMAkIfYRooZ1JTCdJAacjONgnUQDlAmAbKkcxMt06fJkgDpSUry1RKCs85IJQRpoFyIifHWiYcQOlKT3crNZXnHhCqCNNAOeB2mzpxwik+bQYC4/RptzIz6aEGQhFhGghxpmnVbbroGAMC6uRJl7KzCdRAqCFMAyEuJcWt7Gy6pIFAM01rhg8WdQFCC2EaCGFpaSzKAgQTt1t/llwRqIFQQZgGQlRWlptZBIAg5HSK5yYQQgjTQAhyOpm5Awhm6ekMSARCBWEaCDG5M3e4eZ8GgtrJky65XJR7AGUdYRoIMSdPuuR0BroVAM4ld0Ai9dNA2UaYBkJIWppLWVm8MQNlRU6OyaqkQBlHmAZChNPJssVAWZSW5lZWFs9doKwiTAMhwDQZcAiUZdRPA2UXYRoIAampbuXk8EYMlFVutxWoqZ8Gyh7CNFDGZWe7lZrKR8RAWZedbfJcBsogwjRQhlHeAYSW1FS3srMJ1EBZQpgGyrCUFLdcZGkgpFDuAZQthGmgjMrOdis9nR4sINS4XNYMHwDKBsI0UAZR3gGEttRUt5xOeqeBsoAwDZRBp09T3gGEMtOUUlJ4kgNlAWEaKGNyckw+AgbKgawsU5mZPNeBYEeYBsqYU6forQLKi5QUBiMCwY4wDZQhGRkszgKUJy6XmHsaCHKEaaCMME1Tp0/TKw2UNwxGBIIbYRooI9LTGXQIlFeUdwHBizANlAFut6nTp/moFyivsrNNZWTwGgAEI8I0UAakprrFGCSgfEtJccnt5oUACDaEaSDIOZ1MhQdAcrtZGREIRoRpIMgx6BBArrQ0N73TQJAhTANBLCfHVGYmb5wALKZJ7zQQbAjTQBBjOWEAf0XvNBBcCNNAkMrMdCs7mzdMAN5M05oqE0BwIEwDQYgFWgCcDb3TQPAgTANBKCvLlNMZ6FYACFZuN73TQLAgTANBiAFGAM4lLc0tkwnogYAjTANBJifHpFYawDnROw0EB8I0EGTS0qiVBlA01uqo/PENBBJhGggiLpepjAzeGAEUDb3TQOARpoEgwpsigOKidhoILMI0ECRM0yRMAyg2l0t8ogUEEGEaCBIZGabcZGkAPuAPcSBwCNNAkGDgIQBf5eSYysmhdxoIBMI0EASystws0gLgvNA7DQQGYRoIAizSAuB8ZWQwEBEIBMI0EGBOp6msLN4AAZwf02QgIhAIhGkgwDIy6JUGUDJ4PQFKH2EaCDDe/ACUlOxsU04nvdNAaSJMAwGUk2PKxSQeAEoQf6ADpYswDQQQb3oAShqvK0DpIkwDAZSZyZsegJLlcknZ2by2AKWFMA0ECCUeAPyFWT2A0kOYBgKEj2IB+AtzTgOlp9hhul69ejIMI99XbGysmjZtqieffFLHjh3zR1uL3ca9e/cGtB3BYvz48Z7f0xtvvBHo5uBPlHgA8BfTtGb2AOB/PvdMt2nTRoMHD9bgwYM1cOBAtW7dWjt37tTYsWPVpEkT7d69uyTbifMwZcoUz7/ffffdALak7Pjmm29kGIY6duzol/NT4gHA31gMCigdYb7e8e6779aQIUO8tv3xxx/q0KGDduzYoeHDh+vjjz8+3/b55Ouvv1ZOTo5q1qwZkOsHk//973/atm2bEhMTlZOTo40bN2r9+vVq1qxZoJtWrlHiAcDfsrLckuyBbgYQ8kq0ZrpatWp64oknJFmBNlCSkpLUqFEjhYeHB6wNwSK3V3rAgAG65ZZbvLYhcCjxAOBvTqfkctE7DfhbiQ9ArFatmiTJ6XTm23euWuYhQ4bIMAxNmzbNa3tWVpZeeuklNW/eXHFxcXI4HKpWrZpatmyp4cOH6/jx40W6TseOHWUYhr755htt3LhRvXv3VuXKlRUREaFLL71Ur7zyylkHbHz99dfq3bu3qlevLofDoapVq+rmm2/Wd999V+DxO3fu1NChQ1W/fn1FREQoNjZWdevWVY8ePTR16tR8x8+ZM0ddunRRpUqVFB4erkqVKunSSy/VPffco82bNxfarsKkpaXpo48+kiTddddduuuuuyRJM2fOVGZmZqH3M01Tc+fOVc+ePVWtWjXP4922bVu9+OKLysjIyHefH3/8UYMHD1b9+vUVGRmpihUrqmnTpnriiSeUnJyc7/gffvhB/fr1U40aNTyPZa9evbR06dIC23Tm764go0ePlmEYGj16dKHbjxw5ooceeki1a9eWw+FQ7dq1NWzYMJ08eTLfta699lpJ0ooVK7zGBtSrV6/Qx62osrPdlHgAKBWUegD+53OZR2F++OEHSVLjxo1L5Hxut1s9evTQ119/rfj4eLVr106JiYk6cuSIdu7cqZdeekm33XabKlasWORzLl68WOPHj1dSUpKuu+46HTx4UKtWrdLjjz+u/fv367XXXst3n8cff1yvvPKKbDabWrRooXbt2mnfvn367LPPtGDBAk2aNEl33nmn5/itW7eqTZs2SklJ0cUXX6yePXvKbrfrt99+07fffqvff//d6/jnnntOo0aNUlhYmK655hrVrFlTp06d0r59+zRlyhQ1btxYTZo0KdZj99FHH+n06dNq0qSJmjdvLklq2LChduzYoblz5+q2227Ld5+cnBzdeuutmjt3rmw2m6666ip16tRJR48e1bZt2zRixAj179/fK1S+9NJLGjFihNxutxo2bKi//e1vysjI0K+//qqXX35ZjRs39ioJmjRpku6//3653W5deeWV6tixo5KTk/X555/r888/1+jRozVq1Khi/aznsn//fjVr1kw5OTlq06aNMjMztXr1ar355pv6/vvvtXr1as8nGd26dVNkZKQWL16sCy64QN26dfOcp3LlyufdlsxM3twAlI6sLLeio5m4C/CnEgnTbrdbBw8e1Keffqpx48bJbrdr5MiRJXFqrVq1Sl9//bWuvPJKrVixQnFxcV77161bp9q1axfrnGPHjtXbb7+t++67z7Nt2bJl6tKli9588009/vjjqlWrlmffpEmT9Morr+jCCy/UJ5984hVqv/32W/Xs2VP333+/2rZtq4suukiSNYNGSkqKnn/+eT399NNe18/IyNDatWs9t7OysjR27FjFxsZq3bp1uvjii72OT05OLrA3+FxyyzmGDh3q2XbnnXfqySef1JQpUwoM0yNGjNDcuXNVr149zZs3T02bNvXsM01Ty5YtU4UKFTzb5s+fr+HDhysyMlLvvfee+vXr53W+bdu2yTAMz+0tW7bowQcflGmaev/99zVw4EDPvkWLFummm27S6NGjdc011+i6664r9s9cmHfffVdDhgzR22+/rYiICElWwL766qu1du1affzxxxowYIDnMWjdurUWL16sRo0a5fuk5HxZdYwA4H9ZWaZM0/R6HQZQsnz+c/XOO+/0fPRtt9tVq1YtDRs2TE2aNNGKFSvUs2fPEmngoUOHJEnt2rXLF6QlqUWLFqpUqVKxztm7d2+vIC1JnTp1UteuXeVyubR8+XLPdrfb7SkdmDVrVr7e4fbt2+vf//63srOz9c477+Rrd/fu3fNdPyoqSu3bt/fcTklJUUZGhho0aJAvSEtS3bp11ahRo2L9jNu3b9eaNWvkcDh0xx13eLYPHjxYdrtdy5cv1549e7zuc/jwYb355puSpI8//tgrSEuSYRjq3LmzEhISPNtye5DHjBmTL0hL0qWXXqpLLrnEc/v//b//J6fTqZtvvtkrSEvSDTfcoHvvvVeS1dtdkmrVqqUJEyZ4grQkT5mHJH311Vcler3CuN2mCqiAAgC/ME1r9iAA/lMiU+MNHjxYPXr0UO3atbV27Vo9+uij2rlzZ4k0sFmzZrLb7Xr33Xc1YcIEHTx48LzP2atXrwK354a+33//3bNtw4YNOnDggJKSkjylEn+VO33amjVrPNuuuuoqSdIDDzygxYsXn7VGuUqVKqpXr542b96sxx57TNu2bSvWz1OQyZMnS5L+9re/ef2xUb16dd1www0yTTPfNHnLly9Xdna2mjdvXujPeqY//vhDGzdulM1m89Rjn0tuzfNfZ4LJlXuelStXylWChcWdO3dWdHR0vu0F/c79iXlfAZQ26qYB//I5TN99992aNm2a5+vzzz/X7t279eSTT2rt2rXq0KGDTp8+fd4NTEpK0quvvqqcnBw9/PDDqlGjhurVq6cBAwZoxowZys7OLvY569SpU+D2+Ph4SfIKvrnzZe/atavAxWoMw/AE5yNHjnju98QTT6hLly76/vvv1a1bN8XHx6tly5Z67LHHvEo8cr3//vuqWrWqxo8fr8aNG6tSpUrq3r27Xn31VR09erRYP19OTo4++OADSd4lHrlyt7333ntyu/NKDnIHCha1F3zfvn2SrIB+Zm/12eSG1vr16xe4PykpSZL1OyjJxX+K8zv3J8I0gNJGmAb8q0QHIIaFhen555/XpEmTdPDgQb3//vt66KGHinz/M4PdmYYNG6Z+/fpp/vz5WrVqlVatWqVZs2Zp1qxZGjVqlFauXKnq1asX+To2W9H/hshtU7Vq1dS1a9ezHnvm4LTo6GgtXbpUa9eu1Zdffqk1a9ZozZo1WrduncaPH68HH3xQEyZM8Bzfrl077d27V1988YVWrFihNWvWaPHixVq0aJFGjRqlTz/9VJ07dy5SmxcsWKDDhw9LsgY2Pv/88177c2da2b9/v5YsWeI1wK6sKuz/Tq7i/M79iXppAKUtJ8eU223KZqNuGvCHEp/Nw2azqV69ejp69Kh+/vlnr30Oh0OSCu2xLmgKtVwXXHCB7rnnHt1zzz2SrJrgoUOH6rvvvtOIESP03nvvldBP4C13cGOlSpV8GojWsmVLtWzZUpIVYufNm6dBgwbprbfeUt++fT1TsElWLXXfvn3Vt29fSVZP98iRIzVx4kQNHTr0rI/Pmc6cR7qwafvOPDY3TOf23m7fvr1I18k9/uDBgzp16lSReqdr1qypXbt2affu3brsssvy7c/9JCB3er1c5/N/J1hQLw0gULKyTEVFEaYBfyjx7jq32+2Z3zk2NtZrX+6KhH8N2ZJVf7t+/foiX6dRo0b617/+JUnauHGjb40tgpYtW6py5cratm2bfvrpp/M6V1hYmPr27evp4T5Xu6tUqaJx48ZJskoqTpw4cc5r/Pbbb1q8eLEk63E2TbPAr9y67Pnz53vKSDp16iSHw6Eff/yxSL+LatWqqWnTpnK73UVepjy3vrywP0xyz9OuXTuFheX9rXe2/zvp6eleg0ZLQm54L2i+dF9R4gEgUPhUDPCfEg3TTqdTI0eO9ISzG2+80Wt/ly5dJEkvvvii10IZR44c0aBBg5SamprvnMuWLdPChQuVk5Pjtd00TX3++eeSrNku/CU8PFyjRo2SaZq6+eabtWrVqnzHuFwuLVu2TP/73/8829566y398ssv+Y79448/tG7dOq92Jycna/LkyUpJScl3/IIFCyRJFSpU8NT3ns20adPkcrl01VVXnbX2+ZJLLlGLFi2UnZ2t6dOnS5KqVq2qBx54QJJ0yy23aOvWrV73yZ0a79SpU55tubN5PP300/rkk0/yXWfbtm1eAfiRRx5RWFiY5s2b57luriVLlnhmRHn88ce99uX+35kwYYLXYMG0tDTde++92r9/f6E/qy9yp0bcuXNnvv97viJMAwgUZvQA/MfnMo/Jkyd7rUZ37Ngxbdq0yRNqnn76aV1zzTVe93nooYc0adIkrV+/XhdffLGuvvpqpaWlae3atapTp45uuukmzZs3z+s+mzdv1qOPPqr4+Hg1a9ZMNWrUUEZGhtavX6/k5GQlJCToueee8/XHKJKHH35Y+/bt00svvaR27dqpcePGuvDCCxUVFeWZ0eLkyZP673//q9atW0uSJk6cqIceekj169fXZZddpvj4eB05ckQrV65URkaGOnXq5Plj48SJE7rnnnv04IMP6oorrvAMztu5c6c2bNggwzD00ksvyW63n7Wdpml6VlYcPHjwOX+uQYMGad26dZoyZYr+8Y9/SJLGjRunPXv2aP78+WratKlatWql+vXr6+jRo/rpp5/0+++/a8+ePZ6SjptvvlljxozRyJEj1bdvXzVq1EhNmzb1LNqybds2TZ061TNrxuWXX64JEybogQce0MCBA/Xqq6+qUaNGSk5O1po1a2SapkaPHq3rr7/eq639+vXTa6+9pnXr1qlx48Zq27at3G631q1bJ4fDoaFDhxa5d7wo6tSpoxYtWmjdunW6/PLL1aJFC0VGRqpy5coaO3asT+fkzQxAoDidYr5pwE987plevXq13nvvPc/XkiVLZLPZ1L9/fy1fvjzfoDdJSkxM1OrVqzVo0CBJ1iIdu3bt0r333qs1a9YUWHPbq1cvjR49Wi1bttTu3bs1d+5cffPNN0pISNCIESO0detWXXHFFb7+GEU2btw4rV69WrfffrtSU1P15Zdf6osvvtCBAwfUsWNHTZ48Wf379/ccP2bMGD3wwANKTEzU//73P82ZM0fbtm1Tq1at9N577+nLL7/0lDEkJSXptddeU8+ePXXy5EktXLhQX3zxhdLS0jRo0CCtXbu2SFPPLV++XLt375bD4dCtt956zuMHDBig8PBwbd261bNypcPh0Lx58zRz5kx16dJFO3bs0Jw5c7R582Y1aNBAL730kmfJ+FxPPfWU1qxZowEDBuj06dOaO3euVq1apfDwcA0fPlydOnXyOj739923b18dOHBAs2fP1vbt29W9e3ctWbKkwNUPw8PDtXTpUj388MOKi4vTkiVLtHnzZt18881av359sRfuKYpPPvlEt912m1JSUvTRRx9pypQpmjVrlk/nMk2TMA0goHgNAvzDME2TZxfgZzk5po4eZfQhgMBJSLCztDjgBzyrgFKQnV16g39+/32/nnrqEV19dSPVqxerxo2ra8CAHvrqq4X5jnW73Vq79juNGzdaf/tbRzVuXE116kSrcePq6t//Bs2dO1Pn+/f2l1/O1+DBN6tp09qqWzdGl19eU716tdf48fk/vXI6nRo3bpSaN2+gevVi1anTlVqw4ONCz71160bVqROtJ5544LzaCJQH9EwD/kHPNFAKTp50KiPD/0+1jRvX6fbbe+rEieO64ILquuKKFjpx4rg2bPhBOTk5evTRp/XEE3llNHv2/Ko2bS6VJFWoUFFNmjRXQkKi9u3bo40brYGyXbp01+TJsz0znBRVdna2hg0brAULPlFkZJRatGitypWr6siRQ/rll21yuVz66SfvFU2fffZfeuedV1W3bgNdeunlWrNmhU6dOqmJEz9Uz559vI51uVzq2bOtDh78XStWbFZCQqIPjxhQfjgchipVKvEZcYFyjzANlIKjR51+7xXKzMxU27aNdeDAft144y169dXJioqKkpQbsnvpxIlj+vDDherQwZodZe/eXRo+/EE98MA/1b59F69Brt99960GDvyb0tPT9Pjjz+if/xxZrPY88shQzZkzXd263aiXXnpblSrlLWrkdru1YcNaNW/eyrPt6NHDatGigerVS9LChd8pOjpaO3duV5cuzdWgwUVavnyj1/knTvx/Gj36Cb3zzkz16tW3uA8XUO4YhlStWnigmwGEHMo8gFLgdPr/b9ZFi+bpwIH9SkhI1IsvTvAEaUm64ooWevTRpyVJr746xrO9Xr0kzZ69WNde2zXfbDFXX91eDz/8hCTp449nFKstK1cu05w509WoUWO9886HXkFashZ3OjNIS9LPP29Vdna2evceoOjoaEnSRRc1UuvW7fXLL9t0+nTe1JG//bZP48aNVpcu3QnSQBGZZum8FgHlDWEa8DO321RpfP6zadOPkqTLL29WYMlD+/bWrCpr167R4cN/FOmcl112hSTpwIHizeP97rsTJEl33/13hYcXrSfsxIljkqTExIpe2ytUsG6npeXNQ//UU3+XYRh64YU3itUuoLwjTAMlj+IpwM9K680rN2zmhs+/qljR6h02TVNbtmxQ5843nPOce/b8KkmqWrV6kdvhcrm0apW1ImXr1m11+PAf+uyz2dq1a4ccjghddllT9ejRWzEx3iuk1q5dT5K0c6f3cva//rpdDofD0/758+foq68W6rnnxqtmzZKfEhEIZTk5piIjA90KILQQpgE/K8EVyc+qcuUqkqR9+/YUuD85OW/7vn17z3m+9PR0TZli9TD36HFzkduRnLzbE+zXr/9eTz75d69eZUn6z3+e1H//O11t217r2da4cVPVqlVXH330njp3vkHNm7fSzJnvatu2Lbr++p5yOBw6deqknnnmMV15ZUsNHfpgkdsEwELPNFDyKPMA/MzlKp03rzZtrGC6efN6bdmyId/+Dz6Y6Pl3amr+pev/6qmnhmnfvj2qVq2Ghg37V5HbceLEcc+/H3vsPjVp0kyLFn2nnTuPa+nSterc+QYdO3ZEd97ZR7t37/Qc63A49PzzryozM0O33dZDF19cWc8+O1wXXFBdzz77siRpzJindPz4Ub388tuy2fJevtLT04vcPqA8Y3o8oOQRpgE/K62eoLZtr1Xr1u1kmqaGDOmjJUs+V0rKKSUn79azz/5Lc+ZM99QvG8bZn/qvvjpGs2d/oMjISL399kxVrFipyO04c4KgatVqaubML9S0aXPFxMSqceOmmjZtrho1aqy0tFS9+eZLXve9/vqeWrp0rf7+93/p9tvv0r//PVbLlm1Q3boN9P33qzVjxhQ98MA/dckll8vlcmncuNG67LIauvDCRF18cWU9+eTfCdbAWbhc1jgOACWHMg/Az1yu0rvWxIkf6q67+mnt2jUaMqS317577vm7fvhhtTZt+rHQumpJeued1/TSS88qIiJCU6bM0VVXXVOsNsTG5tVC9+s3UBEREV777Xa77rjjHo0c+Q+tXLks3/0vvrixRoz4j9e27OxsDR/+gOrVS9Kjj1pT9P3nPyM0ceL/04ABd6pr1176/vtVevvtV3XkyB+aPHl2sdoMlCcul2SjKw0oMYRpwM9Ks0axcuWqmjdvub799mutXr1cJ04cV5UqVdW1641q2rS5rryyriSpUaPLCrz/lCkT9Oyzw+VwODRp0ke69tquxW5D7dr1ZBiGTNNU3br1Czwmd/vhwwcL3P9Xb7zxonbu3K7ZsxcrMjJSqamnNW3af9WixdV65ZV3JFm92r//vl/z58/Rrl07lJTUsNhtB8oDq2faCHQzgJBBmAb8qLSmxTuTYRjq0KGLZ2GWXHv37tKhQwdVoUIlXX75lfnuN3Xqf/Xvfz/qCdJdunT36foxMbFKSmqoX3/9RcePHyvwmOPHj3qOPZdff/1Fb745Tv36DfIMWNyx42dlZ2erRYurvY696qo2mj9/jn76aRNhGihEaX5aBpQHfNAD+FEwjZx/++1XJUl33HFXvqXB339/op5++hFPkL7uuh7nda3cpb8LKuOQpG+//VqSdMUVLc96HtM09a9/PaS4uASNGjXOs90wrF61jIw0r+PT09O89gPIj5ppoGQRpgE/Ku0eoB07vFcKlCSn06nXXx+rDz6YpPr1L9QjjzzptX/GjCl68slhxQ7SixbNU7t2l6lfv/ylIHfd9bASEyvo668X6YMPJnntmzfvI82d++Gfxz101mvMnDlV3333rUaPfsmrzrthw0sUERGhRYs+88wekp6errlzZ0rKW2wGQH5ud6BbAIQWwzRL+0NooPw4fdql1NTSe+d65pnHNH36JF1+eTNVq1ZD2dlZWr/+Bx05ckj161+oWbMWehZHkaStWzeqa9dWMk1TF154sZo1u6rQc7/22hSv2x999L4effRu1apVVz/8sDPf8StWfKU77+ytzMxMXXzxpbrookbau3e3tm7dKEn6xz+e0vDhowu93pEjh9ShQxNdeeVVmjFjQb79L7wwUm+8MU5Vq1ZTy5ZXa8uWjdq3b49uuqm/3nrrg7M/UEA5FhlpqEIFqjyBksKzCfCj0u4B6tSpm/bv36stWzZq8+Yf5XBEKCmpoe677x+6884HFRUV5XV8Ssopz1R2v/76i3799ZdCz/3XMH0uHTp00dKl6/TGGy9q5cplWrx4gWJj49W58w26666H1bHjdWe9/zPPPKbs7GyNHVvwkuEjRvxHCQkVNH36ZC1evEBVqlyghx56XE88MbpY7QTKG3qmgZJFzzTgRydOOJWZyVMMQPAIC5OqVAkPdDOAkEHNNOBH/KkKINjQMw2ULMI04EeEaQDBxu32XqkUwPkhTAN+xBRUAIIRvdNAySFMA35E5w+AYESYBkoOYRrwI8I0gGDkcvHiBJQUwjTgR4RpAMGInmmg5BCmAT8xTZMwDQBAiCNMA35CkAYQrJjNAyg5hGnAT3ivAgAg9BGmAT8hTAMAEPoI04CfMMc0gGDFH/tAySFMAwAAAD4KC3QDAADn5pJT+6N+1l5jh0wxrxnOTxN7U12mxoFuBhASCNOAnxiGEegmIITYFaZ6GZerqr22tkf8qF3uHTLFZ/XwTaaREegmACGDMg/AT8jS8IdoV6KapXdWj5wButB2sQzxHw3Fx/8boOQQpgE/IUzDn3JDdXdCNXzA/xeg5BCmAT8hTKM0xBCq4QMbb/9AieHZBPgJYRqliVCN4nAYjkA3AQgZhGnATxiAiEDIC9W3EqpRKMI0UHII04AfkacRKDGuCoRqFCrCiAh0E4CQQZgG/IgwjUAjVKMg9EwDJYcwDfgRYRrBwjtUNyRUl3P0TAMlhzAN+BFhGsHGCtVdCNXlHD3TQMkhTAN+xCBEBKszQ3USobrcoWcaKDksJw74EVkawS7GVUHN07uokb25tkf8qN3unUGzTPmxfcf0nyv+U6Rjh30+TEnXJPl0nVVTVunjJz6WJLW+o7Vuff3WfMdkpWVpwegF2jh/ozJTMlWjcQ31fKanGrZvWOA5f1r8kyYNmKQeI3voun9e51O7/MUuu+yGPdDNAEIGYRrwIxuf/aCMCMZQHREToZYDWha6/9Avh7Rv/T5FxEaoVtNaPl3j6N6jmj96vgzDkGkW/vPOfHCmNi3YpOqXVFe9FvX0yze/6O2+b+vvX/xd9VrW8zo2KzVLcx6fo+qXVlenYZ18apc/RRlRgW4CEFII04Af2e2GFCS9fEBReEJ1WDNtd/yo3e5fAxaqYyvF6vYJtxe6/51+70iSmvVupoiY4pctuN1uzXxopgzDUItbW2jth2sLPO63Lb9p04JNatihoe7/+H7Z7DbtWLFDb938lpa8skT3zrrX6/gvnv9Cpw6e0pB3h8geHnw9wHG2uEA3AQgp9JsBfmQPvvdRoEhinBXVPP06dXf2V5LtoqCrqT554KS2L9suSWp1RyufzvHt299q93e71WtUL1WsXbHQ437b+Jt1ndtbyWa33jYbdmioyg0qa+8Pe72O3bd+n1ZOXqm2d7XN12MdLAjTQMkiTAN+ZPVMA2VXsIbqHz78QabbVLVG1VSvRb1i3//QzkP6YswXSmqTpDZD25z12LQTaZKk6MRor+0xFWKUlZblue1yuvTRox8poVqCeozsUew2lRbCNFCyCNOAHxGmESrODNUNgiBU//DhD5KsAYPF5Xa5NfNBq7xjwOsDzjnrTm6v9aEdhzzbXDkuHd1zVAnVEzzbvnnrG/2+5Xf1famvIuMii92u0kKYBkoWYRrwI8o8EGpinBXVIsCh+tfVv+ro7qOyO+xq0b9Fse+/7I1lSv4xWd2f7q7K9Suf8/iL2l+kiNgILZ+wXPvW71P6qXQteHaB0o6n6bJul0mSjiUf0+Jxi9X0xqa67IbLit2m0kSYBkoWAxABP7LZDBmGdJZJAoAyKcZZUS2c16lRWHNtd6zTHveuUhuo+P2M7yVJl3W7TLGVYot134PbDmrR2EWqf1V9tb+vfZHuE1spVr1G99LHj3+s8V3Ge7Zf0PACdRvRTZI057E5soXZ1Htsb6/7ZqdnyxEdXAukEKaBkkWYBvwsLMxQTg5pGqEp1llRLZzXq1HY8VIJ1Zkpmdo0f5Mka0BgcbicLs14aIZsNptufeNW2Yoxd2XboW1V6/Ja2rRgkzJPZ6rmZTV11YCr5Ih2aN2cddq+bLv6je+nhGoJyk7P1vxR87Vu9jplns5UTKUYtbmzjbr9q5tnAGMgEaaBkkWYBvzMbpdycgLdCsC//hqqd7t/9ct11s9dr+z0bCXWSFSjzo2Kdd+lryzVb5t+U6/RvXTBRRcU+9r1WtbLN0NH2ok0zXt6nhpc3UBXD75akjT9/unasnCLrn34WjVo3UBbvtiiJS8vUXZ6tm56/qZiX7ckOeRQpC1467mBsogwDfhZWBhzTaP8yAvVLfwSqnNLPK4acFWxepYlafMXmyVJP335k7Yt3ea17/i+45KkbUu36Y1eb0iShi0Yds5zfjbyM2WezlT/V/vLMAwd2nlImz/frOZ9m+vG0TdKsspR/tj+h1ZOXqkbRtygiNjALeVd0V74FIAAfEOYBvzMCtNA+ZIXqpt7Fn85X39s/0PJPybLMAxddftVPp9n9/92F7ov5VCKUg6lFOk8O1fu1A8f/qBu/+qmCxpaPd2/b/ldklTvqnpexzZo3UDJPybrj1/+UN3mdX1reAmobD/3gEsAxUOYBvyMGT1QnsU6K5VYqP7f9P9Jki5sd6Eq1yt+KBz+7fBC9y0au0iLxy1W6zta69bXbz3nuZxZTs1+bLYuaHiBujzaxbM9d5q97PRsr+Oz0rO89gdKJXulgF4fCEWBHwkBhDh6poE/Q3X69eru7K/6tguLfX9Xjkvr5qyTdO65pVdOWqn/a/V/mv7AdJ/aWhSLX16so7uOqv9r/RXmyOuXqtW0liTpxzk/KjvDCtSpx1K1+fPNCo8M1wUXF79WuyTRMw2UPHqmAT+z2QzZbJLbHeiWAIEX66ykls7rdUlYc/3s+FF7ithT/dPin5R6JFVRCVFq0rPJWY9NPZaqwzsPK66qf2atOPjzQS17fZmuHnK1GrRu4LWvSoMqatanmdZ/sl4vXvOiajWppT0/7FHqkVR1ebSLImICVy8t0TMN+AM900ApcDjonQbOFOuspJaenuqkcx6fO/Cwed/mCo8M93fzCmWapmY/OluxlWPVa1SvAo+5bcJt6vxIZ7lyXNr65VaFR4XrxtE3BnyJ8RgjRlG2qIC2AQhFhmmynATgb2lpLqWk0DUNFCY17Jh+/nOeavhHnbA6ujnu5kA3Awg59EwDpSA8nJ5p4GysnuquRe6pRvGdb710vXr1ZBiG11dERITq1Kmj/v37a+XKlSXU0vJp2rRpMgxDQ4YM8fkc2dnZqlKligzDULVq1eR0OkuugSgUYRooBeHh1rLiAM4uN1Tf4OyneoTqElUlrEqJnKdNmzYaPHiwBg8erBtuuEFut1uzZ89Whw4dNH78+HOfAH7z2Wef6ejRo5KkQ4cO6Ysvvghwi8qGjh07yjAMffPNNz7dnzANlALDMOidBoohzllZVxGqS1QNe40SOc/dd9+tadOmadq0aZo3b55+/fVXDRo0SKZpavjw4dqxY0eJXAfFN2XKFElSzZo1vW7DvwjTQCkhTAPF5x2qG5z7DihQjBGjeHu8X84dGRmpCRMmKCYmRi6XS3PnzvXLdXB2+/fv19KlS2W32zV79mwZhqGFCxfq4MGDgW5ayCNMA6WEGT0A31mhuhuh2kfVw6r79fyxsbG6+OKLJUl79+712rdjxw7dd999SkpKUmRkpBISEtS+fXtNn17wPOBnfuS+cuVK9erVS1WqVJHNZtO0adMkSW63WxMnTlSbNm2UmJio8PBwVa1aVU2bNtWwYcPytUGSjh8/rqeeekqNGzdWdHS04uLi1Lx5c40bN04ZGRn5jv/mm29kGIY6duyonJwcvfjii2rcuLGioqJUqVIl9e7dWz///HOBP8NXX32lYcOG6YorrlDlypUVERGhWrVqqX///lq7dm3RH9hiePfdd+V2u3XDDTfommuuUadOneRyufTee++d9X6///67nnjiCV1++eWKi4tTTEyMGjZsqCFDhmjNmjX5jk9PT9drr72mtm3bqkKFCoqIiFDdunXVq1cvzZw5s8Djx44dq2bNmikuLk7R0dFq3LixRo4cqRMnTuQ7/szHvTC5Nftn2/7JJ5+obdu2io+PV0xMjNq0aaOFCxcWeK0VK1ZIkq699lqvMQG5/9/OhXmmgVJCmAbOX5yzsq5ydtMlYUf1s2Od9roLXxoceWqElUyJx9mkpFjLsEdE5M2lPWfOHA0aNEiZmZlq1KiRunfvrlOnTun777/XwIEDtWzZMr377rsFnm/OnDl6++231ahRI3Xp0kXHjx/3nPvuu+/W1KlTFRkZqbZt26pKlSo6fvy4du/erTfffFOdO3dWvXr1POfavXu3OnXqpOTkZFWpUkXdu3dXTk6Oli9frn/961/66KOP9NVXX6lChQr52pGTk6Pu3btrzZo1at++vS655BL98MMP+vTTT7V8+XJt2LDB61qSdP/992v//v1q3Lix2rRpo7CwMG3fvl2zZ8/W3LlzNWvWLPXp0+c8H/E8pmlq6tSpkqShQ4d6vn/99deaOnWqRowYUeD9vv76a/Xt21cnT55U1apV1blzZzkcDu3du9cTjK+55hrP8fv371e3bt20bds2RUdHq02bNqpUqZJ+//13rVy5Ulu2bNFtt93mOf748ePq3LmzNm7cqPj4eHXq1Enh4eFasWKFxowZo5kzZ2rZsmX5Hr/zNWrUKP3nP//RNddco+7du2v79u1as2aNevbsqU8++UQ332zNalOtWjUNHjxYX375pQ4dOqSuXbuqWrVqnvNceGHRFpgiTAOlxGYzZLdLLlegWwKUfYTq4qkZVtOv59+8ebN277Z+B1dccYUkacuWLRo4cKAMw9Ann3yi3r17e45PTk5Wr169NHXqVHXs2FGDBg3Kd8633npLEyZM0IMPPui1fd++fZo6dapq1aqltWvXeoUfSfr5558VExPjte22225TcnKybrzxRs2cOdOz/8iRI+rWrZvWr1+vhx9+WDNmzMjXjjVr1ujKK6/Url27PNfKzMzUTTfdpMWLF+uFF17QO++843Wfl19+WR06dMgXzufNm6dbbrlF9913n7p3766oqJKZ9/urr75ScnKyqlatqp49e0qSevfurcTERO3YsUMrV65Uu3btvO6zf/9+9enTR6dOndKIESP07LPPyuFwePYfPnzYq/7d7Xard+/e2rZtm66//npNnz5dVarkDWrNzMzUsmXLvK7x4IMPauPGjWrVqpW++OILVapkLRqUmpqqfv36adGiRbr99tu1evXqEnkccr3++uv67rvv1KpVK8+20aNH69lnn9WIESM8YbpRo0aaNm2aOnbsqEOHDmnEiBFn7REvDGUeQCmidxooWZR/nFuEEaEq9pKZyeOvTp06pYULF6p3795yu92qUaOG+vXrJ0kaM2aMsrKy9Pzzz3sFaUmqW7euZ3Dc66+/XuC5O3XqlC9IS9YsFZLUrFmzfEFaki655BLVqVPHc3vVqlX6/vvvFR0drYkTJ3oF7SpVqmjixImSpFmzZum3337Ldz7DMDR16lSva0VGRurZZ5+VZAXZv7rpppsK7OW+6aabdMstt+jYsWNavnx5gT+3L3Ify4EDByo8PNzTxtxe4oIGIo4fP16nTp1Sr1699MILL3gFaUmqWrWq2rZt67m9YMECrVu3TtWrV9cnn3ziFaRzr9e9e3fP7X379mnOnDkyDEMTJ070BGnJKguaNGmSIiMjtWbNmgLLSc7Hc8895xWkJenJJ59UQkKCduzYof3795fo9QjTQClyOHjKAf5AqC5cjbAaBdaX+urOO+/01JQmJiaqR48e2rVrl5KSkrRw4ULFxMTI7XZr0aJFkqT+/fsXeJ4WLVooNjZWGzZsUGZmZr79ffv2LfB+jRo1UlxcnBYuXKgxY8Zoz549Z21v7nRn3bp10wUXXJBvf/PmzdW0aVO53W5P7eyZ6tSpo6ZNm+bbfskll0iyao4LcuDAAU2aNEmPPfaY7r77bg0ZMkRDhgzRTz/9JEn65Zdfztruojp27JjmzZsnKa/EI1fu7Tlz5uj06dNe+7788ktJ0r333luk6+Qef9tttyk2Nvacx3/77bdyu9268sor1aRJk3z7a9asqa5du0pSif5hIUm9euVfnTQiIkINGlivDYX9znxFmQdQipjRA/Cv3PKPRmFHtN2xTnvdZw9a5UGtsFoler42bdp4akkdDoeqVq2q1q1bq1u3bgoLs2LFsWPHPDXUtWvXPuc5jx075pnOLVdhdbRxcXGaOnWq7rzzTo0cOVIjR45U9erVPW34a9jLDU7169cv9PpJSUnatGlTgSHrzF7uM8XHW7OjZGVl5dv37LPPasyYMcrJySn0mrmPz/maPn26srKy1KpVK1166aVe+5o3b64mTZpo8+bNmjVrlu655x7PvuTkZEnWHydFUdzji/q4n3lsSTnX76ygP97OB2EaKEVhYZLNJrlZWRzwq3hnFV3lvIFQLal+eOFhxhe5vaxn4z7jRW7w4MHnPOeZgxZzna2euE+fPurSpYvmz5+vlStXavXq1fr000/16aef6plnntHSpUt1+eWXn/O6RWGzFe8Txblz52r06NGKjY3Vm2++qU6dOqlGjRqKioqSYRh66qmn9MILL8g0zRJpX24Jx2+//eZVlpHryJEjnuPODNNllbsIb6DF/Z2dL8I0UIqs5XcNZWSUzIsogLM7M1T/7Fin5HIWqhNtiapgz1+762+VK1dWVFSUMjIy9PLLL6ty5fNbyrwgCQkJGjhwoAYOHCjJGlA3bNgwffbZZ3r44Yc9JRu5Pd65AyQLkrvvr73jvpg9e7Ykq2a8oBKKnTt3nvc1cq1du1ZbtmyRZPXunq2H9/vvv9dPP/2kxo0bS7J6b3/55Rdt3769SLNW5Pb2bt++vUht8/Vxz63d/mtZSq7cHvJgQgEnUMoiI3naAaUt3llFrdJvUDfnLaprK9me2mBW0r3SRWW323XddddJyguX/la7dm3PoMCNGzd6tufOzpA7/dlfbdiwQRs3bpTNZlP79u3Pux3Hjx+XZA2y/KvDhw9r6dKl532NXJMnT5Zk1aWbplnoV+6g0DMHInbr1k2SNGnSpCJdK/f4Dz/8UGlpaec8vn379rLZbNq4caM2bdqUb//Bgwc9ddjXXnutZ/uZITw7Ozvf/fyxRHpugHc6nT7dn3d1oJRFRBgqwbFAAIqhvIXqBuGBG4w5atQoORwOPfHEE3rvvfcK/Hh+69atxV4xccOGDfroo48KXGhlwYIFkryDbNu2bdWqVStlZGTovvvuU3p6umff0aNHdd9990mSbr311iLVd59L7sDEiRMneoXBU6dOafDgwTp16tR5X0OyFkOZNWuWpHOX0uROPTh9+nRPHfc///lPxcXFaf78+Ro5cmS++u7Dhw9r1apVnts33nijrrzySh04cMAzI8mZMjMzPYNOJasn+5ZbbpFpmrrvvvu8jk9LS9O9996rzMxMXXPNNV5zWdetW1cXXXSRTp48qRdffNHrGt98842eeeaZcz42xVWrljWuIHdwaHFR5gGUMsMwFBlJqQcQSPHOKmrlvEGXhHD5R4QRUSqLtRSmWbNmmj59umcWi5EjR+rSSy/1LLCyZcsW/fbbb+rfv3++qfPOJjk5WbfeequioqLUrFkz1a5dW06nU1u2bNEvv/wih8OhcePGed1n5syZ6tSpkz777DPVr19f7du39yzakpKSombNmunNN98skZ/7H//4h95//30tXLhQDRo0UOvWrZWTk6MVK1YoOjpaQ4cOLXShmuKYM2eOUlJSVK1aNV1//fVnPbZr16664IILdOjQIc2fP199+vRRnTp19PHHH6tv374aM2aMJk+erKuvvlrh4eFKTk7Whg0bdNttt3nqsG02mz799FN17dpVixYtUp06ddS2bVvPoi2bNm1SYmKi1+qTEyZM0Pbt2/X9998rKSlJ1157rcLCwrRixQodOXJE9evXL3Bu77Fjx6pv37565plnNHfuXF100UXavXu31q9fr3//+9967rnnzvvxO1OfPn00depUDR8+XF999ZWqVq0qwzA0dOhQr6BfGHqmgQCg1AMIDqHcU103rK5sRmBfa2655Rb99NNPevTRR5WYmKjVq1frk08+0bZt23ThhRdq7NixGjNmTLHO2bp1a40dO1bXXnutDhw4oPnz52vJkiWy2+166KGHtHnzZk9JQq4GDRpo/fr1evLJJ1WpUiV9/vnnWrp0qZKSkjR27FitWrWqwHmhfVG/fn1t2LBBt99+u+x2uz7//HNt2rRJAwYM0IYNG0qk91vKK9m44447ZLfbz3psWFiYBgwY4HU/Sbr++uu1detWPfLII0pMTNSXX36pRYsW6eTJkxo4cKDuv/9+r/PUrVtX69at8yyt/t1332nu3LlKTk5Whw4d8vUkV6pUSWvWrNELL7yg+vXra8mSJfr8889VuXJlPfXUU/rxxx8LnLWld+/e+vzzz9WmTRvt2LFDCxcuVHh4uGbNmuUp5SlJPXr00KRJk3TZZZd5VuWcMmWK16I1Z2OYJTWcFECRmaapQ4ec4tkHBJeUEOqp7hrdVY0iijaNGQDf0T0GBEDurB4Agounp9p1i+rY6gW6OT6zyaZ64fUC3QygXKBnGgiQjAy3Tp50BboZAM4iJfyItoWv1T733kA3pVjqh9fXjbE3BroZQLlAmAYCxO22Sj0ABL+yFqpviLlBDR0NA90MoFwgTAMBdPy4U1lZPAWBsqIshGqH4dA9CfcozGDCLqA0EKaBAEpPd+vUKUo9gLImmEN1Y0djdYnpEuhmAOUGYRoIIEo9gLItJfzwn6E6eJY47hPbR7XCawW6GUC5QZgGAoxSD6DsC5ZQHWeL053xd8pgmVWg1BCmgQDLynLr+HFKPYBQEOhQ3TKypa6JOveKbQBKDmEaCAJHjuTISbUHEDJO/Rmq95dyqB4YP1AV7RVL9ZpAeUeYBoIAAxGB0FSaobpWWC31ievj9+sA8EaYBoIAy4sDoe1U+KE/Q/U+v12jZ0xPJTmS/HZ+AAUjTANBIiXFpbQ0d6CbAcCP/BWq423xGhI/hIGHQAAQpoEg4XSaOnKEwmmgPCjpUN0uqp2aRTYrkXMBKB7CNBBEmCYPKF9OhR/ST+Fr9dt5hOpwheuuhLsUYYsowZYBKCrCNBBEmCYPKJ/OJ1Rf7rhcnWI6+aFVAIqCMA0EGabJA8ovX0I10+EBgUWYBoJMWppLKSkMRATKs5N/1lSfK1TXDaurm+JuKp1GASgQYRoIMkyTByDXuUJ139i+qhles5RbBeBMhGkgCDFNHoAznQz/489Qvd+zrWZYTfWN6xvAVgGQCNNAUHK7TR0+TO80AG9nhuqbY29WnfA6gW4SUO4RpoEgdfq0S6mp9E4DyC8j6pgaJFYLdDMASLIFugEAChYTYxOLmQEoSM2oqoFuAoA/EaaBIGWzGYqN5SkKwJvDYSgigtcGIFjwbASCWEyMTTaepQDOEBfHiwIQTHhGAkHMMOidBpAnIsKQw8FrAhBMeEYCQS462ia7PdCtABAM4uJ4MQCCDWEaCHKGYSg+njdQoLyLijIUHs6oZCDYEKaBMiAy0iaHgzdRoLwyDHqlgWBFmAbKCHqngfIrPt4uu50/qIFgRJgGyojwcENRUbyZAuUNz30guBGmgTIkLs7OQi5AOZOQYJfBEx8IWoRpoAyx2xmMCJQnMTE2Bh0CQY4wDZQx0dE2RUTw5gqEOrudBVqAsoBnKVAGWR/7BroVAPwpPp7yDqAsIEwDZRDlHkBoi4w0FBnJWzRQFvBMBcooyj2A0GQYTIUJlCWEaaAMo9wDCD1xcTbmlAbKEMI0UIZR7gGElrAw61MnAGUHz1igjIuOZqlxIBQYhlShQhiDDoEyhjANhIDERMo9gLIuIcGusDCeyEBZQ5gGQoDdbjAfLVCGRUfbFBXFcxgoi3jmAiEiJsbO7B5AGRQWJsXH83YMlFU8e4EQkphol53xiECZQZ00UPYRpoEQYrMZf74xB7olAIqCOmmg7CNMAyEmPNxQQgLd00Cwo04aCA08i4EQFBVlU0wMT28gWIWHG9RJAyGCZzIQouLiWG4cCEaGkTudJc9PIBQQpoEQZRgGAxKBIESdNBBaCNNACGNAIhBcYmKokwZCDc9oIMSFh1s91AACKzKSxZWAUMSzGigHIiNtio3l6Q4EisNhUCcNhCjeXYFyIjaWAYlAIISHG6pQgSANhCrCNFBO5A5IDA/nDR0oLXa7VKGCXTYbzzsgVBGmgXLEZjNUsSKBGigNNptUsWKY7Haeb0AoI0wD5UxuoA4LC3RLgNBlGFaQZgo8IPQRpoFyyArUYQRqwE/4BAgoPwjTQDlltxt/fgQd6JYAoaVCBbscDt5egfKCZztQjtnthipVIlADJSUhwa7ISN5agfKEZzxQzuX2UNt4NQDOS1ycTdHRPJGA8oZnPQCFhVk91ARqwDfx8TbFxvIRD1Ae8dYJQJIVqOmhBoovIcGumBiCNFBe8bYJwCM83ArULNQGFE1iop3SDqCcM0zTNAPdCADBxek0dfy4Uy5XoFsCBK8KFRhsCIAwDaAQLpcVqJ3OQLcECC7WgixMfwfAQpgGUCi329SJEy5lZ/MyAUh5S4SzIAuAXIRpAGdlmqZOnXIpI4OXCpRvYWH6c6EjgjSAPIRpAEVy+rRLqanuQDcDCAiHw1CFCnbZbARpAN4I0wCKLCPDrZMnGZWI8iUqylBCgl0G09wAKABhGkCxZGe7deKES246qVEOxMfbmEMawFkRpgEUGzN9INTZ7VKFCgw0BHBuhGkAPjFNUydPupSZyUsIQktEhKHEROqjARQNYRrAeUlPdyslxSVeSRAK4uJsiomxUR8NoMgI0wDOm9Np9VLn5PBygrLJZrNWNGQhFgDFRZgGUCJM01Rqqpvp81DmOBxWWQfzRwPwBWEaQInKzramz3Mxgx7KgNhYm2JjKesA4DvCNIAS53ZbqyYyOBHBymaTEhLsioykrAPA+SFMA/AbBiciGEVFGYqPZ7YOACWDMA3ArxiciGBht1u90RER9EYDKDmEaQB+Z5qm0tKswYm84iAQqI0G4C+EaQClxuUylZJCLTVKj8NhKCHBrrAwQjQA/yBMAyh12dlunTrlYjly+I1hSPHxdkVFGfRGA/ArwjSAgDBNU+npbp0+TekHSlZkpDXAkHmjAZQGwjSAgHK7TZ0+7VZ6Oou94PwwwBBAIBCmAQSFnByrnjo7m5ckFI/NZg0wjI5mgCGA0keYBhBUMjKsuanddFTjHAjRAIIBYRpA0Mmtp05Lc7MsOfIhRAMIJoRpAEHLNE1lZppKTWXmD1ghOibGppgYQjSA4EGYBhD0TNNUVpap1FQ3KymWQ4aR1xPNEuAAgg1hGkCZkp1traSYlcVLV6gzjLyeaEI0gGBFmAZQJuXkWOUfrKYYesLCpJgYFlwBUDYQpgGUaU6nqbQ0tzIyWPylrIuMNBQTY5PDwTzRAMoOwjSAkOB2W4MVMzLczFVdhtjtUnS0TVFRNlYsBFAmEaYBhByn05paLyPDzXzVQcgwrF7oqCibHA5KOQCUbYRpACHLNE1lZ1u91ZmZJmUgARYebig62qbISIMBhQBCBmEaQLmQO71eRoY1EwivfP5nGJLDYSgy0qaICIMyDgAhiTANoNxxu61gnZVl1VezymLJsduliAgrPEdEUMIBIPQRpgGUe05nXrCm17r4wsMNRUYaioiwKTyc8AygfCFMA8AZTNOU0ylPuM7OJlz/lc1mlW9ERFD/DACEaQA4i9xBjLm91k5n+QrXNpvV83zmF7XPAJCHMA0AxeRymcrJsYK19aWQCNkEZwAoPsI0AJQA0zTldivoQ7bdLtlshux2yW43ZLNJYWEEZwDwFWEaAPzINK0w7XZbs4hY3/PCt/f2vG1FYRh5X7m3/xqU7XbD82+bTcyuAQAljDANAEHoXC/NhGIACA5hgW4AACA/wjIAlA22QDcAAAAAKKsI0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAj/4/WeLGu8kGPukAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "account1 = df.groupby(\"is_private\")\n", "account1 = account1.size()\n", "account1" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 178 }, "id": "o0nlD-CS6yr8", "outputId": "e35d0ea0-b418-4c00-f38d-db6ea5bd09aa" }, "execution_count": 25, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "is_private\n", "0 640\n", "1 145\n", "dtype: int64" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0
is_private
0640
1145
\n", "

" ] }, "metadata": {}, "execution_count": 25 } ] }, { "cell_type": "code", "source": [ "plt.pie(account1.values, labels = (\"Private\", \"Public\"), autopct='%1.1f%%', colors=['pink', 'skyblue'], radius = 1.2, textprops = {\"fontsize\" : 16})\n", "plt.title(\"Account Type\", c=\"Blue\")\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 428 }, "id": "HudtBp386911", "outputId": "360a279e-8fdf-4535-f905-8770b119b5b8" }, "execution_count": 27, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAGbCAYAAAALE9NeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDoElEQVR4nO3deXhU5d3/8fcks2TfE0jYwo5sooCggKBWC6JYFlFrFVCr9vmpuD+21Wr7WK1W0brVihXUYhUXWlSqtm7FvXVH2SHskD1kX2bO748DCSEhZJmZMzPn87quXDFnzpz5Job55L7PvTgMwzAQERGRkBRldQEiIiJyZApqERGREKagFhERCWEKahERkRCmoBYREQlhCmoREZEQpqAWEREJYQpqERGREKagFhERCWEKahERkRCmoBZpw2OPgcMB48ZZXUlg3XUX/O1vRz9vyhTz53G0jzvuCHDBIjbi0FrfIkc2YQLs3g15ebBxIwwYYHVFgZGQAHPmwNKlbZ/3z3/Cvn1NX//nP/DQQ/CLX8AxxzQdHznS/BCRrnNaXYBIqNq6FT76CF55Ba64ApYtg9tvt7oqa51+evOvY2LMoD79dLO1LSL+p65vkSNYtgxSU2H6dLO1uWxZ6+eVlsJ110FuLng80LMnXHwxFBY2nVNTY3YHDxpkhlt2NsyaBZs3N51TWQk33AC9epnXGTwY7rsPDu3zysszu5Zba/ke3uV8xx3msU2bYP58SEmB5GRYsACqqpo/r7ISnn66qet6/vyO/KSaLFliPv/LL1s+dtddEB0Nu3aZX0+ZAsOHw+efw0knQWws9O0Ljz/e8rm1teYfSQMGmD+bXr3g5pvN4yKRTi1qkSNYtswMU7cbLrgA/vhHs6t37NimcyoqYNIkWLsWLrkEjj/eDOiVK2HnTsjIAK8XzjoL3n4bzj8fFi6E8nKzG3nNGujf3wzjGTPg3Xfh0kth1Ch480246SYz2B54oPPfx9y5ZgDefTd88QU8+SRkZcE995iPP/ssXHYZnHACXH65eax//8691pw58P/+n/mzO+645o8tW2aGc48eTcdKSuDMM80aL7gAli+Hn/3M/Jlfcol5js9n/mw++MCs75hj4NtvzZ/Jhg3tu7cuEtYMEWnhv/81DDCMf/7T/NrnM4yePQ1j4cLm5/3qV+Z5r7zS8ho+n/n5qafMcxYtOvI5f/ubec6ddzZ/fM4cw3A4DGPTJvPrrVvN85YsaXktMIzbb2/6+vbbzWOXXNL8vJkzDSM9vfmx+HjDmDev5TWP5sUXzdd4992mYxdcYBg5OYbh9TYd++KLlnVPnmweu//+pmO1tYYxapRhZGUZRl2deezZZw0jKsowVq9u/tqPP24+/8MPO163SDhR17dIK5Ytg27d4JRTzK8dDjjvPHj+ebOFfNDLL8Oxx8LMmS2v4XA0nZORAVdffeRzVq0yu4Wvuab54zfcYLa2//GPzn8vV17Z/OtJk6CoCPbv7/w123LxxeYAvHffbTq2bJnZtT17dvNznU7z/v9Bbrf5dX6+2SUO8OKLZit6yBCzt+Lgx6mnmo8f+joikUhBLXIYr9cM5FNOMQeUbdpkfowbZ454fvvtpnM3bzbvs7Zl82bzfrOzjRtN27ZBTg4kJjY/fnAk9bZtnfteAHr3bv51aqr5uaSk89dsy+mnm/fgD97T9/ngr3+Fc85p+f3l5EB8fPNjgwaZn/PyzM8bN8J330FmZvOPg+fl5wfm+xAJFbpHLXKYd96BPXvMsH7++ZaPL1sGZ5wR/LqgqQV+uENb+YeLjm79eKAmZkZHw49/DIsXm/PQP/zQbGH/5Cedu57PByNGwKJFrT/eq1fnaxUJBwpqkcMsW2YOtnr00ZaPvfIKrFhhjkyOjTUHXa1Z0/b1+veHTz+F+npwuVo/p08f+Ne/zEFmh7Y6161rehyaWsOlpc2f35UWNxz5D4DOuvhiuP9+ePVVs9s+MxN++MOW5+3ebY44P7RVvWGD+Tk31/zcvz98/TWcdpr/6xQJB+r6FjlEdbUZxmedZY5gPvzjqqvMMF250jx/9mwzRFasaHmtgy3W2bPNe6qPPHLkc84802wVH37OAw+Y4TRtmvl1UpJ5v/vf/25+3mOPdf57BjMoDw//rji44MmTT5r36M8/v/Wu/4YG+NOfmr6uqzO/zsyE0aPNY3PnmiPfFy9u+fzqajPoRSKZWtQih1i50gziGTNaf3z8eDNEli0zB5fddBO89BKce645nWj0aCguNq/z+OPmQLOLL4ZnnoHrr4fPPjMHc1VWmi3o//kf897t2Web98R/+Uvz3uyxx8Jbb8Hf/w7XXtt8utRll8Hvfmd+HjPGDO2DrdDOGj3arGfRIvO+cd++XV829eKL4cYbzf8+Urd3To45TSwvz7zn/MIL8NVX8MQTTb0PF11kTtu68kpz4NiECeYfNevWmcfffNP8OYhELKuHnYuEkrPPNoyYGMOorDzyOfPnG4bLZRiFhebXRUWGcdVVhtGjh2G43eY0rnnzmh43DMOoqjKMX/7SMPr2NZ/bvbs59Wrz5qZzyssN47rrzKlNLpdhDBxoGL//fdMUrkOvdemlhpGcbBiJiYYxd65h5OcfeXpWQUHz5y9ZYh7furXp2Lp1hnHyyYYRG2s+1t6pWq1Nzzpozx7DiI42jEGDWn/u5MmGMWyYORXuxBPNn3ufPobxyCMtz62rM4x77jHP93gMIzXVMEaPNoxf/9owysraV6tIuNJa3yISEIWF5ujvX/0Kbrut5eNTppjnHO0ev4jd6R61iATE0qVmF/VFF1ldiUh40z1qEfGrd96B77+H3/4WfvSjptHbItI5CmoR8avf/MbcdWzCBHj4YaurEQl/ukctIiISwnSPWkREJIQpqEVEREKYglpERCSEKahFRERCmIJaREQkhCmoRUREQpiCWkREJIQpqEVEREKYglpERCSEaQlRkUhgGODzgddnfvYZ5rEWH0B0FERHN//scFj9HYjIESioRUJVQwPU1kNt3SEfB76uqze3pvIeEs5dERUFzuhWQjwanAf+2+2CWA/EHPhwRvvn+xSRNmmtbxGr1NZBZXXLED744e1i+Aaa0wmx7qbgjvEcCPIDx9RKF/ELBbVIoBkGVNdCRVXzj/oGqysLLI/bDO74WEiKh8QE82sR6RAFtYg/+XxQVdMUxuVVUFkV+q3jYHE5ITHe/Eg68NmlO3AibVFQi3RFfQOU7IfS/QdCudpsQUv7xXqaB3dCnHnPXEQABbVIxxgG7K+A4v1QUmaGs/iXw2GGdWoipCVDUoLud4utKahFjqa61gzlkv1QUm6OtpbgcUZDSpIZ2mlJ5r1vERtRUIsczuuF0vKmVnN1rdUVyaHiYyE9BTJSzK5ykQinoBYBc85yQSkUFJshrX8W4cHjNgM7PQVSEtVFLhFJQS325fNBUSnkF0NRmcI53DmdZmh3T4fkRKurEfEbBbXYi2GYLeZ9RVBYomlTkSouBrpnQLd0c0U1kTCmoBZ7qK6FvYVmQNfWWV2NBIvDAenJZminJatrXMKSgloil9cLhaWwpxDKyq2uRqzmcUG3DDO0tUKahBEFtUSe2jrYuc8MaE2lktakJEJ2BmSkanEVCXkKaokcldWwY685OEy/1tIezmjzPnbPbuZGIiIhSEEt4a+03Azo4jKrK5Fw5XBAtzTonQ2xMVZXI9KMglrCk2GYo7Z37IPySqurkUiSdSCw42OtrkQEUFBLuPH5zNHbO/dpxTAJrIwUM7C1+plYTEEt4aG+AXbnw678yN/HWUJLahL0yYHkBKsrEZtSUEto8/pg517zHrQWJxErJSdCn2wzuEWCSEEtockwzNHbW3dpgRIJLYnxkJtjLqAiEgQKagk9peWwZYf2epbQlpYMA3pplLgEnIJaQkd1DWzZaa4mJhIOHA5zDnafbIiOtroaiVAKarFefQNs2w27C7RQiYQntwv69TQXTxHxMwW1WMfnM0dyb9sDDVrqUyJAUgIM7A0JcVZXIhFEQS3WKCiBrTs1F1oiU3Ym9O0BLqfVlUgEUFBLcNXWwYZtWu5TIp8zGnJ7QE6mtteULlFQS/DsK4JN29XNLfYSHwsDeps7dol0goJaAq+u3mxFF5VaXYmIdXIyzQFnGh0uHaSglsBSK1qkSawHBueaq5yJtJOCWgJDrWiRI+vZzRxsFhVldSUSBhTU4n/5RbBxBzRo8wyRI4qLgSF9tTuXHJWCWvynrh42btPKYiLt5XCY64b36q6R4XJECmrxj4Ji2LhdW1CKdEZKotm69ritrkRCkIJausbng007YE+B1ZWIhDeXEwblQkaK1ZVIiFFQS+fV1ML3m7XLlYg/5WRCv14QrYFmYlJQS+cUlcG6LZp2JRIICXEwfIC6wgVQUEtHGQbk7Ybte6yuRCSyuV0wrL+50YfYmoJa2q+hAb7fAiX7ra5ExB4cDhjUB7pnWF2JWEhBLe1TVQ1rNmm3KxEr9OxmLj+qKVy2pKCWoysqhbVbwav70SKWSUuGY/qZu3KJrSiopW3b98DWXVZXISJgrmY2fKC5ZrjYhoJaWufzwfo8yC+2uhIROZTTCcP6QUqS1ZVIkCiopSWv17wfXVpudSUi0hqHAwb0gpwsqyuRIFBQS3P1DfDtRiivtLoSETmanEwY0FuDzCKcglqa1NbBNxugqsbqSkSkvdJTYGg/bZkZwRTUYqquMUO6ps7qSkSko1KTzJXMFNYRSUEtUFFldnfX1VtdiYh0VkqiGdbRmr4VaRTUdre/wgxprdktEv6SE8zpW5prHVEU1HZWst8c3e3zWV2JiPhLYjyMHGhO45KIoKC2q4ISWLvF3GRDRCJLQhyMHGTucS1hT0FtR3sLzcVMRCRyxceaYe12WV2JdJGC2m5258PG7VZXISLBEBdjhrX2tQ5rGstvJ/nFCmkRO6mqga/Xm2skSNhSUNtFyX5Yt9XqKkQk2Kpr4at1UKMtasOVgtoOyivhu00aOCZiVzUHVh2s11oJ4UhBHemqasx50l5NwRKxtepa+HaT3gvCkII6kh1cu7u+wepKRCQUlFfCOk3LDDcK6khV32CGtAaRiMihCkth8w6rq5AOUFBHIq8X1mzULlgi0rpd+bBjr9VVSDspqCONYcD3W2C/9pMWkTZs2QkFxVZXIe3Q4aDOzc3F4XA0+/B4PPTu3ZvzzjuP1atXd7iI+fPn43A4WLp0aYefK4cwDHPFseIyqysRkXCwbiuUlVtdhRxFp1vUEyZMYN68ecybN49p06bh8/lYvnw5kydPZtGiRf6sMSgi4o+FLTthX5HVVYhIuPAZsGazbpOFuE4H9WWXXcbSpUtZunQpf/vb39i0aRMXX3wxhmFw8803s2HDhnZf6+6772bt2rXMnDmzs+XI3kLYuc/qKkQk3DQ0aD/6EOe3e9QxMTE8+uijxMfH4/V6eeWVV9r93OzsbIYMGUJycrK/yrGXiiotDSoinVdTaw5A9Wpf+lDk18FkCQkJDB48GIC8vDyAxvvYAEuWLOHEE08kOTkZh8PReE5r3c4XXHABDoeD3/3ud0d8vddeew2Hw8Fxxx3XeKy+vp6//OUvXHjhhQwZMoSkpCRiY2MZPHgw11xzDbt37252jby8PBwOB08//TQACxYsaHb//Y477mh2fnV1Nffffz/jx48nJSWFmJgYBg8ezM0330xRkQXdzg0N8N1m7SktIl1TXgVrt2qOdQjy+6jv/fv3A+DxeJodv/rqq7nssstwOp1Mnz6dcePGNQZ4axYsWADQGKCtWbJkCQCXXHJJ47F9+/Zx0UUX8frrr5OamsrUqVM59dRTqaio4OGHH2bUqFFs2rSp8fyEhATmzZtH//79geb33ufNm8eoUaMaz929ezfjxo3jxhtvZOPGjYwdO5YzzzyT2tpafv/73zNmzBi2bdvWzp+UHxiG+Q9La/iKiD8UlcL2PVZXIYfx667i33zzDVu2bAFoFnAAzzzzDB9++CHjx49v17V+8IMf0Lt3b9atW8cnn3zS4nmFhYW8+uqruN1ufvzjHzceT05O5u9//ztTp07F7W7a2q2+vp7bb7+du+++m4ULF/L6668DkJGRwdKlS5k/fz6bN2/msssuY/78+S3qMQyDuXPn8u2333LppZfywAMPkJiYCEBDQwO33HIL999/PwsWLOCdd95p1/fYZdv3aIS3iPhX3m5ISoDUJKsrkQP80qIuKytj1apVzJo1C5/PR05ODnPnzm12zo033tjukAaIiopi3rx5QFPL+VDLli2jvr6eGTNmkJ6e3ng8MTGRGTNmNAtpAJfLxV133UVOTg5vvPEG5eUdm5Lw5ptv8uGHHzJq1Cgef/zxxpAGcDqd3HvvvQwfPpx3332XNWvWdOjanVJcZv6DEhHxt7VbtKphCOl0i3rBggWN3dOH6t+/Py+//DLx8fHNjs+ZM6fDrzF//nzuvPNOXnjhBR588EFiY2MbH2ut2/tQX3/9NW+//TZbt26lsrIS34F7uA0NDfh8PjZt2tTs3vbRHGyBz549G6ez5Y8tKiqKk08+mTVr1vDRRx8xfPjwdl+7w2rqtGWliAROfYO5cNKowdDGLUoJjk4H9YQJExgwYAAAbrebrKwsxo8fz9SpU1sNstzc3A6/Rr9+/Zg8eTLvvfceK1asaOzi/vLLL/n666/JycnhjDPOaPacyspKLrroIlasWNHmtQ/eS2+vg136t912G7fddlub5xYUFHTo2h3i88H3m7XRhogE1v4Kc22G/r2srsT2Oh3UR7qXeySHtoY74pJLLuG9995j6dKljUF9sDV98cUXEx0d3ez8n//856xYsYIhQ4bwu9/9jrFjx5KRkdHYFX7SSSfx8ccfY3RwZOPBFvnEiRMbB54dybBhwzp07Q7ZvMPcAUdEJNB27oPkRMhIsboSW/PrYLJAmD17NldddRVvv/02O3bsoFu3bjz33HMArXa9L1++HIAXXniBkSNHtnh848aNnaqjVy/zr8pzzjmHG2+8sVPX6LJ9RbA7gK11EZHDrc+DxKHgcR/1VAmMkN+UIy4ujvPOOw+fz8czzzzDq6++SlFRERMmTGDQoEEtzi8uNheZ79OnT4vH3nzzTQoLC1t9nYMt7oaG1ruUp02bBsCLL77Y4da4X1RUwYYgTv0SEQFzrYZ1ml9tpZAPamgaMLZ06VKeeuopoPXWNMAxxxwDwMMPP9zs+Pr167nyyiuP+Bo9e/YE4Lvvvmv18XPOOYexY8fy2WefsWDBglbvQ5eUlPD4448fMew7zeczR2FqURMRsUJpOWzXtphWcRgdbB7m5uaybds2lixZ0q571AcXNWnrZebPn8/TTz/d5jWHDh3K2rVrAYiPj2fv3r0kJCS0OO+VV15hzpw5GIbBiBEjGDZsGPn5+axevZpJkyZRU1PDRx99xLvvvsuUKVMan/fNN980jgI/9dRT6dWrF1FRUcyYMYMZM2YA5oIn06dP56uvviI+Pp5jjz2W3r17U1dXx5YtW/j222/xer1UV1cTExNz1J9Nu23eoXW8RcRaDoc5Cjyp5fuuBFZYtKiheQt6zpw5rYY0wKxZs3j//fc57bTT2LNnDytXriQ/P5877riDf/zjH7hcrlafN3LkSF5++WVOPPFEPv30U5YuXcqf//xnvvjii8ZzcnJy+OSTT3j88cc54YQTWL9+PS+99BIffPABAFdeeSVvvvmmf0O6rFwhLSLWMwyzZ69B64EHW4db1BJEXi98/j1Ua4lQEQkR2RkwKNfqKmwlbFrUtrR1l0JaRELLnkKzp0+CRkEdqkr3w658q6sQEWlpwzYNbg0iBXUo8vpgvaZiiUiIqqqBHRoFHiwK6lC0bbe2rhSR0LZ9D1TXWF2FLSioQ01FlUZ5i0jo8xlahClIFNShxDDM5fo0EF9EwkFpubm0sQSUgjqU7NxntqhFRMLF5h3azS/AFNShoqYW8nZbXYWISMfUN8CWHVZXEdEU1KFi805NdxCR8LS3yOwGl4BQUIeC/RVQWGJ1FSIinae51QGjoA4FW3ZaXYGISNdU12iHrQBRUFutsATKKqyuQkSk63bsgdo6q6uIOApqKxmGuZ63iEgk8BmwbY/VVUQcBbWV9hSaS/GJiESKvYXaTMjPFNRW8XrNpUJFRCKJYei9zc8U1FbZsQ/q6q2uQkTE//YVQWW11VVEDAW1FerqYadGR4pIBMvT+Bt/UVBbYdtucytLEZFIVVgK5ZVWVxERFNTBVlVjDiITEYl0mtXiFwrqYNu6U7tjiYg9lOyHMi0t2lUK6mDaX2l2B4mI2IVa1V2moA4mDSATEbspq4DiMqurCGsK6mCpqYUCbbwhIjakEeBdoqAOlp35VlcgImKN8irtENgFCupgaPDC3gKrqxARsc7OfVZXELYU1MGwp0DzpkXE3soqoKLK6irCkoI60AwDdqnbW0SE3Xov7AwFdaAVlGh/VhERgH3F0NBgdRVhR0EdaJqSJSJi8vm0MmMnKKgDqbTcHO0oIiKm3QVanbGDFNSBpFGOIiLN1dRqAZQOUlAHSnUNFJVaXYWISOjRANsOcVpdQMQKs9b09n17ufevz/DPzz9l+759GIZBdnoGJx97HNef+2OOHTCo2fk78vey6pOP+HzDWj7fsI41WzdTV1/PpWeew5M339qpGpb+41UW3PObNs/5xz1/YOq4k1oc/8NLf+XhV5azo2AfvbO6c+2c8/l/M+e2eo1dBfkMnT+XcccM5637HulUrSLSBSX7zZ0E42KsriQsKKgDweuFvUVWV9Fun36/htNvvIryqkp6ZGRxxthxREdF8dWmDTzz5us89683eO62Ozl3yg8an/Py++9w3aMPBKSe/jk9mTji2FYf65GZ1eLYI68s59pHFpGdnsH08RP4+LtvueoPv6emro4bzvtJi/Ov+sPvafB6efz6W/xeu4i00+58GNDb6irCgoI6EApLzdGNYeLy+++ivKqSy8+eySMLb8blNH8tfD4fty/5E3c++xSX33cXZ584iRiPB4C+2T24etZ5HD9wMMcPGsLyd//Fb//ylF/qmTjiWJb+/I52nev1evn104vJSE7hmz//lYyUFPJLijlm3lzufPYprpl9fuP3A7Bi9bv87YP3uPfKa+iX09Mv9YpIJ+wtgr49IDra6kpCnu5RB8K+8GlNF5WV8s3mjQDceenPmoVaVFQUd8y/nFiPh9KKctZuz2t87JyJk3nomhuZP+1sRvYfiNOif2x5e/dQWFbKzElTyEhJASArNY1Zk6aYNW/b2nhueVUlV//hPkYNGMR1cy6wpF4ROcDrDav3SispqP2trt68/xImPC53u8/NSE4OYCWdU7TfHD2alpjU7Hh6kllrRXXT9LifP/Eoe4uLWHzjL3E61ZkkYrnd2gOhPfRu5W8FxVZX0CEJcXFMGnkcq7/5klv//McWXd93LH2C6tpapo07iV5Z3YNS06ZdO7n1yT+SX1pMQmwcw/v2Z8ZJJze2mA+V2z0boFlr/9Cve2SY97Q/+e5b/rjyZRbOPp8xQ4YGsnwRaa/KanP974Q4qysJaQpqf9sXXkENsPjGX3DmLdfyxKsreP3jDxkz+Biio6P4cuN6dhUWcNEZZ/LIwpuCVs+Ha77mwzVfNzsW4/Zwx/yf8r8/ntfseFZqGicOG8HrH3/I82+/xfQTJ/Daxx/w+scfMrL/QPp0z6a+oYHL77+LXpnd+L9Lrgza9yEi7ZBfrKA+CgW1P1XXQHml1VV02ODeuXz86FNcdNftvPWfT9hV2DTHcWhuX6aMGk1SfELA6+iels4vf3IJMyacTL/sHnjcLtZv38bDK5bz7FuruOWJR/D6fPziJwuaPe+hq2/klOt+xgX/98vGY0nx8Sy+0fz6vhee5dstm1h1z4PEx8Y2nlNdW0OM24PD4Qj49yYiR5BfbA4q07/DI3IYhtZy85ttuyFvt9VVdNiH337NrF/djDM6mvt+tpBTjxuD2+Xiw2+/5vrHHmTjzu1ccuYM/nzzbUe8xh1LnuDXTy/u0jzqtixavowbHnsQj8vNthdW0i0tvdnj2/bu4ek3X2NnQT69s7ozb+p0emV1Z/OunYy45Hx+NHEKz912JwAPv/IC9/71GXYW5BPr8fCjiVN4+JobSU9O8XvdItIOo4ZAcuAbA+FKLWp/yg+/bu/S8nJm3nYThWWlfPzoU4wbOrzxsbNOmsTQ3L6MuOQCnlq1kp+cPo1TjhtjSZ0LZ5/P3cuWUlhWylv//ZSLzjiz2eN9umfzq3k/bfG8K+6/i1hPDA9edT0AD738PAsfvp9zJkzmkYU38/22LdyxdDGbdu3gk8eWEBWl8ZUiQZdfrKBug96V/KW80lxpJ8y8/skHFJSW0C+7R7OQPqhfTk/GHWMe/9fnnwW7vEbR0dEM7NkLgJ0F7Vv17ek3XuPtL/7DfT+7hqzUNAB+99zT9OmWzUu//h3nTJzMzy9cwHVzLuA/67639PsTsbWCYm3U0QYFtb+EYWsaYHu+uQ1nUnz8Ec9JPnB/uni/tdPODk7FSow9cq0HFZaWcsNjD3LKcWNYMG0GAPuKi9hTVMjYIUObTc+aOGIUAF9t2uD/okXk6OobzN0GpVUKan8wjLAN6oPTl9Ztz6OsoqLF4/UNDXyxcR0AfbNzglrbob7YsI4NO7YDcMIxw456/vWPPUBlTQ1/uuHnjccODhqrrKludu7BrzWoTMRChSVWVxCyFNT+UFpuLnQShqaNO4n4mFiqa2v56X2/paKqaYGQuvp6rntkEdv37cXldDJn8qldfr0Vq99lyEVzOO36nzU7XlVTw6MrllNe1XLU/L+//oLZv/pfwGz9Hi2o//XfT3n2rVXcdvGlDOzZtJZwVmoaPTOzePfLz9m8aydgLkH61D9eBeD4gYO79L2JSBcUlqr7+wg06tsf1ufB3kKrq+i0v7y1igX3/IYGr5fMlFTGDhmKK9rJf9evZVdhPlFRUTy68GauPGd243P2FBUy89amudU7C/LZVZhPZkoq/bJ7NB5/7Lr/5fhBQxq/PrhDVp9u2eS9sLLxeGl5Oalnn4rH5ea4gYPp3a0bDV4vG3ZsZ83WzQCM6DeAN3//MNnpGUf8Xqpraxix4ALiYmL4/Ilnmy2JCvDEq69wxf13k5KQyCnHjWbDju18l7eFCcOPZfXDi9WqFrHScUMgSYPKDqdR311lGGG/CfpPzjiTEf0G8OBLf+Xf33zJ25//BwOD7LQMLvzBVK6ZfX6LVmxtXR2frl3T4loFpSUUlDZ1Ye2vbN+88riYGG67+FL+u34t67bn8V3eFqpra0hNTOIHo0/g3CmnMX/q2bhdrjav85unn2Tr3t189MifW4Q0wOVnz8LtdHHfC3/htY8/ICUhkSvOnsU9V1ytkBaxWmGpgroValF3VXkVfPG91VWIiIS/2Bg4oeXsE7vTPequKgnv1rSISMiorjHX/5ZmFNRdFebd3iIiIUXvqS0oqLuiwQv7w29tbxGRkFWm+dSHU1B3Rel+TScQEfGnsgq9rx5GQd0VJdau1CUiEnEavLpPfRgFdVeUqItGRMTvtJxoMwrqzqqtM0coioiIf+k+dTMK6s7SL5KISGCUtdx3wM4U1J2lrhkRkcCob9B96kMoqDtLQS0iEjjqtWykoO6M2jqorrW6ChGRyFWq7u+DFNSdofsnIiKBpRZ1IwV1Z1RUHf0cERHpvLp6qNLMGlBQd46CWkQk8NSqBhTUnaPRiCIigafbjICCuuPq6s0PEREJrHJtegQK6o5Ta1pEJDiqa7VBBwrqjtP9aRGR4DAMTYVFQd1xalGLiARPld5zFdQdpRa1iEjwVGqKloK6I3w+zesTEQkmtagV1B1SVaOBDSIiwaTGkYK6Q3R/WkQkuNRAUlB3iO5Pi4gEl89nboRkYwrqjlCLWkQk+Gw+oExB3REa1CAiEnw2f+9VULeXYUCtlg4VEQk6mw8oU1C3l9b3FhGxhlrU0i4KahERa6hFLe2ibm8REWs0eMHrtboKyyio20stahER69Q3WF2BZRTU7VVn73l8IiKWqlNQy9GoRS0iYh21qOWodI9aRMQ69fZ9D1ZQt5da1CIi1lGLWo5KQS0iYh0FtbTJMBTUIiJWUlBLmxTSIiLWUlBLmxTUIiLW0mAyaZOCWkTEWmpRS5t8PqsrEBGxNwW1tMkwrK5ARMTeGry2fS9WULeHz56/HCIiIcWmrWoFdXvY9K84EZGQ0mDPHbQU1O2hoBYRCQH2fC9WULeHur5FRKxn07diBXV7qEUtImI9m74XK6jbw6a/HCIiIcWm78UK6vaw6S+HiEhIselbsYK6PXSPWkTEejZtNDmtLiAs2PSXQyJHQ5SD5zNyqdevsoSx6dEusqwuwgIK6vZQUEuYc/oM0h0+vq5xWF2KSKc1OOzZCWzP77qjFNQSAcZUFFldgkiXOGz6d6aCuj0U1BIBMisr6BNj03c6iQgO7Pn7q6BuD7v+GScRZ0x9udUliHRalE3fihXU7REdbXUFIn4xoKSQFJdN3+0k7Nn1N1dB3R7R+jFJZHAAo6NqrS5DpFPUopYjU4taIsjI4n149C9fwpDHpo0me37XHWXTXw6JTB6vlxEen9VliHRYrNOeTWolUHsoqCXCjC4rtO39PglP7igH0TYd2KsEag91fUuESa2por+makkYibFpaxoU1O3jVFBL5BlTW2p1CSLtFhutoJa2uLTSqkSe3LISMt32ffOT8BLrtG9c2fc77wingloi0xiqrS5BpF3Uopa2qetbItSw4n22fgOU8KEWtbTN4VD3t0Qkp89glKvB6jJEjirGxn9QKqjbS93fEqGOL8237YpPEj7Uopajc6n7WyJTYl0tQ2KsrkKkbXZd7AQU1O3ncVtdgUjAjKkqsboEkTbF2HjhKft+5x0V67G6ApGAySkvI8dj3xaLhL44tajlqGLVNyiRbYy30uoSRI4o1WPf248K6vaKUYtaItuQkgISbdxqkdAVE+3QYDJpB3V9S4SLMgyOj66zugyRFtJs3JoGBXX7edzaRUsi3qiSAtSollBj525vUFB3jLq/JcLFNtQxLMawugyRZtJiFNTSXhpQJjYwpqLI6hJEmlGLWtpP96nFBjIrK+ijvaolhOgetbSfglpsYkx9udUliDRK9dg7quz93XeUglpsYkBJIakutarFevFOBx6bD+S193ffUbpHLTbhAEZH1Vpdhojt70+Dgrpj3C6I0o9M7GFE8T5s3uMoIcDuI75BQd0xDoe6v8U2PF4vIzw+q8sQm7P7QDJQUHdcfKzVFYgEzZiyQnSnWqyUEeO0ugTLKag7KinB6gpEgialpor+mqolFsqJV1ArqDsqKd7qCkSCakxtqdUliE2leqKIs/FmHAfpJ9BRCXEaUCa2kltWQqZbrWoJvpw4l9UlhAQlTkc5HJCoVrXYyxiqrS5BbKiHur0BBXXnqPtbbGZY8T5io9WqluDKiVeLGhTUnaMBZWIzTp/Bca4Gq8sQG3FFQVaspmaBgrpzktWiFvs5rjSfKDWqJUi6xzmJcugXDhTUneNyaeETsZ3EulqGaBVdCZIe6vZupKDuLHV/iw2NqSqxugSxiZw4DSQ7SEHdWRpQJjaUU15GjkfdkRJ4alE3UVB3llrUYlNjvJVWlyARLsUdRbxL8XSQfhKdFR8LNt8jVexpSEkBiU61qiVw1JpuTknTWVr4RGwqyjA4PrrO6jIkguUmKqgPpaDuirRkqysQscSokgLUqJZAcAD9k91WlxFSFNRdkZ5idQUilohtqGNYjGF1GRKBcuKd2ojjMPppdEVcjPkhYkNjKoqsLkEi0IAktaYPp4lqXZWeAlV7ra5CJOgyKyvok5XJtprQaFkX5G1i4yfvsmvt1+xa+w0FWzfg83o5/X9u4dTLbjji8ypLi1n97KOsW/1Pinduw9dQT3xaBr1HjuGk8y6j7+iTOlTH5yv/ykt3XNPmOfMffp7BE05rcfzD5/7ER88/Sdm+3aR078GEH1/Biedd2uo1yvL38MCcCfQaPppLH3uxQzWGsgHq9m5BQd1VGSmwQ0Et9jS2rpxthMZUxU9eXMJHf32iQ88p2rGVJy6bwf6CvcSlpNFvzEm4YmLJ37yeNf96lTX/epUzr/8Nk37ysw7Xk9Yzl9zjxrX6WHJWdotjHz3/JK/ddyuJGd0YMvF0tn/7H1becwsNdbVMuuh/Wpy/8p5b8DV4mfmL33e4tlCV7I4iM1axdDj9RLoqMR7cLqirt7oSkaDrX1pIanoiJfXWt6q7DxjCpIv+HzlDRpAzZCTvPfUgX76+vM3nvL7oV+wv2Mvgiafz43sW445tmsnx2cvPsOK3N/DGQ79h5OnnkNwtp0P15B43jnN//Ui7zvV5vbzzxH3Ep6Sz8IX3iU9Np6K4gEWzJ/DOk4s46fyfEu1qGgn93Tuv8/27q5i28HbSeuZ2qK5Q1l/d3q3SPequcjggXaO/xZ4cwOioWqvLAGDszIs487o7GDVtNll9B+Joxw4im/+zGoDTrripWUgDnDD7YtJ798PX0MDO774MSM0HlezeTmVpEUNPOZP41HQAEtIyGX7qdGrKy8jfuqHx3NrKClbe+3OyBw9nwoVXBrSuYBuobu9WKaj9QaO/xcZGFO/DE6bvJC53+waDxqWkBbSOqjJzDfW45JTmr5ucCkBdddNqcG88/H9UFOUz67YHiHZGTqeoO8pB7wTNn25NmP7zCjGpSVqlTGzL4/UywuOzuoxOGXRgQNfbf/o9ddVVzR777JVnKdq+he4DhtJ75NgOX7tox1beevQuXvm/63nt/tv479+WUVnS+kj51JxeAORv3djs+MGvkzLNe9rbv/kvn760lBPP/yk9h47qcE2hLDfRRbT2UW1V5Pw5ZqWoKEhNhkLtLCT2NKaskM/dWVh/p7pjpl17O/lb1rP+g39yz/Tj6DV8NO7YWPZtXk9B3kYGTzydWbct6lTLddtXn7Htq8+aHXN6YvjBFTcxeX7zUeEJaZn0HjmW9R/8k6/fXMGQiaezdvVbrP/gn3QfOIzUnF546+tZcecNJHfrwRn/c0uXvu9QpNHeR6ag9peMFAW12FZKTRUDkmFjtdWVdExiehY/Xfw3/nbXzXy16kXWf/DPxseSu/eg/wmTiE/N6NA1E9KzOOXS6zhm8lTSevTB6fZQsG0THz2/mK9ef5E3Hvo/fF4vp1x6XbPnnX3zXSy+/Ec8//PLG495EhKZddsiAFY/+yh7N33P/If/2ux+en1NNU5PDA5H+LZGHWggWVsU1P6SlmwOLDPCrU0h4h9jasrYSHgNrMzfupFnrr2QypIizvn5vRxz8g/xxCeye/03rHrgDlYt+hUbPnqHBQ8/T1R0dLuuOXjCaS3mSPccOoq5v3mU7EHDWbXoV7yz+H7G/OhCEtOzmp1z7fLVfPHaC+Y86uweHH/W+aR070HRjq288+Qijp06i8ETfgDAR88v5t9PP0LZvt24YmIZOmUaZ998N/EBvp8eCL0SXNotqw36yfiLywnJoTGfVMQKfcpKyHSHT6vO29DAspsWULRjK7NuW8T4cxeQ3C2HmIRE+o2ewKWPvUhiRhabPnmPL157wS+vOeGCy4lPSaehrpaNH7/X4vHUnF6cdvmNzLptEadedgMp3XsAsOK3N+L0xHDWjXcC8OFfn+DVe39Bj2OO5aJFz3DqZdez5u3XWHr1+fh84TdeYESax+oSQpqC2p8yUq2uQMRSYwifvu8daz4nf8t6nG4Pw049q8XjsUkpDDrJbBlv+uzffnnNqOho0nv3A2B//u52PefzV59n82f/5sxr7yAhLROA95c8REp2L35871MMnTKNKZdcy8QLr2Dnd1+y6dP3/VJrsLijHAxJVVC3RUHtT1lpZve3iE0NK95HbHR4/Bso3bsLAFdM7BG7tWMSkgCoLvPf+JOqsmIA3HFH74GrLCli1QO302/MRMac82MAyovyKS/cR89ho5oNcuszajwAe9av8VutwTAk1Y1Lo73bpKD2J5fTHFQmYlNOn8Fxrgary2iX5MzuAFTvL6Vw++ZWz9mx5gsAUnv08ctr7lr7NYXbzNfqNfz4o57/+qJfUVddxcxb72s8dnDQ2OHTyeoPzLUOt0FlI9O0sdHRKKj9rXvHRoiKRJrjS/MJhwZS75FjSTqw5vYrv7mOipLCxsd8Ph/vLfkD27/5DwDH/nBms+d+987rLJp1Ik9eMavZ8brqKj5+4c/UVla0eL2tn3/EspsuASB31LijBvWmT9/ny9eXc+pl15PRu3/j8YS0TJK75bDlvx9StGOrWa/Xy3///hwAOUNGtuv7DwVpnmh6apGTo3IYhoYp+5VhwKffQm2d1ZWIWGZlt1y+D/Lt6l1rv+bvd/9v49fFO/OoLC0iuVtO44IhAD+5fylJB1rTmz9bzdPX/oT6mio8CYn0Gj4aT1w8ezZ8R/HOPACmXHItP7zql81e6+AOWSnZvfjf179oPF5dXsZvJg/A6faQPXgEKd174PM2ULh9C/s2rQWg+4ChLHj0hcYaWlNfU82Dc0/GHRPHVcv+1Wydb2hahzwmMZn+YyZSuH0z+zavo8+oE7jiz6+FTat6cnYcJ3aPs7qMkKfpWf7mcED3dNi2x+pKRCwztqqY7x3BnSZUW1nBjjWftzhetm83ZfuaBm5565v+iO5/wiSuXf4+q//yRzZ/tpptX32Kr6GB+NR0hp0ynXHnzmfg+CntrsEVE8upP72Bnd9/RUHeJvK3rKO+tobYxBQGjJvMiB/M4PgZ5+N0tT1n+O3F91GyeztXLlnVIqTBXIc82uVi9bOPsW71W8QkJnPC7HlMu+ZXYRPSDmC4Rnu3i1rUgVBTa7aqRWzs2cy+7KrV24u0rl+ii7kDwmvevVV0jzoQYjzm+t8iNjbGW3n0k8S2RqRrEFl7KagDJSfr6OeIRLDBJQUkOsOjG1aCKybaoS0tO0BBHSjpyeDRL6LYV5RhcHy0BlVKS0NTPTjDYWpAiFBQB4rDATmZVlchYqlRJfmoUS2HOy5D3d4doaAOpO4ZWqlMbC22oZ5hMRpQJk36J7nIjNWEo45QUAeS2wWZWv9b7G1MeZHVJUgIGd9N86Y7SkEdaD00qEzsLbOqgtwY9SwJ9Ih30ksrkXWYgjrQkhIgJdHqKkQsNaau3OoSJASM7xZrdQlhSUEdDH1yrK5AxFL9SwtJdalVbWcZMdEMSNJMmM5QUAdDSiIkH31LO5FI5QBGR9VaXYZY6ISs2LBZ3jTUKKiDRa1qsbmRxfvw6B3HlhJdUQzTut6dpn82wZKapFa12Jrb62Wkx2d1GWKBsVmxRKs13WkK6mBSq1psbnRZAXq7tpeYaAejtK53lyiogyk1yRwFLmJTKTXVDNDAX1s5PiMGd7T+POsKBXWw9ck++jkiEWxMdZnVJUiQOB0wOlN/mXWVgjrY0pIhKd7qKkQs02d/CVlutbDsYGxWLPEuxUxX6SdoBd2rFpsbTbXVJUiAxTkdWuDETxTUVkhLhkS1qsW+hhXvI073LSPapOw4PNGKGH/QT9EqulctNub0GYxyNVhdhgRIekw0x2qkt98oqK2SnqIR4GJrx5fmE6VGdUQ6JSeeKM2b9hsFtZUG9ra6AhHLJNTVMkSNrojTJ8HFgGSt6e1PCmorJcRBjrbBFPsaW1VsdQniRw7glB4af+NvCmqr9c0Bl9PqKkQskV2+nx4edZFGimFpHrrH6f3M3xTUVnM6oV9Pq6sQscwYb6XVJYgfOB1wcnac1WVEJAV1KOiWrkVQxLYGlxSQ6FSrOtydkBVLkjva6jIikoI6FDgcMLCP1VWIWCLKMDg+us7qMqQL4p0OxndTazpQFNShQgPLxMZGleSjRnX4OqVHvDbeCCAFdSjRwDKxqdiGeobHGFaXIZ3QN9HF8DTNswskBXUo0cAysbHR5UVWlyAd5IqCH/bSwk2BpqAONRpYJjaVWVVBboy6T8PJxO5xpHg0gCzQFNShRgPLxMbG1O23ugRpp+6xTsZmaXesYFBQh6KEOOihgWViP/1Li0h1qVUd6qIcMK13gtbzDhIFdajq1xPi9deq2IsDGO2otboMOYqTusXRzQ8rkOXm5uJwOJp9eDweevfuzXnnncfq1av9UG3T6+Tl5XXoefPnz8fhcLB06dJmx5cuXYrD4WD+/Pl+qe9oFNShKioKhvRF2wuJ3Yws2YdH70whq1tsNCd1928jYsKECcybN4958+Yxbdo0fD4fy5cvZ/LkySxatMivrxWONBcolCXEQd+esHmH1ZWIBI3b62Wkx8d/qpXWoSbaAWf1SfR7l/dll13WrHVaU1PDFVdcwTPPPMPNN9/MWWedxaBBg/z6ml0xc+ZMxo8fT3JyclBeT/8SQl3PbpCWZHUVIkE1uqwA9SWFngnd48iMDXz7LiYmhkcffZT4+Hi8Xi+vvPJKwF+zI5KTkxkyZAjZ2dlBeT0FdTgY3FcLoYitpNRUM0BDNEJKdpyT8d2C9z8lISGBwYMHA5CXl0deXh4Oh4Pc3NwjPqc996JXrFjBxIkTSUpKIjExkSlTprBq1aoO1Xa0e9S7du3ipptuYsSIESQmJhIfH8+gQYOYP38+H330UYdeCxTU4cHtgsG5VlchElRjqsusLkEO8EQ7OCfX/13eR7N/vzldz+Px+OV6Dz30ELNmzaK2tpazzjqLoUOH8v777zN9+nQefvhhv7zG22+/zfDhw7nvvvvIz8/ntNNOY/r06aSkpPDcc8/xxBNPdPiaaqaFi/QUcy3w3flWVyISFH32l5CVkUJ+nZYWtdpZfRKCvrDJN998w5YtWwAYNWqUX6754IMP8pe//IULL7yw8dgLL7zABRdcwPXXX88pp5zC8OHDO339HTt2MHv2bMrKyrjlllv49a9/jdvtbnw8Pz+fDRs2dPi6alGHk/6asiX2MoYqq0uwvXFZsQxM9k+Ltj3KyspYtWoVs2bNwufzkZOTw9y5c/1y7XPOOadZSAOcd955zJo1i4aGBh566KEuXX/RokWUlZVx9tlnc/fddzcLaYCsrCwmTpzY4esqqMOJpmyJzQwtyidOuzJZpleCk8k5gd++csGCBY3zqFNSUpg+fTqbN2+mf//+rFq1ivh4/yyrPG/evDaPv/fee126/htvvAHA5Zdf3qXrHE5d3+FGU7bERpyGwShXAx95tZ50sMU7HZyTmxSU+9ITJkxgwIABALjdbrKyshg/fjxTp07F6fRfTPXt27fN4zt37uzS9bdt2wbAkCFDunSdwymow1HPblBSBsVaF1ki3/Gl+XwSm41Pt6qDxgHMyE0kwRWcTtfD51F3ls/n69LzDSM0f8nU9R2uhvSFGPfRzxMJcwl1tRyj7Y6DalJ2HH0SQ+v95eD93vLy8lYfr6+vZ8+ePW1eY+vWra0ePzidq2fPrm0z3Lt3bwDWrVvXpescTkEdrlwuGDbAvG8tEuHGVBVbXYJt9E9ycWIQ50u3V2ZmJm63m+LiYvLzW85+efPNN2loaGjzGs8++2yrx5955hkApkyZ0qUap06dCsDixYu7dJ3D6V0+nCXEmS1rkQiXXb6fHh4NKgu0JHcUZ/VJxBGCu2K5XC5OPvlkAG699dZm3dxff/01V1111VGvsWLFCp5//vlmx1566SVefvllnE4nV199dZdqvP7660lMTGTlypXceuut1NfXN3s8Pz+fDz74oMPXVVCHu8xU6JNjdRUiATfGW2l1CREt2gEzcxOJdYZuLNx555243W4WL17MMcccw7nnnstJJ53E2LFjmTJlCn369Gnz+QsXLuSCCy7ghBNO4MILL2T8+PGce+65+Hw+7r33XkaOHNml+nr37s1LL71EYmIiv/3tb+nVqxczZ85k7ty5jBs3jp49e/Lkk092+Lqh+39E2q9PNmSkWl2FSEANLikgyRl6Lb1IMbVXAtnxLqvLaNO4ceN4//33OeOMM9i7dy+vv/46VVVV/OEPf2DJkiVHff7ChQtZvnw5TqeTlStXsmbNGiZNmsSrr77Kdddd55cazzjjDNasWcPChQtJSUnhjTfe4B//+AelpaVcdNFFXHnllR2+psMI1WFu0jFeL3y1Hiq0QIRErk+yevBeTWiHSTg6OTuOk7oHfr60dI5a1JEiOhqGDwCP3sQkch1bnI9LjWq/GpUeo5AOcQrqSOJxw/CBZmiLRKDYhnqGxagT0F8GJLs5o5d/Vv2SwFFQR5qEOBjaD0Jw1KaIP4wpL7S6hIiQE+e0ZEcs6TgFdSRKS4aBva2uQiQgMqoqyY1RuHRFqieKOf2TcGnfgLCgoI5U2ZnQu7vVVYgExJg6LZ/bWfFOB+f1TyYuhKdhSXP6PxXJ+vaEnEyrqxDxu/6lRaRpVFmHuaJgTv+koO8tLV2joI50A3qbrWuRCOIARjtqrS4jrEQBP8pNIjtOM0PCjYI60jkc5v3q7AyrKxHxqxEl+/DoHazdpvZOoH9yaG20Ie2jX3M7cDhgYB/orrCWyOH2ehnp7tq2hnbgAKb1SmBkurYgC1cKartwOGBQH+iebnUlIn4zen8BulN9ZA7gzN4JHJuhkA5nCmo7cThgUC50U1hLZEipqWZA6O3IGBKigLP7JDJCLemwp6C2G4cDBucqrCVijK0utbqEkBPlgBl9Exma5rG6FPEDBbUdHQzrrDSrKxHpst77S8lyqwP8oGgHzOybyJAUhXSkUFDblcMBQ/oqrCUijDG0axyA0wGz+iYxMFkhHUkU1HZ2MKwztZe1hLehxfnERdu7Ve2Kgjn9kjQFKwIpqO3O4YBj+mkFMwlrTsNglKvB6jIs445ycG6/ZHKTFNKRSEEtTfOs+/e0uhKRTju+NB87Nqo90Q7m9k+id6JWHItUCmpp0rM7DOsPUfq1kPCTUFfLEJvNREr1RHHxoGR6JiikI5nekaW5jFQYNRjc+ocv4WdMVbHVJQRNrwQnFw9KIT3GaXUpEmAKamkpMR6OGwLxWklCwkt2+X56eCK//3tEmofzByQTq60qbUH/l6V1MR4YNQRSk6yuRKRDxnorrC4hYBzAlJw4pvdJJNoR+X+QiElBLUfmjIYRA7XzloSVQSWFJDkjL8RcUeZCJuO7xVldigSZglradnB98L49rK5EpF2iDIPjnXVWl+FXia4ofjIwhUFabcyWFNTSPr2zYWg/cxFhkRB3bHE+rgj5Ve0e52Te4BS6xWnQmF0pqKX9MtPM+9Yx+qteQltsQz3DYgyry+iywSluLhyYTIJLb9V25jAMI/x/myW4GrywcRvk22cqjISfwrh4nnSG54p70Q6YkhPP2CzNvBAFtXTF3kLYuB18PqsrEWnV81l9yasJr7e4NE805+QmqqtbGuk3QTqvewYkxcP3W6Cy2upqRFoYW7efPBKtLqPdRqZ5+EHPBNx2XAtVjkgtauk6nw+27IRd+VZXItKMASxO70txfWi/zXmiHUztlcAxqRr/IS1phIJ0XVQUDOgNwwaAU500EjocwGhHjdVltKlHvJMFg1MU0nJEalGLf9XWwdqtUFZudSUiANRFR/NoYi9qQ2wohQMY3y2WSdlxRGmVMWmDWtTiXx43HDsIcnOsrkQEALfXy0h3aKV0oiuK8wckMTknXiEtR6UWtQROWTmsy4OaWqsrEZsrjYnlT+5uhMKb3ZAUNz/slaANNaTdFNQSWF4fbNsNO/eBftXEQq90y2WDhZMTkt1R/LBXAv2S3NYVIWFJQS3BUVEFG/KgvMrqSsSmtiel8BwpQX/dKAeMy4rlpO5xuLQEr3SCglqCxzDMKVx5u8yWtkiQPZXZl/za4L3l9Yx38sNeCWTGajaEdJ6CWoKvpg42b4fCUqsrEZv5Jr0bq+oDvyxnTLSDU3rEMzLNg0ODxaSLFNRineIy2LQdqjXYTIKjweHgsZRcqryBe9sbnubh1Jx44rSRhviJglqs5fOZA82271F3uATFv7N68VFNtN+vm+aJ5oe94umTqMFi4l8KagkNtXWweQcUlFhdiUS4CreHP8Zm469GdWy0g/HdYhmdGYtTg8UkABTUElrKKszBZqVa2UwC59VuuXzXxala7igHY7NiOCErFk+0urklcBTUEppKyyFvt5YilYDYm5DE0qi0Tj3X6YDjMmI4sXsccVq0RIJAQS2hrWS/Gdj7K6yuRCLMXzL7srMDU7WigBHpHiZ0jyPJ7f973CJHosl9EtpSk8yP4jIzsMsrra5IIsQYbwU7iW/XuUNTPUzKjiPVo4CW4FOLWsJLUam5JKlWOJMu8gGPp/Vlf8OR3wL7J7mYnBNPlhYsEQspqCU8FZbCtl1QYeHizRL2PsnqwXs1rmbHHMCgFDfjsmLJiXe1/kSRIFJQS/gyDDOwd+7TPWzplBqnk0fje1JvgCsKRqbHMDYzlhR1cUsIUVBLZKiogj0FsK9IC6dIh/w7uw+upHiOy4ghRqO4JQQpqCWyNHghvwh2F0ClusWlDckJkJMFGSkQpYCW0KWglshVVm4GdkGJ9sIWU1QUdEuHnExIiLO6GpF2UVBL5Kurh72FZtd4TZ3V1YgV4mOhewZ0TwenRnBLeFFQi30YBhTvh9355rxsiWxxMZCZBllp5n+LhCkFtdhTfYM5YrywxFz9TP8MIkOMBzJTzXBW17ZECAW1SIPXbGEXlpifNWo8vLhdB1rOqZCUYHU1In6noBY5lM9ndo8XlpiroDV4ra5IWuNymi3nzDRz9LZD20tK5FJQixyJYZi7eBUcCO26eqsrsi+HAxLjICUJUhMhOVHhLLahoBZpD8MwNwQpLTc/yirM1rcEzsFgTkk0W83RWi1M7ElBLdIZhwZ32YHg1r3tromPNUM5JQlSEjSNSuQABbWIPxiGuRLa/koorzA/V9VYXVXoinJAXCwkxTe1ml0KZpHWKKhFAqW+wWx1lx8I7eoaqKoFr40GqDkcEOsxQzn+kI9Yj+4xi7STglok2OrqDwnuQz7X1IX3fO4Yd8tAjovROtoiXaSgFgkVhgHVtU3hXVNrtsrrG8xpYg0NUO8Nfovc4QBntDlf2eMCt7v5Z4/bbCFrsJdIQCioRcKNYTSFd32DGeCH/zc0dS0f+tkBcOBza8ed0ea94kM/oqPVTS1iIQW1iIhICNPNIxERkRCmoBYREQlhCmoREZEQpqAWEREJYQpqERGREKagFhERCWEKahERkRCmoBYREQlhCmoREZEQpqAWEREJYQpqERGREKagFhERCWEKahERkRCmoBYREQlhCmoREZEQpqAWEREJYf8fsjBttvKtvUoAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "fake_account_counts = df['is_fake'].value_counts()\n", "labels = ['Yes', 'No']\n", "colors = ['Skyblue', 'lightgreen']\n", "explode = (0.1, 0)\n", "\n", "plt.figure(figsize=(6, 4))\n", "plt.pie(fake_account_counts, labels=labels, colors=colors, autopct='%1.1f%%', startangle=140, pctdistance=0.85, explode=explode)\n", "plt.title('Fake Accounts Distribution', fontsize=16)\n", "\n", "\n", "centre_circle = plt.Circle((0,0),0.70,fc='white')\n", "fig = plt.gcf()\n", "fig.gca().add_artist(centre_circle)\n", "plt.axis('equal')\n", "plt.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 369 }, "id": "zUYXJuel7WwQ", "outputId": "be59bcad-ac63-4f1d-fa06-ad942fe633b9" }, "execution_count": 30, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFgCAYAAABqjwo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLWElEQVR4nO3dd5hU1eE+8PdO394ryy5LL4J0I0VQqgIiIGKJgKDGn7EkxqiJxhKN9atRo9EkiliSoBFBQVCUphQFKSIgvS7swvaZ3elzz++PdUeWne3llnk/z7OPcufuzJmdO/e959xTJCGEABERESnKoHQBiIiIiIFMRESkCgxkIiIiFWAgExERqQADmYiISAUYyERERCrAQCYiIlIBBjIREZEKMJCJiIhUgIGssE6dOkGSpHp/XnzxxWY//9y5cyFJEhYuXNhqZW6pu+66K/jeli1bpnRxKITzj0uDwYCYmBhkZWXh0ksvxb333ostW7bU+xyjR4+GJElYt25d+xS6AdXv6dixYzW2q62cgDq/t9T2TEoXgKoMHz4cXbt2DflY796927k0bcfj8eDf//538N8LFizAlClTFCyRNixcuBA33XQT5syZ064n6XOPS5fLhaKiIuzYsQPr1q3D888/j1GjRmHBggXo3Llzm5WhU6dOOH78OI4ePYpOnTq12eu0F6U+S1I/BrJK3HzzzZg7d67SxWhzS5YsQUlJCTIzM5Gfn4/ly5fjzJkzSEtLU7poFEKo41IIgZUrV+I3v/kN1q9fj2HDhmHz5s3Izc2tsd8777wDp9OJ7Ozsdixx3VavXg2fz4cOHTooXZQGPfXUU3jggQeQkZGhdFGoHbHJmtrVm2++CQC4++67MWrUKPj9frzzzjsKl4qaQpIkXHHFFdiyZQu6deuGM2fO4Oabb661X3Z2Nnr27InIyEgFSllbly5d0LNnT5jNZqWL0qCMjAz07NkTcXFxSheF2hEDWUM++ugj3HzzzbjggguQkJAAm82G3NxczJs3D/v372/y83322WeIjY2FzWbDokWLajy2bds23HDDDcjOzobVakViYiImTJiAFStWNLv8x44dw+rVq2EymTB79mzMnz8fQFWzdX38fj8WLFiAsWPHIjk5GVarFVlZWRg7diz+9re/hfydNWvWYObMmcjKyoLVakVKSgqGDBmCRx55BMXFxbX2//zzzzF58mSkpqbCYrEgMzMTs2bNwnfffRfy+eu6H1mtrnuA524/evQobrzxRqSnp8NqtaJLly546KGH4PF4ar3WTTfdBAB4++23a9zbHT16dHC/8vJyPPTQQ+jbty+ioqJgtVqRmZmJ4cOH4+GHH4bP56vjL9w88fHxwf4Na9aswbZt22o8Xte9WY/Hg+eeew6DBg1CTEwMLBYL0tPTMWTIENx3330oKSkBUNW0K0kSjh8/DgDIzc2t8d6rn3fdunXBv4XT6cTDDz+MXr16ITIyskYTd0OfGQCsX78e48ePR2JiIiIjIzF06FC8++67Ifdt6N7zo48+CkmS8Oijj9YoQ2M+y4buIS9atAhjxoxBYmIirFYrcnJyMG/ePBw4cCDk/ue+97Vr12L8+PFISEhAREQEBg4cyItilWCTtYZcc801sFqt6N27Ny677DL4/X7s3r0bb731Fj744AOsWrUKw4YNa9Rz/eMf/8Cvf/1rxMXFYcWKFRgxYkTwsZdeegn33HMPZFlG//79cdFFF6GgoADr1q3DqlWr8Nhjj+Hhhx9ucvkXLFgAIQSuuOIKpKenY8aMGbjjjjuwb98+bNq0KWTZy8vLMXnyZGzYsAFmsxnDhg1DZmYmCgoKsGvXLqxevRp33nlnjd+56667gkHdv39/jBw5EuXl5di/fz/+/Oc/49JLL61x8vvTn/6EJ554ApIkYdiwYcjOzsaPP/6IDz74AIsXL8Y///lPzJs3r8nvtz47d+7E3XffjYSEBIwaNQolJSXYuHEj/vKXv2DPnj1YsmRJcN+rr74a33zzDTZu3IguXbrU+Kx69uwJAHA6nRgxYgR2796NlJQUjBkzBlFRUSgoKAj+fe+55x7Ex8e36vu4/PLLkZiYiJKSEnzxxRcYNGhQvfvLsoxJkyZh9erViI2NxciRIxEfH4/CwkIcPHgQzz33HK6//nokJiaia9eumDNnDj788ENUVlZixowZiI6ODj5Xenp6jed2u90YPXo09u7di0suuQQXXnhhyIuvuixZsgSvvPIKevbsiQkTJuD06dPYsGEDZs+ejZ07d+L5559v2h8nhMZ8lvURQmDu3Ll45513YDKZcMkllyA1NRXbt2/HW2+9hffffx+LFy/GxIkTQ/7+ggUL8MQTT2DgwIGYOHEijh07hm+++QZz5sxBSUkJfvOb37T4PVILCFJUTk6OACDeeuutBvddtGiRqKioqLFNlmXx6quvCgCiT58+QpblGo/PmTOnxvPLsizuu+8+AUB06dJF7N+/v8b+n332mZAkSSQnJ4v169fXeGzXrl0iKytLABDr1q1r0vsMBAKiY8eOAoBYunRpcPuvfvUrAUDMmzcv5O9Nnz5dABADBgwQR48erfGYz+er8VxCCPHyyy8LACIpKUmsWbOm1vN9++234sSJE8F/r1y5UgAQNptNrFq1qsa+b7zxhgAgzGaz2L17d43Hqj+388tU7fy/+/nbAYgHH3xQ+P3+4GM//PCDiIqKEgDEpk2bavzeW2+9JQCIOXPmhHy9t99+WwAQl19+ufB6vTUeCwQCYt26dcLj8YT83VCaclyOHTtWABC//OUva2wfNWqUACDWrl0b3LZ+/frg52m322s919atW0VRUVHIstT1t167dm3wb9qvXz+Rn59f73s6/3mqywlAPPnkkzUeW7dunYiIiBAAxGeffdbg+zvXI488IgCIRx55pMb2hj5LIeo+fl577TUBQCQnJ4sdO3YEt8uyHHy9+Ph4cfbs2ZDv3Ww2i2XLloUsT1xcnHA6nXWWidoem6xV4qabbgo55OncmtysWbMQFRVV4/ckScLtt9+Oiy++GHv27MGPP/5Y52u43W5ce+21ePbZZ/GLX/wCmzdvRvfu3Wvs88gjj0AIgddffx2XXHJJjcf69u2LF154AQDqbCquy6pVq3Dy5EmkpaVh0qRJwe3VzdYffPABKioqavzO999/j48++gg2mw3Lli2r1cPWZDJh6tSpwX/7/X48/vjjAIB//vOfuPTSS2uVY+jQoejYsWPw3//3f/8HALj99tsxbty4GvvOnz8fkydPhs/nw0svvdSk99uQQYMG4fHHH4fRaAxuu+CCC3DjjTcCAL788ssmPd+ZM2cAAOPGjat1j9RgMGDUqFGwWCwtLHVoycnJANCo2mh1OUeOHImYmJhajw8ePBhJSUnNLssrr7xSq+bcWAMGDMAf/vCHGttGjRqF22+/HQBapYbcUtXH68MPP4z+/fsHt0uShEceeQT9+vVDWVkZ/vWvf4X8/TvvvBOTJ0+usW3u3Lno2bMnysvL67xFQ+2DTdYqUdewp/ObsQ4dOoTPPvsMhw4dgsPhQCAQAPDziW7//v0hh0kVFRVhzJgx2LRpE6ZPn4733nsPERERtfbZsmULIiIi6hyKVH2BsGnTpia9vzfeeAMAMHv2bJhMPx92Q4YMwQUXXIDdu3fj/fffDwY0UHWPGwAmTZrUqJ6x27ZtQ2FhIZKTkzFt2rQG9/f7/di4cSMA1NnDff78+Vi+fDnWrl3b4PM1xeTJkyFJUq3tvXr1AgCcOnWqSc83ZMgQAMCzzz6LpKQkTJ48GYmJiS0vaCPIsgwAId/P+QYOHAij0YgFCxage/fumD59eqv1JE5NTcXIkSOb/fuzZ88OuX3OnDl4/vnnsWHDBgQCgRoXUe0pLy8Phw8fDpbpfJIk4aabbsJvf/tbrF27Fn/84x9r7VPX97pXr17Yt29fk487al0MZJVoaNhTIBDAHXfcgX/84x8QQtS5n91uD7n9D3/4A/x+P8aPH4///e9/MBhqN44cPXoUQgi4XC5YrdZ6y1tYWFjv4+fv+8knnwBAyHux8+bNwz333IMFCxbUCOTqzjyNubd27v49evRoVDgUFxfD7XYDQK0hO9W6dOkCoOkB2ZC6hgLFxsYCQLBcjTV69Gjcf//9eO655zBnzhxIkoRu3bph+PDhmDp1KqZMmRLyM28NRUVFANCoC4AuXbrgr3/9K37/+9/jjjvuwB133IGcnBxcfPHFmDx5MmbOnNnsmnxLxyjXdQxUb3e5XCguLkZqamqLXqe5qo/BpKSk4HFyvoaO19Y+7qh1MZA14qWXXsLrr7+O9PR0vPDCCxg2bBjS0tJgs9kAANdffz3++9//1hnWM2fOxNKlS/Hll19i4cKFIYOxuqYTHR2NGTNmtFrZ3333Xfh8PphMppDDY6qbqjdt2oR9+/Y1OoDVrPpvWZe2CMenn34at912G5YtW4YNGzZg48aNeOutt/DWW29hyJAhWLt2ba1bHi0lhMCOHTsAVN3SaIw777wT11xzDT755BNs2LABGzZswKJFi7Bo0SI88sgj+Prrr5tVaz6/xact1HcxfL6GjgEltNVFGbUOBrJGfPDBBwCqekdfeeWVtR4/ePBgvb8/fvx43HbbbZg8eTJuvvlmVFRU4K677qqxT/W9VUmSsGDBglb78laPPT63ibi+fZ977jkAP1/N79u3r1GvU73/gQMHIIRosJaclJQEq9UKj8eDI0eOoF+/frX2OXLkCADUajKvrsU5HI6Qz11dW29vnTp1wp133hnseb5161b88pe/xNatW/Hss8/isccea9XXW7FiBUpLSwFUHWONlZaWhltuuQW33HILgKrPeN68edi8eTMeeOABvP32261azsY4evRoyO3Vw6RsNluN+9vtfQxUH4PFxcWw2+0ha8l1Ha+kDbxc0ojqsZk5OTm1HtuzZw927tzZ4HNccsklWL16NRISEnD33XfjySefrPF4ZmYm+vXrB4fDEbx/21KbN2/G3r17YbVaUVpaCiFEyJ/q8c3vvvsu/H4/AASHbqxYsQKnT59u8LUGDx6M5ORkFBYWYunSpQ3ubzKZgsNO6hrvWT1G+vwOYtUnvFCd6AoKCrB9+/YGX78pqk/+1X+bxhoyZEiwU1JjjpGmKC8vx29/+1sAVZ3Jzu1k1FQ9e/bE/fffD6B2OZv73pvqvffeC7m9eozuiBEjavR/qO8YcDqddfY7aO77ycrKCjZJhzpehRDB7aE6NJL6MZA1orqzz6uvvlqjKSw/Px+zZ89u9Jd7yJAhWLduHdLT0/Hggw/igQceqPH4E088AaCq13eohR+EEPj222+xatWqRr1ede146tSp9Y6BHT9+PNLT03HmzBksX74cQNUY4qlTp8LlcmHq1Kk4ceJEjd/x+/3Be9NAVcA++OCDAIBbb70VX331Va3X2bp1K/Ly8oL//t3vfgcAeO2117B69eoa+y5cuBCffPIJzGYz7r777hqPjR07FgDwzDPPoKysLLi9sLAQs2fPrtVjvKWysrIAAHv37g35+JIlS/DVV1/Vaib1+XzBi6tQF3PNIX6aOnPo0KE4ePAgMjIy6uzVe741a9ZgxYoVtSYpEUIEP/fzy1n93vfs2dMKpa/btm3b8Oyzz9bYtmHDBrz66qsAELz4qFZ9DLz66qs17tlWVlbi1ltvxcmTJ0O+TkOfZX3uvfdeAMDjjz+O77//PrhdCIEnnngCO3fuRHx8fLDlgTSmvcdZUU2NHe/5zTffCIvFIgCIrl27imuuuUZMnDhRREREiD59+ohp06bVO+71/O0HDx4U2dnZAoC4/fbba4xffumll4TJZAq+1qRJk8T1118vxo0bJ1JTUwUAcf/99zf43hwOh4iOjhYAxKefftrg/vfcc48AICZPnhzcVlJSIn7xi18IAMJisYjRo0eL66+/Xlx22WUiJSVFnH8Iy7IsbrvttuC40gEDBohrr71WXHHFFaJz584hx40+9NBDAoCQJEmMGDFCXH/99WLgwIECgDAajeLNN9+sVdbS0tLgZ5eamiqmTp0qxo4dK+Li4kTfvn3FVVdd1aTPo1pdY1Q9Ho/IzMwMvqfZs2eL+fPni2effVYIIcTdd98dHJ86btw4ccMNN4grr7wy+Hl16NBBnDx5ssHPoFr1exs+fLiYM2eOmDNnjrj22mvF2LFjRWJiYvDvO3r0aHHkyJGQzxFqnO5f//pXAUDExsYGP8tp06YFXy8uLq7G+FohhHjllVcEABEdHS2mT58u5s+fL+bPny/27dsnhPh5HPKoUaMa9Z7qGod81113CYPBIPr06SOuu+46MWrUKGEwGAQAcffdd9d6Pq/XKwYPHhws96RJk8Tll18uUlJSRIcOHcS8efNCjkNu6LMUou7jRJZlceONNwoAwmQyiTFjxojrrrtO9OjRQwAQERERYsWKFY1+7w29HrUvBrLCmjIBw65du8SVV14pMjIyhM1mE926dRP33XefsNvtDU5EEer5T5w4Ibp37y4AiNmzZ9eapOLWW28V3bp1EzabTURGRorOnTuLCRMmiJdfflmcOnWqwfK++eabAoBIT0+v8dx12blzZzAEz31+j8cjXnvtNTFy5EgRHx8vLBaLyMrKEuPGjROvvvpqyOdauXKlmDp1qkhLSxNms1mkpKSIoUOHiscee0wUFxeH3P+KK64QSUlJwmQyifT0dDFz5kzx7bff1lnevLw8MXv2bJGamiosFovIzc0Vv//974XD4WjW5yFE/ZNG/PDDD+LKK68UKSkpwaCoDqEdO3aIBx54QIwYMUJ06NBBWCwWkZKSIgYNGiSefPLJWpNtNKT6uDz3JyoqSmRmZopRo0aJ3/3ud2LLli31PkeoQD506JB49NFHxZgxY0R2draw2WwiISFB9OvXTzzwwAMhLxoCgYB46qmnRJ8+fYTNZguWp/p5WyuQ165dK1avXi3GjBkj4uLiREREhBg8eLBYuHBhnc9ZWloq7rjjDpGVlSXMZrPo0KGDuPXWW8WZM2fqnBhEiPo/SyEaPk7+85//iNGjR4v4+HhhNptFx44dxdy5c4MXKY197419PWofkhBN6DZIREREbYL3kImIiFSAgUxERKQCDGQiIiIVYCATERGpAAOZiIhIBRjIREREKsBAJiIiUgEGMhERkQowkImIiFSAgUxERKQCDGQiIiIVYCATERGpAAOZiIhIBRjIREREKsBAJiIiUgEGMhERkQowkImIiFSAgUxERKQCDGQiIiIVYCBTq5k7dy4kScLTTz9dY/vSpUshSZJCpSIi0gYGMrUqm82GZ555BqWlpUoXhYhIUxjI1KrGjh2L9PR0PPXUU3Xus3jxYvTp0wdWqxWdOnXC888/344lbFsu2YXT/tPY69mLTa5NWFGxAv+x/wfvlb+ndNGISOVMSheA9MVoNOLJJ5/E9ddfj7vuugtZWVk1Ht+2bRuuueYaPProo5g1axY2bdqE22+/HUlJSZg7d64yhW4mIQSKAkXID+SjwF+A0/7TKJfLQ+4rQYIsZBgkXgMTUWgMZGp106ZNQ//+/fHII4/gzTffrPHYCy+8gDFjxuBPf/oTAKB79+7Yu3cvnnvuOdUHskd4gsFb4C9Agb8AXngb9bsCAg7ZgThjXBuXkoi0ioFMbeKZZ57BZZddhnvvvbfG9h9//BFTp06tsW348OF48cUXEQgEYDQa27OY9XLJLhzzHcNp/2nk+/NRIpdAQDT7+crlcgYyEdWJgUxt4pJLLsGECRPwhz/8QfU133NVypU47DuMg96DOOU/1aIAPp9dtrfacxGR/jCQqc08/fTT6N+/P3r06BHc1qtXL2zcuLHGfhs3bkT37t0Vqx07ZAcOeQ/hkO8Q8v35rRrC52IgE1F9GMjUZvr27YsbbrgBL7/8cnDb7373OwwZMgSPP/44Zs2ahc2bN+OVV17B3//+93YtW1mgDId8h3DIewhnAmfa5TXLA6E7fBERAYAkhGib6gCFnblz56KsrAxLly4Nbjt27Bh69OgBr9eL6kNt8eLFePjhh3Hw4EFkZGTgzjvvrHWvuS04ZSf2ePbggO8AigJFbf5650s3pmNW7Kx2f10i0gYGMuneWf9Z7PTsxAHvAQQQUKwckVIkbom/RbHXJyJ1Y5M16ZIsZBz2HcZOz06c9p9WujgAAKdwwid8MEtmpYtCRCrEQCZdccku7Pbuxi73LlSICqWLU4tdtiPJmNSs3/XJovZP4KftQsAoAWaDBItBqvqvUQr+22TgXOJEasdAJl0oChRhp3sn9nv3ww+/0sWpU6hALnL5UeQOwO6TYfcG4PDJsHtlOP3yOeHbsteVgKqgNkowGwCb0YA4iwHxViPiLUbE//T/sRYDDFwIhEgRDGTStBO+E9jq3oo8f57SRWkUe8AOnNdivfmMC3tKPW36ugKARxbwyNVdRmTkO2vvJwGItRiqQtpa/V8jUmxGJNmMXLWLqA0xkEmTCvwF2OjaqJkgrhZqrus4q3rmtxYAyr0yyr0yjp/X4m8xSEiLNCIj0oyMSBMyIk2It6pnZjUirWMgk6YUB4qx2bUZh32HlS5Ks4SaHCTeoo1Q88oCJyv8OFnx8y2BaLMBWVEmZEWb0THKjNQI1qKJmouBTJpQIVdgk2sT9nn3tdlMWu0hVCDHWdRTQ26qCp+MfWVe7CurWmTDapDQMdqMbvEWdIu1INKs3fdG1N4YyKRqPuHDNvc2bHNvU3VnrcYK1WStp2ZfjyxwyO7FIbsXnwHoEGVC93grusdZdPU+idoCA5lUSQiBfd592OTapMrhS83lFV64ZTdsBltwW4zZAAOAFnakVh0BIK/Sj7xKP9acqkSKzYju8RZ0j7MiLZKnHqLz8VtBqnPWfxZrnGvabY7p9maX7TUC2SBJiLUYUObVWyTXVOgOoLDAhY0FLsRZDOgWZ0GvBCs6RHGiFCKAgUwqEhABbHFvwXfu7yDrrr74s3K5HKlIrbEtzmLUfSCfq9wr47tCN74rdCPFZsSAZBsuSLTBYmSHMApfDGRShUJ/Ib5wfoHCQKHSRWlzIXtaWw21hhmFi0J3AKvyKrHutBMXJFoxINmGlAiemij88KgnRclCxnfu77DFvUXRhR/aU+ie1uzw5JUFthe5sb3IjawoEwamRKBHnAVGTvtJYYKBTIopDhRjVeUqnA2cVboo7SrUushaGYvcXqo6gzkQZZLQL8mG/sk2XrSQ7jGQqd0JIbDdsx2bXZvDplZ8rpA1ZBXN1qUmlX6BzWdc+OaMCz3jLRiREYkkG09bpE88sqldlQZK8UXlF8gP5CtdFMXYZTuEEDVmtGINuX4CwI8/TUDSJ9GKEemRHNdMusNApnazy7MLXzu/1sUEHy0RQABO4USUFBXcFmU2wGxAi1d10jsBYHeJB3tLPbgwyYZhaRGI4cUM6QQDmdpcQASwzrkOu727lS6KapTL5YgyRNXYFmcxosgdfk34zSELYEeRGz8Uu9E/2YaL0yIRxWk6SeMYyNSmnLITn1Z+itP+03Xuc3jTYaz52xqc/P4k7AV2zHt3HvpN6hd8/Ptl32PTW5tw8vuTcJY6ce/6e5HVN6vB11732jpsfGsjyvLKEJUYhQuvvBCTH54Ms61qIorv/vcdlj+2HJ5KD4ZePxTT/jIt+LvFJ4rx+ozX8bvVv4Mt1lbXSzSbPWBHpimzxrY4i4GB3ER+AXxX6Mb3xW4MTonARakRsJkYzKRNPHKpzRT6C7HIsajeMAYAT6UHmRdk4upnrw75uNfpRe4vcjHlkSmNfu1tH27D8j8vx8T7JuKBbx7AtS9fix1Ld2D548sBABXFFXj/7vdx5Z+vxP9b/P+w7X/bsOfzPcHf//DeDzH54cltEsYAhz61Np9cta70a3tLsanAiYCs3QVIKHyxhkxt4qD3IL6o/AI++Brct/e43ug9rnedjw+ZNQRAVa21sY5uOYrci3Ix6OpBAICk7CQMnD4Qx7cdr3quY8WwxdowcPpAAEDXEV1xZv8Z9JnQB9sWb4PRbMSFUy5s9Os1ld4XmVCKJyDwVb4Tu0s8GN8xCp1iLEoXiajRWEOmViWEwGbXZqyoXNGoMG4ruUNzcXLnyWAAFx0rwt4v9gaDP6VLCrxOL/J25aGytBInd5xERp8MOMucWPnkSsx4Zkablk9vyzCqTYkngEWH7PjkmAMV7ClHGsEaMrUan/Dh88rPcdh3WOmiYNDVg1BRXIGXr3gZQgjIfhnDbhqGcfeMAwBExkfihr/fgH//v3/D5/Zh8KzB6DWmF/57538x4uYRKDlRgjdueAMBXwAT75+I/lP7t2r5Qk6fySbrVre31IPDdi8uyYjEwGRbjaFmRGrDQKZWYQ/YsaxyGYoCRUoXBQBwcMNBfPnXL3H1c1cjZ3AOio4U4aM/fITPn/scE34/AQDQb3I/9Jv8c+exQxsP4fTe05jxzAw8MfgJzP7XbMSkxuCvY/+KLsO6ICYlptXK55AdkIUMg/RzrZiTg7QNT0Dgi7xK/FjqwRXZMUi08cKH1IlnAGqxAn8BFjkWqSaMAWDlkysx+JrBuHj2xcjsnYl+k/th8p8m48sXv4Qs127C9Hv8+PDeD3HNC9eg6GgRZL+MrsO7Iq1bGlK6pgSbvluLgIBDdtTYZjMaYONqR20mr9KPBftK8c0ZJ2TBTl+kPgxkapF8fz6WOJbAJVxKF6UGr8sL6bxFCaTqsAtxLl71f6vQc0xPdLywI+SADNn/c2gHfAHIgda/D8n7yO3PL4B1p514Z385Cl3hPUENqQ+brKnZTvtP42PHx/DC26Ln8VR4UHj052UXS46XIO+HPEQlRCEhKwGVpZUozSuFvaAqwM4erFqMIjY1FrFpsQCA9/7fe4jLiMOUh6uGRvWZ0Afr/r4OWX2zgk3WK59ciT4T+sBgrBl6BfsKsGPpDty77l4AQGq3VEgGCd+8+w1i0mJw9uBZZA/IbtF7DKVcLkdHdKyxLd5qxBkXxyK3tQKXH2/vL8O4jtG4MKlthrYRNRUDmZrllP8UPnZ83Co9qU/sPIFXr3w1+O+lDy0FAAy5bghuePUG7F65G/+947/Bx9+5+R0AwIT7JuDyBy4HAJTmldaoEY+/dzwkScKKJ1egPL8cUUlRuGDiBbjioStqvLYQAu//9n1c9cRVsEZZAQCWCAuuf/V6fPj7D+H3+jHjmRmIz4xv8fs8H8ciK8svgJUnKpBX4cP4jtEwc5lHUpgkBG+mUNOc8p3CxxWtE8bhrIelByZGTayxbXuhC6vyKhUqUfhKsRlxVW4MV5IiRfGGFTVJni+PYdxK7AHWkNWi0B3A2/vL8WOpR+miUBjj5SA12knfSXxS8UnYr9bUWkLN1pUaYcTQ1AhEmw2INEkwSBIMAAwSYPhpDK0QAgEByABkIeDyC1T45Jo/fhmeABu/msIrC3x8zIGTFT6M6RAFI5uwqZ2xyZoa5bjvOJZXLGcYN5MBBiQZk5BqTEWaKQ0JhgREG6IRZ4hrs8kqfPLPQV3iDqDA5Ue+049Clx/M6vplRJpwVW4MWyyoXTGQqUHHfcexrGIZAmDv38Y4P3xTjalIMibBJKmjQSogCxS5Ayhw+lHg8qPA6cdZhnQtNqOEyTkx6BrH+bCpfTCQqV6nfKewpGIJw7gBsYZYdDZ3RmdzZ2SYMlQTvo0VEAKnK/04WO7FoXIvSjz8vAFAAjC+YxQGJEcoXRQKAwxkqlNpoBTvO96HR7CjSyjpxnR0NndGriUXycZkpYvTqordfhz6KZzzKv2h5lIJKyPSIzEiI1LpYpDOMZApJKfsxAeOD0J2PApXBhiQY86pCmFzLqIMUUoXqV04/TKO2L04WObFIbs3bJu2ByTbMD4rigtUUJthIFMtfuHHYsdiFAQKlC6KKkRJUehr7Ys+1j6INkQrXRxFOX0ydpW4saPIjXJv+C1r2CPegik5MTCxBza1AQYy1SCEwIrKFTjkO6R0URTX0dQR/az9kGvOhVFib9tzyULgqN2H7UUuHLaH15j07GgzZnSOgdXIaRyodTGQqZZvXN/gW/e3ShdDERbJgt6W3uhr7YtEY6LSxdGEMk8AO4vd+L7YDZc/PE4nqRFGXNMlDtFmhjK1HgYyhXTAewCrKleFTe/qSCkSQ2xD0MfaB2bJrHRxNMkvC+wp8WBDgRMOn/6bs+MtBszqGocEK1tPqHUwkKlOBf4CLKtYBqdwKl2UNmOBBQNtAzHANgAWieNNW4NfFthe5MamAifcOu8BFmmSMKtLHNIitTXMjdSJgUz1csgOLKtYhsJAYcM7a4gRRvSz9sNg22BEGjicpS24AzK2nHFha6ELeq4wR5ok/LJbPBJtrClTyzCQqUE+4cNnlZ/hiO+I0kVpFb0svfAL2y8Qa4xVuihhocInY2OBE98XuaHXXI61GHBjtzjEcKpNagEGMjWKEAIbXRuxzbNN6aI0W44pByMiR+huEg+tKPUEsO50JfaXeZUuSptIthlxQ7c4RJjY0Yuah4FMTbLXsxdrnGs01dnLIlkwKmIUelt7K10UArCv1INVeRVw6rBHdkakCdd1jYPFyHHK1HQMZGqyU/5T+LTiU7iES+miNKiTqRMui7oMMYYYpYtC53D6ZKzKq8A+HdaWO8WYMbNzLJdvpCZjIFOzlAfK8UnFJyiRS5QuSkisFWuDXmvLPeItmNopJriGNVFjMJCp2TzCg5UVK3Hcf1zpotTAWrG26LW23C/JiiuyeQxS4zGQqUVkIeNr19fY6dmpdFFghhmjI0ezVqxR+0o9+Oxkha7GLl+UGoFLO4THIiTUcgxkajSfLGCu477YLs8urHeuh6zQwJY4QxymRE9BkjFJkden1lHmCWDxETsK3drpNNiQsVlRGJzC9ZSpYQxkapSTFT4sPWrHlZ1ikBMTekarE74TWFG5ot3XT+5o6ojLoy5HhIEnPT3wBGR8erwCB8r10YRtAHBt1zhkx3BKVqofA5kaZPcGsHB/GZx+AYMEjM+KRv9kW8h9SwOl+Lji43ZbR/lC64UYGTGSqzHpjBACGwqc2Fig/p78jRFpkjC3RzxiOXEI1YOBTPXyyQLvHSjDGVfNJsQhKTZc1iH0Yu1u2Y1PKz9Fnj+vzcplgAGXRl6KC6wXtNlrkPL2lXqw/LgDeuiEnR5hwi+7x3EtZaoTA5nq9fFRO36so/drl1gzruwUel3YgAhgnXMddnt3t3qZIqQITI6ejExTZqs/N6nPGacfi4/YYdfBhNgXJFoxOYc9ryk0BjLVactZF9acqqx3nxSbETM6xyK+jiXotru3Y4NrAwRa5zBLNibjyugrOaQpzFT6ZCw+Ysdpp1/porTYxI513/Kh8MZAppDOuvx4e38ZGjMCJdIkYXpuLLKiQ3daOeo7is8qPoMXLeukk2pMxbToabAZeDILR96AwIdH7DhR4VO6KC1ikoAbu8dzyUaqhbOgUy1+WWDZMUejwhgAnH6B/x4qx+4Sd8jHc825mBk7E7GG5q+ulGHMwPSY6QzjMGYxSpjZJRa5Gu+t7BfA0mN2eALab4Kn1sVAplrWn65s8jjQgACWH6/A+tOVCNXokmxMxqyYWcgwZjS5PB1MHXBVzFWwStYm/y7pi9kgYUbnWHSNDT30TitKPTI+O1GhdDFIZRjIVMMxhxdbC0PXdBtj8xkXlhx1wCfXDuVIQySmx0xHT0vPRj9fpikTU6OnwiJp+wRMrcdkkDAtNwZdYrVdU/6xzIvvi5r/XSP9YSBTkNtfNSFDSx0o9+K9A2VweGvXsk2SCROiJuBi28UNPk+aMQ1XRl8Js6TtEy+1PqNBwrTcWORovPl6zenKkN8TCk8MZAr67GQFHK00tOSMK4C3D5Qj3xm6A87QiKGYFDUJJoTu2JJiTMFV0WymprqZDBJm5MaiY5R2O0d5AgKf59U/koHCBwOZAAC7S9ytvtpOhU/Gvw+UY19p6Kk0u1q6YmbMTERL0TW2xxpicVX0VezARQ2yGCVc3SUWKTbtzoB1qNyLH+v4jlB4YSATyr0BfNFGV+lVPUod2FjgDPl4qikVs2JnIdWYCqBqxaYp0VMQaYhsk/KQ/liNBszoHIsIo3ZnwPoirwIuP3tdhzuOQw5zQgj851A5Tla0/YQLfRKsuDw7OuTUgX7hx+eVn6OnpSe6WLq0eVlIf044fFh0qFyh9cZark+CFVM6ccKbcMZADnPfF7uxsh2HX2RGmjCjcyyizLUbZ4QQIefGJmqsHUUufH5Su/dkr+kSi84aH9JFzccm6zDmCchYf7p9T16nnVUzgJ111a6RM4yppQYkR2CAhqel/OxEBbyNnZGHdIeBHMY2FrjgVGAZHbtPxnsHynGwnB1ZqPWN7RCF7DqmcVU7u0/Guna+SCb1YCCHqRJ3AN8VKrfWrFcW+OiIA9sKQ3f2Imouo0HCVZ1iEGfR5ultR5EbeRqfr5uaR5tHLLXY6lMVCDGZVrsSAFIjtFmTIXWLNFf1vNZix2sB4POTFSGnoCV9YyCHocPlXhy2K38FPjQ1Ah012rRI6pcaYcKIdG0Onyt0B7CHY5PDDgM5zASEwOoG1jhuD4lWI0ZmaPNkSdpxUVoEMjS6zOHX+U4EWEsOKwzkMLOt0I0Sj/Jz507KiYY5xHhkotZkkCRckR2tyabrcq+MnVx8IqwwkMOI0yfXOWNWexqaGoEOUWyqpvaRouGm600FTg6DCiMM5DCyPr8SHoW/3GyqJiVotem60i8UHQ1B7YuBHCbKPAHsKla2k4gENlWTMgyShEkabbr+9qyL81yHCQZymPj2rAtKN3wNYVM1KSg5woQRGmyd8QQEvjnDWnI4YCCHgUqfjB+Kle0cEmM2sKmaFHdRagSSNLhU47ZCFxxe5TtjUttiIIeBrYUuKDBDZg0j0iPZVE2KM0gSRmnwwtAvqqa6JX1jIOucJyBjh8JDJxKtRvRNsipaBqJq3eOtyNRgB69dxW6UqWDIIrUdBrLO7ShyK96zelRmJAxcyYlUZHRmlNJFaDIZVU3XpF8MZB3zywJbzyr7Bc6INKFHPGvHpC7ZMWbkxmivg+EPJR74lJ6EntoMA1nHfihxo1Lhm8ejM7V3v47CgxZrye6AwJ4SznGtVwxknZKFwLcKD5XIjTEjJ8aiaBmI6pIWaULvBO213rDZWr8YyDq1v8yLMq+ykwmM0mANhMLLyIxIzZ0EC90BnHAov1obtT6tHYvUSErXjrvFWZCuwZ6sFF4SrEZckKjBWnIRa8l6xEDWoQKnHwUuv6JlGJhsU/T1iRprYEqE0kVosoNlXtg5UYjuMJB1aJfCs3IlWA3opMEerBSe0iNNmhuXLANcmlGHGMg645cF9pYq2wtzYHIEJI47Jg0ZmKK9Fp2dxW74OQRKVxjIOnOg3Au3ghOBmCSgrwbvyVF46xlvhU1jS0E5/QL7yjgESk8YyDqjdHN17wQrbCYeVqQtJoOEC5M0WEtms7Wu8MypIw5fAMcVHg6hxQ4yRADQX4MdEfMq/ezcpSMMZB35sdSr6JrHGZEmDnUizUqwGtE5VnudEfeVeZUuArUSBrKOKN+ZS3s1DKJzDUzWXgvPjwp/76n1MJB1osQdQIFTubHHBlRNBkKkZbkxZlg0tm53vtPPZRl1goGsE0rXjjvGmNmZizTPaJA02WzNWrI+8AyqE0oPf+gWy9ox6YMWW3oOlPM+sh4wkHXA7g2gyK1sk1VXDZ7EiELpHGuBthqtq5qtHT42W2sdA1kHjio81CnFZkS81ahoGYhaS4TJgI7R2mu2PsRasuYxkHXgmF3ZLyJrx6Q3WjymD3L4k+YxkDVOCIFjFcrWkLV4z42oPl012CfieIUPnoCya6BTyzCQNe6MKwCXX7npQKJMEjI4GQjpTKLNiCSN3YYJCCg+Ux+1DANZ444q3FzdOdbClZ1Il7posOXnpMKtZdQyDGSNU7pDV2YUa8ekT1pbIxkATlUqNzkQtRwDWcN8ssCpSmUDmXNXk15p8dgucPnh4xrJmsVA1rATDh8UXPoYBglIsWnvpEXUGPFWo+bWSJYFkM9asmYxkDXsqEPZ+8cpNiNMGpv3l6gptFhLzlO41Yyaj4GsYUr3qNTiyYqoKbR4jCt9G4uaj4GsUT5ZKD5dphZPVkRNkR6hvWM8r9IPIXgfWYsYyBpV5PJD6a8cA5n0TovHuCeg/MU6NQ8DWaPOupT9wrFDF4UDLXbsAngfWasYyBp11q1sT8pkduiiMJGmxWbrCva01iIGskaddSn7hYuzaGtaQaLmirNo7zTJjl3apL0jjQAAhQo3WUeZeOhQeIgya+9YL/PK8HOCEM3R3pFGsHsDcCs5IwiAGA2epIiaI1qjx3qZhx27tEabR1qYU7pDF6DNWgNRc2g1kEu9yp8nqGm0eaSFOaXvHwPaPUkRNZVWj/USDn3SHG0eaWGukIFM1G60eqyXeWWli0BNpM0jLcypoclaqycpoqbSagdG1pC1R5tHWhgTQih+b0gCEGniGGQKDyaDhAgNTg6i9HmCmo6BrDEuv4DSoxmiTAYYJO2doIiaS4stQg4OfdIc7R1lYa7Sr/x9ITPnBKEwY9bgrHQCQBlryZrCQNaYSp/ygczaMYUbDeYxAKCUY5E1hYGsMRUqqCFr8HYaUYsYNXoRWupR/nxBjcdA1hg11JC1eWoiaj6N5jHsbLLWFAayxlT6le+kwSZrCjdabbL2KjzFLjUNA1lj1FBDlgW/5BRetNpZ2aPVgocpBrLGqKGXNb/iFG60eg3KGrK2MJA1Rh01ZKVLQNS+tNoq5GEgawoDWWPUUEMOaPTkRNRcWs01L6+eNYWBrCGyEHCpoFOXCirpRO3Kr9GLUNaQtYWBrCF+WR33byt9MoRGT1BEzVGh0atQ3kPWFgayhqjlPpYA4FRBTZ2oPQRkodnj3SsLXjxrCANZQ9R0O0irNQaiplJDv43mEuB9ZC1hIGtIQBUN1lUYyBQutH6ss9laOxjIGhJQ0XlBDXNqE7UHrQcyJwfRDgayhqjpa6X1kxRRY2n+WFfTiYPqxUCmZtH8SYqokbR+rHPuee1gIGuImr5WapgxjKg9aP32jFYXxghHDGQNUdOFbjmXdaMw4fAykKl9MJA1RE3fqyJ3gFNoUlg44/IrXYQWYZO1djCQNURN36uAAIpcrCWTvtm9Ac1OClLNqKLzBtWPgawhRjUlMoACjdcciBpS4NT+MW5im7VmMJA1xKayS109nKyI6qP1Y1wCYGYgawYDWUMMkqSqUNb6yYqoIVpvBbIwjDWFgawxkSb1fGRnXX527CJd0/pFJ2vH2qKeszs1SqRJPV8wduwiPdNDhy6zUekSUFMwkDUmQkU1ZED7TXpEddF67RgArEZ1nS+ofvy0NEZNNWQAOF3pU7oIRG3itA4COcbMU7yW8NPSGDXdQwaAI3YGMunTEbtX6SK0WJxFXecLqh8/LY1RWyA7fDLO6KAmQXSucm8AZ3XQPyLWwpvIWqKuszs1KEJlTdYAcLBc+zUJonMd0skxHcsasqbw09IYtdWQAeBguUfpIhC1Kr1cZMbxHrKm8NPSGDUG8hlXAHau/kQ64QnIOFGhj74RbLLWFvWd3aleau2kcVgHHWCIAOCo3QdZ28OPAQAmSX2jMqh+6jy7U50iTAZEqfBLppcmPiK9HMsxFgMklS1IQ/VjIGtQss2kdBFqOe7wwRvQQbWCwposhG5ae+LYXK05DGQNSo5Q3xctIIBDOjmRUfg67vDBrZMLy1h26NIcfmIalKLCGjIA7CxyK10EohbR0zHMDl3aw0DWoGSbOr9oJyp8KOTc1qRRdm8AB3Ry/xhQ73mC6sZA1iA1NllX26GjGgaFl++L3dBHY3WV9Eh1tqRR3RjIGmQzGlQ7afzuEg88AVnpYhA1SUAWumqujjRJiLeq98KdQlPnWZ0apNbmKK8ssKeEM3eRthwo96JS42sfnyuDtWNNYiBrlFoDGWCzNWmP3o5ZNldrEwNZo5Ij1PuFK3QHcFInUw+S/hW6/LqZKrNaRqRZ6SJQMzCQNSpVxR27AGB7oUvpIhA1it5qxwCbrLWKgaxRaREmWA3qnRZvX5kXRRwCRSpn9wawq1hfgRxrMSBKpZ0+qX781DTKIEnoGK3eZikB4Kt8p9LFIKrXxgIndNSXCwBrx1rGQNawnBj1BjJQ1XP1VKW+7s2RfhS7/dhVrL8RAQxk7WIga5jaAxkA1p9mLZnU6avTTl1NBFKNgaxdDGQNS7EZVb/e6YkKH45w0QlSmdOVPuzX0TSZ1QwShzxpGQNZwyRJQraK7yNXW3e6EkLosS5CWqXXlpuOUWZYjTytaxU/OY3rFGNRuggNOusKYG+p/u7VkTYdsXtxXGfjjqt1jVP/+YDqxkDWOC3cRwaAr/OdCMisJZOyhBBYf7pS6WK0GQaytjGQNS7BatTEQuRlXhnfnOFkIaSs7UVunHEFlC5Gm0iyGpHABSU0Tf1ncmqQVmrJGwucOMvJQkghZZ4A1rF2TCrGQNYBrQSyDODT4w4E2MGL2pkQAitOVMCn45VBGcjax0DWga6xFqh4Fs0azrgC+KaATdfUvrYXuXW3gMS5bEYJHaI43EnrGMg6YDMZkKuRWjLApmtqX3pvqgaALrEWGCSNXJVTnRjIOtEz3qp0ERqNTdfUXsKhqRpgc7VeMJB1olu8BUYNXSCz6Zrag96bqoGq2blyY7XTQkZ1YyDrhM1oQK4GJgk518YCJwqcbLqmtlEaBk3VQNXsXDbOzqUL/BR1pHeCdpqtgaqm64+O2FGp9/ZEaneegIzFR+y6b6oGgAsStfW9p7oxkHWkW7wFVq10t/6J3Sdj6VE7Z/GiViOEwLJjFShy63MCkHNZDBJ6auxCnOrGQNYRs0FCjwRtNVsDwMlKP77I03/TIrWPr/KdOBQmK4z1TLDArLGLcKobA1ln+ibalC5Cs+wsdmN7ITt5UcvsLfVgcxhN0dpPo993Co2BrDNZUSbEW7T5sX6RV4njjvCo2VDrK3D6seK4Q+litJtEqxFZGlh+lRpPm2duqpMkSbhAo1fNAsCSow6UefR/749aV4WvqhOXP4y6IlyYxHvHesNA1qH+yTZNjUk+lzsg8OEROzyBMOgeS63CLwssOWqHIxy6VP/EJAH9krR54U11YyDrULTZgD4aHgpR5A7gwyN2+NjzmhoQkAWWHnXgVGV4jWfvmWBFhImnb73hJ6pTQ1MjlC5Ci5ys8Fc1QTKUqQ6yEPjkuCNselSfa2Aya8d6xEDWqWSbCV00Pp3eMYcPSzhGmUKQhcDy4xXYXxZ+YZweaUJmlLa/2xQaA1nHLkqNVLoILXbY7sPSYw7WlClI/mnBiL2lHqWLoohBrB3rFgNZx7JjzMiI1P4aqQfLvfjoKO8pExAQAsuOObC7JDzDON6i7f4hVD8Gss5p/V5ytSN2Hz48bIc3wFAOV35Z4OOjDvwYhs3U1YalR3LdYx1jIOtcj3gL4jQ6Ucj5jlf48P7hcjj94TO8hap4AjI+OmrHgfLwDeMEq4ELSeicPs7UVCeDJGGITmrJAHCq0o+395fhrCu8hrmEs1JPAO8cKMcRu77XNW7IsDTWjvWOgRwG+iXaYNPqTCEhlHtlvHugDPvLwvM+Yjg55vDi7f1lKA6DlZvqk2DlveNwwEAOAxajhMEp+qklA4BPrppmc2O+E0LwvrIefXfWhfcP2eFmvwHWjsMEAzlMXJQWgWiz/j7urwucWHrMwc5eOuKXBVYcd+DLU5Xgp8racTjR3xmaQjIbJFySof1xyaHsL/PivYNlKPeGd7OmHlT4ZPz3UDl2hemwplBYOw4fDOQw0jfRirQIo9LFaBNnXQEs3F+Gg+U8kWvV8Z/uF4fbvNT1Ye04vEiCN+DCygmHD/85VK50MdpUnwQrxmZFcfJ9jfAGBNaersSOIrfSRVGdyTnRml1OlZpO+9M4UZNkx5jRLc6Cgzoez7mn1INjDi8uz45B1ziL0sWhehx3eLHiRAXKvRxbfr7MSBP6JLB2HE5YQw5DpZ4A3vixFOHQD4q1ZXVirbh+EoC5PeKRpoOpb6nxGMhhanVeBbYWhsfJMMoksbasIqwVN2xwig1js6KVLga1MwZymHL7Zfxjbylc4VBN/knvBCtGZUYizqLPjm1qV+mT8XW+EzuLw+NCsLlizAbc3CseViNbdcINAzmMfVfowpd5lUoXo10ZJWBQSgQuTotgM3Y78QRkfHvGha2FLvhYKW7QVZ1i0JP3jsMSAzmMyUJgwb4yFIXhtIRWg4SL0iIwOCUCFh1NK6omfllgR5EbmwqcYdUS0xKdY8y4pmuc0sUghTCQw1yB04939pchXCsuUSYJw9MjcWGyDUZOvtAqZCGwp8SDr/OdsLNK3GgmCZjfKwEJVt5SCVcMZMKGfCc2FDiVLoai4i0GjMyIRK8EK2dFaiYhBA6We/FVvjMsW11aamRGJIan63M2PWocBjJBFgLvHChHgZMzJMWYDeifbMOFSTZdzv3dFpx+GT8Uu7GjyI0y9pxulkSrEfN7xsNo4MVgOGMgEwCgyO3Hwn1l8PNoAFA1p2z3eAsGJkcgO8asdHFU6XSlD9uL3Pix1BMWY9rb0rVdY9EphsPywh0DmYK2nHVhzanw6nXdGMk2IwYk23BBojXsh6L4ZIG9pR5sL3ThjIvN0q1hSIoNYzjmmMBApnMIIfCfQ+U4WcGm61AsBgk94i3oFmdBpxhL2PTO9ssCxx0+HCz34scyDzysDreajEgTftk9jh0KCQADmc5T5glgwb4yeGUeFvUxSkCnGDO6xlnQNc6CGLO+esZW+mQctntxqNyLow4vxw+3AatRwk094hHPXtX0EwYy1bKzyI3PTlYoXQxNSY80oVucBV1jLZqdf7jI5cchuxcHy71cArEdcAIQOh8DmUL63+FyHLb7lC6GJtmMEtIjTVU/EVX/VVstyO4NoMDpr/pxVf3XyR597WZAsg0TOvK+MdXEQKaQKn0yFu4vg4Ntla3i/JBOshkRYzbA1sbTd7r9Mir8MkrcAYavSqRGGDG7ezxMHOJE52EgU51OV/rw74PlHNLShowSEG021PwxVf03wmSAUQKMkgRJAqrP37IAhABkCARkwBWQUeEL/cPcVRezoWpZxSSbNm9rUNtiIFO9vi9yYyXvJxO1iknZ0eibZFO6GKRS4T2okhp0YbIN/XkCIWqxCxKtDGOqFwOZGjQuKwodotjERtRc6REmduKiBjGQqUFGg4TpubGItfBwIWqqWLMBV3eJhZmduKgBPMNSo0SZDbi6cywsPKkQNZrFIOHqLrFcqIQahUcJNVpqhAlTO8WAkUzUMAOAq3JjkBrB2z3UOAxkapIucRZc1iFK6WIQqd74jtHoHMsVnKjxGMjUZENSIzA0NULpYhCp1oj0SPRPZo9qahoGMjXLZR2iMCiFJxyi8w1ItmFERqTSxSANYiBTs43LisYA1gKIgnrGWzA+i7d0qHkYyNQi47Oi0C+RK9YQ5USbMSUnBhLXNqZmYiBTi0iShMuzo9GHy8hRGMuNMePqLrEwclggtQD741OLSZKESTnRkIXAj2VepYtDCpIDAXz5j2exc8WHcBSfRWxKOgZOuRaX3XxPsObocVbgs5cfx951K+EsL0ViZjaGXXcLLrp6bp3Pu+Wjd7Fj+fsoOLwPANCh14WYcMeD6HjBwOA+X73zKr56+xUAwKi5d2LkjbcHHzvxwzZ8/NR9uP2dz2E0te5pr1ucBVd1imEYU4sxkKlVGCQJUzrFIHDUgQPlDOVwtX7hy/j2w4WY+djfkNalJ/L27sSHj94FW3QMhl93KwDg0+cfxuGtX2PWE68hIbMjDm5eh4+fvg8xKenoPWpiyOc9sm0j+k2cjikXDoHJYsNXC1/Ggttn4jcfbkBcagbyD+zBl68/gzkv/htCCLz9mxvQ7Rejkd6tNwJ+P5Y+eS+mPfRCq4dxnwQrJuVEw8BmamoFbLKmVmOQJEzNjUFXjr0MW8e/34reoyai58jxSMjMRt+xV6LbL0Yjb/eO4D4ndm3FwCnXovPg4UjIzMbQGbOR3q0P8nZvr/N5r/3L67j4mnnI7NEXqbndMP3hFyGEjMNbvgIAFB47iPSuvdFl6Eh0vegSpHfrjcJjBwEAX7/zCnIHXoyOfQa06nvtn2TDZIYxtSIGMrUqoyRhWm4MusYxlMNRzoVDcGjL1yg8fhgAkH9gN47v3ILuw8cE98nuNwQ/rv8M5WfzIYTA4a0bUHTiMLr9YnSjX8fndiHg9yMiNgEAkN61N4pOHEZZfh5KT59E0fHDSOvSC8Unj+K7T/6L8bf/sVXf55AUGyZmR7MDF7UqrodMbUIIgS9PVWJboVvpolA7kmUZq155Al+9/QokoxEiEMD4X/8Ro+f9JriP3+vBR0/cgx3LP4DBZIIkGTD9Ty9g4ORZjX6dpU/dh4Ob1+I3//saZmvV0LtvP1yIDf9+HQAw4obbcNHVc/HGbTNw8az5kAN+rP7HczCYTJhy71+QO2hYs9/j8PQIjMzg0CZqfbyHTG1CkiSMy4pGgsWI1acqwau+8PDDFx9j58rFmPXkP5DWuQdO79+N5c8/hJiUdAyaci0AYNOiN3Dyh22Y/df3EJ+RhaPbN+Pjp+9HbEo6ul40qsHXWPfWS9j1+RLc8s+lwTAGgIuunlujY9i2ZYtgjYpGdr/BeGHaxfj1e6tQfiYf//3Drbhv+TaYLE0fGXBpZiQuSuOkH9Q2GMjUpganRiDOasAnxxzwyUqXhtrayhcfxai5d+HCCdMAAOndeqOs4CTWv/USBk25Fj63C6te+Qt++fxC9Bw5HgCQ0b0P8g/sxlfvvNpgIH/1zqtY/9bLmP/6YmR071PnfpWlxVj9z//Dr974BCd3b0dyThckZ1f9yH4/io4fRnq33o1+XxKA8R2jMCCZU8ZS2+E9ZGpz3eKsuKFbPKJNPNz0zut2QTLU/JwNBiNkuepqLOD3I+D3hdynobtn6xf+DWveeB43vfI+snr3r3ff5c//CSNu+BXi0jIhAgEE/L7gY4GAH7IcaPR7sholXN05lmFMbY41ZGoX6ZEmzO4Rh/8dtqPQ3fiTIWlLr0vGY+2bf0V8egekdemJ0/t+wIb3XsegqdcDAGzRMcgdNAwrX3wMZmtEVZP1tk3Y/ukHmHTPn4PP88Gffo3Y1HRMvPNPAKqGU33x2jO49snXkZDZEY6iMwAAS2QUrJHRNcpw8Jt1KDpxGDP/XDUmOavPABQeO4T9G79EecFpGIxGpOR0bdT7SbYZMaNzLBKsxhb/bYgawk5d1K48ARlLjzpw1OFreGfSHE9lBVb9/SnsXbsCFaVFiE1Jx4UTpuGyW++FyVzV895RdAaf/+0JHPxmHZz2MiRkZGHI9NkYccNtwV7L/7xlKhIyO2LmY1Wh+sykgSjLP1nr9cbc+nuMve2+4L99bhdevu5SXPf0v5DZo29w+9Yl72LV35+CyWzF1D88E2wur0+PeAsmZcfAYmRPamofDGRqd7IQWHWyEjuL2QOb1EcCcElGJC5OZ+ctal8MZFLMziI3Vp+qYGcvUg2bUcKVnWLQmZPbkAIYyKSoIrcfnxxz4KyL95VJWSk2I6bzfjEpiIFMivPLAutOV+I7TiJCCukZb8EVvF9MCmMgk2ocLvfi0xMOOP08JKl9WAwSRmdGYmAKhzSR8hjIpCqVPhnLj7MXNrW9nGgzLs+ORjybqEklGMikOkIIbC10Y/3pSgR4dFIrsxgkXNohEv2TbFwcglSFgUyqVeCs6vBV4mGHL2odOdFmXJETjTgLa8WkPgxkUjW/LLDpjBPfnnGxtkzNVl0r5vSXpGYMZNKEYrcfq05W4ngF7y1T03SKqbpXzFoxqR0DmTRld4kba05Vsic2NchmlDA6Mwr9k20N70ykAgxk0hx3QMbGfCe2Fbkh8+il8xgkYGCyDcPTIxHBFcZIQxjIpFnFbj/WnKrEYTubsalK1zgLLsuMQqKNzdOkPQxk0rzD5V6sOVWJYvbGDlvpESaM7hCJTjGcg5q0i4FMuiALgR9LPdh8xoUirrccNhKtRlySEYke8RaOKSbNYyCTrgghcKDci00FTpzhghW6FWM2YER6JPomWWFgEJNOMJBJtw79FMynnX6li0KtJNFqxOAUG/ol2WAyMIhJXxjIpHvHHF5sKnDhBMcwa1anGDOGpESgc6yZTdOkWwxkCht5FT5sKnDiCBeu0ASTBPRJtGJwSgRSIkxKF4eozTGQKewUu/3YVezBnhIPKvyy0sWh80SbDBiYYkP/ZBsiOY6YwggDmcKWLASO2H3YVezGIbuXk4woLD3ChMGpNvRKsMLYis3SQgiMGzcORqMRn3/+eY3H/v73v+OPf/wjdu/ejaysrFZ7TaLmYCATAXD6ZOwu9eCHYjcKOWyq3SRZjeiZYEGvBCuSbW3XLH3y5En07dsXzzzzDH71q18BAI4ePYq+ffvitddew4033thmr03UWGwPIgIQaTZgaGoE5vdKwJzucRiQbIPVyM5DbSHBasCwtAjM6xmPW3onYGRGVJuGMQB07NgRL730Eu69914cPXoUQgjMnz8f48ePx4ABA3D55ZcjOjoaaWlpuPHGG1FUVBT83Q8//BB9+/ZFREQEkpKSMHbsWFRWVrZpeSk8sYZMVAe/LHDM4cMRuxeH7V6Ue3m/ubniLAb0jLeiV4IV6ZHKddC66qqrUF5ejunTp+Pxxx/Hnj170KdPH9x8882YPXs2XC4X7r//fvj9fqxZswb5+fnIzs7Gs88+i2nTpsHhcODrr7/G7NmzER0drdj7IH1iIBM1UrHbjyN2Hw7bvThZ4eP6zA1IsRnRKcaMXglWZEaZlS4OAODs2bPo06cPSkpKsHjxYuzevRtff/11jXvLeXl56NixI/bv34+KigoMGjQIx44dQ05OjoIlp3DAQCZqBm9A4EQFa8/VJACpEUZ0jDajY7QZ2dFm1a609NBDD2Hp0qXYvXs3Zs6ciY8//hgWS805sCsrK7FixQqMHz8eEyZMwJYtWzBhwgSMHz8eV199NRISEhQqPekZB/cRNYPFKKFrnAVd46pO5MVuP447fMh3+pHv9KPYHYCer3QNANIiTcHwzYoywabSAD6fyWSCyVR16quoqMCUKVPwzDPP1NovIyMDRqMRX3zxBTZt2oRVq1bhb3/7Gx588EF8++23yM3Nbe+ik84xkIlaQZLNhKRzOiZ5AwIFTj/ynT6ccQVQ6PKj2BPQ5NAqA4BEmxHJNiOSbSZkRpmQFWWGRQed3gYOHIjFixejU6dOwZA+nyRJGD58OIYPH46HH34YOTk5WLJkCe655552Li3pHQOZqA1YjBKyY8zIjvn53mlAFihyB1Do9qPQFYDdG4DDJ6PCJ8PhkxW/Jx1hkpBgMSLBWvWTaDMixWZEotUIo07njf71r3+Nf/3rX7juuutw3333ITExEYcOHcKiRYvwxhtv4LvvvsPq1asxfvx4pKam4ttvv0VhYSF69eqldNFJhxjIRO3EaJCQFmlCWh29jF3+qmB2eH8OaYcvgAqfDKdfQBYCsgBkAQTO+X8ZAgGB4OMBAVgMEmxGCTaTBJvRUPv/jRIiTIbgf+OtBtiM2mhybk2ZmZnYuHEj7r//fowfPx4ejwc5OTmYOHEiDAYDYmNj8dVXX+HFF1+E3W5HTk4Onn/+eVx++eVKF510iJ26iIiIVCD8LomJiIhUiIFMRESkAgxkIiIiFWAgExERqQADmYiISAUYyERERCrAQCYiIlIBBjIREZEKMJCJiIhUgIFMRESkAgxkIiIiFWAgExERqQADmYiISAUYyERERCrAQCYiIlIBBjIREZEKMJCJiIhUgIFMRESkAgxkIiIiFWAgExERqQADmYiISAUYyERERCrAQCYiIlKB/w9sN3bo9mgW3AAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "def barplot(column, horizontal):\n", " plt.figure(figsize=(4, 4))\n", " sns.countplot(x=column, data=df, palette='viridis')\n", " plt.xlabel(column)\n", " plt.ylabel(\"Fake\")\n", " plt.title(f\"Users have Business Account\", fontweight='bold')\n", " plt.xticks(rotation=45)\n", " sns.despine()\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "barplot('is_business_account', True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 407 }, "id": "HpCsoeEb9CuQ", "outputId": "c7c2ec8b-f5dd-4606-8fe4-901cd3da75bd" }, "execution_count": 31, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAGGCAYAAAB/gCblAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6z0lEQVR4nO3deVyU1cIH8N+wDesMgjJIKW64kOJaMrmmCBrZ7YqmXlM0r6kXNKXUKHPtlV7vzYWuhnm7oGZpllqQG+ISKqKClCuaoWAy4AajKItw3j98eS5HUYErDNDv+/k8n8/MOed5nnOeGeY3zzaohBACRERE/8/M1B0gIqLahcFAREQSBgMREUkYDEREJGEwEBGRhMFAREQSBgMREUkYDEREJGEwEBGRhMFAT4VKpYJKpUKzZs1M3ZV6o1mzZsp2JapJDIZqNG/ePOUPe+zYsVLdxYsXlTr+4dcuZV+X0snW1hZt2rRBUFAQLl++bOou1huTJk2StvPHH39s6i7VuK1bt2LevHmYN28eLl68aOruAAAsTN0Borrg7t27OHfuHM6dO4fvv/8eJ0+ehKOjY7Wu89tvv0V+fn61rsOUioqK8O2330plGzZswHvvvWeiHpnG1q1bsWbNGgBA3759a8VeN/cY/uDy8vJM3YVabdOmTYiPj0dUVBTs7e0BAL///ju2bt1a7evu1q0bevbsiZ49e1b7ukwhNjYW169fl8p+/vlnnD171kQ9olIMhlrou+++Q8+ePaHVamFlZQVXV1f07NkTs2bNQtkfwxVCIDIyEj169IBGo4GNjQ06duyI5cuXo6SkRFpm2ePV6enpCAgIgFarRfv27QEA169fx6RJk+Du7g4rKys4ODigdevWGDlyJPbv31+p/l+8eBF//vOf4eDgACcnJ0yaNEn65puXl4fJkyejW7du0Ol0sLKyglarhV6vxxdffKG0y87OhoWFBVQqFTp27Cito6CgABqNBiqVCm5ubiguLq70NqmI0g/nwMBADBw4UCk3GAzK47Fjxyrbdt++fUp5VFSUUj5v3jxp+/zlL3+Bm5sbLC0t4ejoCE9PT4wbNw6//PKL0q68cwz79u2TDk/u3LkTzz//PKytrdG0aVOEh4c/NIbbt29j3rx5aN++PWxsbKDRaNC3b19s3779obYVfe+tWrUK3bp1g729PdRqNZ555hn4+Phg8eLFFd62GzZsUB6PGDGi3PKyMjIyEBwcjFatWsHa2hoNGjSAXq/Hxo0bpXZnzpzB2LFj4e7uDrVajUaNGqFfv36Ii4uT2u3Zswf+/v5o2LAhrKys0KRJE4wdOxbnz5+X2lX29e3bt69S/ssvv2DKlClwcXGBjY0NBg0ahEuXLgH4z+Hk0r0FAHjppZfKXVeNE1Rt5s6dKwAIACIwMFCqS0tLU+rKvgz79u0TZmZmUl3ZqaioSGk7ZsyYR7YbPny4tD53d3elrkWLFspjd3d3IYQQ/fr1e+SyPvjggyeOtbSto6OjcHV1fewyMjMzH7kuAGL+/PlK24EDByrl586dU8q///57pXz69OlV2iZPGgsAkZaWJoQQ4rfffpO2YXR0tNI+MDBQKd+7d69SHhkZqZTPnTtXCCFEUVGRaN269SP7uHr16nJfs1J79+6VXrvy3iuxsbFK+5ycHNGhQ4dHrm/FihVK24q+99auXfvINs8880yFtvHdu3eFg4ODACAaNWokDAaDsLCwEABEmzZtHmp//Phx4eTkVO46y/5t7dixQ9jY2JTbrvQ1EEKIFStWCJVKVW47BwcHceTIkSq9vkII0adPn3L/1kqnHj16CCEe/gx4cCq7rprGPYZaJjo6Wvlmu2jRIsTFxWHDhg2YPXs2PD09lW+P3377LdauXQsAaNOmDb7++mtER0fD29sbALBx48aHvkmVysrKwpIlS7Br1y68//77uHXrFvbu3QsA6Ny5M3744Qds374dERERCAgIgJ2dXYX7n5OTA0dHR3z33XdYuHChUr5q1Srlsa2tLRYsWIBvvvkGu3btwt69e7FhwwZ4eHgAAP7+97+jsLAQAPDGG28o85U9Hl32cWmb/2abPErz5s2hUqnQokUL5Zve6NGj8fLLL1dqOaXOnj2Lc+fOAQB8fHywY8cOxMTE4NNPP8WgQYOgVqsrvKxLly5h8ODBiI6Olr5xl93WH3zwAU6cOAEAePnll/Hjjz9i7dq1cHV1BQBMnz4dGRkZACr+3vv+++8BABYWFoiIiEBcXBzWr1+Pd955B82bN69Q32NiYnDr1i0AwGuvvQadToe+ffsCAFJTU3H8+HGlrRACY8aMwY0bNwAA7du3x7p16/Djjz9izpw5cHZ2BgDcuXMHY8aMwd27dwEAvXr1wsaNG/HDDz8gJCREeR9nZGRg+vTpEELAzMwMs2fPxo8//ohhw4YBAG7duoWxY8dKe0hVdfXqVURERODLL79UzkkdPHgQp06dQuPGjREfH49BgwYp7cPDwxEfH4/4+Hh07tz5v15/lZkskv4AqrLH8N577yllmzZtEteuXSt32X/605+UduHh4SI+Pl7Ex8eL1atXK+WvvPKK0r7st8/PP/9cWtadO3eUb4oDBgwQp0+flvZMKqLsWI4fP66Ut23bVinPyclRyqOjo8WAAQNEw4YNhbm5+UPfln7++WchhBC3b98WdnZ2AoDo0qWLEEKIgoIC4ejoKACIdu3aVXmbVGQsD04qlUqMGTNG3L17V2lfmW+UZ8+eVcpGjx4tLly4IIqLi8vtx5P2GFxcXER+fr4QQgiDwaCUd+rUSQghRHFxsWjQoIEAIKysrMTu3buVbfK3v/1Naf+Pf/xDCFHx996IESMEAGFrayt2794tcnNzn7hNHxQQEKCsa+fOnUIIISIiIpSymTNnKm2PHz+ulGs0GpGdnV3uMrds2aK0a968ubJtHrRkyRKlXUBAgFJeWFgo7e2Wvo//mz2GpUuXKuWTJk1Syrdu3aqUP2r5psQ9hmpU9tiweODbR9nnZduNGjVK+dY4bNgwNGzYEDqdDkOGDMHu3buVdqXfOgFg6tSp6NWrF3r16oUJEyYo5WfOnCm3X4MHD5ae29jYYOTIkQDunxD09PSEra0tOnfujDlz5iA3N7fCY9ZoNOjUqZPyvPTbHHB/bwIANm/ejMGDByM2NhbXrl1Tzg+UVdrWzs4Or732GgAgOTkZaWlp2L17t1I/atQoZZ7/Zps8SunJ582bN6NLly4QQmDt2rUIDQ2t1HJKeXh4oFevXgCAdevWoWXLlrC3t4der8ff//53FBQUVHhZ3t7eynulvO187do13Lx5EwBQWFgIHx8fZZusXLlSaV+6TSr63hs3bhxUKhXu3LkDHx8faLVaNGnSBG+88QaOHTv2xH7funULP/74IwDAyckJ/fr1AwAMGTIE5ubmAO7v3ZX+jZR9Xbt3745GjRqVu9yy7Xx8fB659/Xg8kpZWlpK39LLtquqPn36KI/Le41qKwZDNXJwcFAeX7t2Taor+7xsu/bt2yMpKQlTp05F9+7dodVqkZ2djS1btsDPzw+HDh2q8PofdcWRTqd7qCwyMhKrVq3Cq6++ipYtW6K4uBgpKSlYuHAhhg8fXuF1NmjQQHpuYfGfK6JL/9D/+c9/KmVjx47Frl27EB8fjwEDBijlZU8UP3g4qfQwkkqlwl/+8pcK9w2o/FVYpSef//znP0sfpmUPSZUN9rIh9+BrDgBmZmbYtm0bPvnkEwwcOBBNmzbF3bt3cfjwYcycORNvv/12hftWdluXt50rqnSbVPS95+vri4MHD2LChAno3LkzbG1tcfnyZaxfvx59+vTBb7/99tj1bd26VbkY4caNG7C0tIRKpYKLi4uy/S5duoSEhIRKjeNpKO+eosq8vg96Wq9RTWMwVKM2bdoojw8dOoTbt28rz3fu3Kk8btu2rfJYCIHnnnsOy5cvx+HDh5GTk6N8EJaUlCiXSbZu3VqZZ+/evRBCPDRduHCh3H6V9+a3sLDAW2+9he+//x6//vorbt68iRdffBEAsGvXrqd6Wevvv/+uPP70008xYMAAvPjii1J5WT4+PnBxcQFw/4qV0mPcL774onRM+7/ZJhVR9o+59Hg3AGi1WuVx2auVduzYUe4y7O3tERISgu3bt+PSpUvIzs5WxrF58+Yq9+9BDRs2VD6Y7O3tcevWrYe2R3FxMSIjI5W+VeS9J4SAXq/H559/juTkZNy6dQuffPIJgPvH+csbd1lff/11hfpfenVS2df1yJEjj/xALttu9+7dynmqx7U7cuSI8rioqEg6t1HarjKvb1WYmf3nY7gqV85VB97gVo369esHZ2dnXL9+HTk5OfD29saf/vQnXLlyBevWrVPaDR06VHm8ePFi7Nu3D/7+/mjatCns7OykECk91DBq1CjlA3L06NH44IMP4OHhgatXr+L8+fP48ccfMWjQIMydO7dCfW3ZsiUCAgLQsWNHuLm5ITs7G2lpaQDufxAUFBRU6iT047i7uyu76XPmzIGfnx/WrVuH06dPl9vewsICI0aMQHh4OJKTk5XysnsSwNPfJgBw7NgxXL58GdevX8dHH32klJf9cGnVqpXyePbs2cjJycGhQ4ceujwSuB+KPj4+eP311+Hp6QmdToe0tDRcvXoVACp1KOlJzMzMMHLkSKxcuRK3b9+Gr68vpk6dioYNG+Ly5cs4efIkNm/ejH//+9/o27dvhd97U6dORWZmJgYMGIAmTZrAwsIC8fHxD7Urz/Xr1xEbGwvg/p7yokWLpPrCwkK88847AO4fxlu2bBk6duyI9u3b4+TJk8jNzUX//v0xc+ZMODk5ISkpCTdv3sQnn3wCX19fuLi4KO9dX19fBAcHw9raGgcOHICzszNmzJiBoUOHYtasWSgqKsLmzZsxd+5ceHt7Y82aNcjMzAQAeHp6KpdIV+b1rYqyexVffvklzM3NYW5ubtr7V2roXMYf1saNG8s9uVo6vfDCC9KJzIULFz6yrZmZmThw4IDS9nGXZuKBE2Llncgs63F99PPze+I4S9uWXv5aquyJuNJLPzdt2vTQOqytrUXXrl0feRIuMTFRam9paVnuydHKbJMnjeVRk0qlEps2bVLaX7t2Tdjb2z/Url27dg+tNyMj47HLnjhxorLcJ518fvCChvJeg5s3bz72ctWy27qi773x48c/sp2NjY24cOHCI7dt2RPMZU/8ltWpUyelze7du4UQQiQlJSkXHDw4ld0O27ZtE2q1+omvfWUuV63M6ytE+e95IeSLUSIjI5Xy6OjocvthSgyGGnD48GExbNgw4ebmJiwsLIS9vb3o0qWLWLRokbhz547UNikpSUycOFG0b99eNGjQQJibmwsnJyfh6+srXZ9eau3ataJPnz5Cq9UKKysr0bRpU9G/f38RHh4usrKylHZPCob//d//FX5+fuLZZ58VarVaqNVq0aZNGzFjxgxhNBqfOMbKBIMQQqxatUp4eHgIa2tr8fzzz4t9+/Y98eqMstf/v/rqq4/sS0W3yZPGUnYyNzcXOp1ODB48WPmwKmv37t3Cy8tLWFlZiZYtW4oVK1aUe9VKXl6emDt3rujTp49o3LixsLS0FDY2NsLLy0t89NFHorCwUFnm0wgGIe5f2bVw4ULRsWNHYWNjI2xtbYWHh4cYOnSo+Prrr5UvJhV97+3Zs0cEBgaKNm3aCK1WK8zNzYWLi4t47bXXxLFjxx67bcu+H9asWVNumw8//FBp89e//lUpv3Tpkpg8ebJo0aKFsLKyEo6OjsLb21ts2LBBmv/kyZNi9OjR4tlnnxWWlpbC2dlZ9O3b96HXbffu3WLQoEHCyclJWFhYCDc3NzFmzBjpfpmybSvy+j44xooEgxBC/OMf/xAtW7ZU7uUwdTCohKjlZ0GIiKhG8eQzERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMAAQQsBoNNb63y8hIqoJDAbc/7VHrVar/D48EdEfGYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpJYmLoD9UGviQtN3QUygfhVH5q6C0TVgnsMREQkYTAQEZGEwUBERBIGAxERSRgMREQkMWkwNGvWDCqV6qEpKCgIAJCfn4+goCA4OzvD3t4eAQEByMrKkpaRnp4Of39/2NrawsXFBTNmzMC9e/dMMRwionrBpMFw9OhRZGZmKlNsbCwAYNiwYQCA6dOnIzo6Gps2bcL+/ftx5coVDBkyRJm/uLgY/v7+KCwsxKFDh7BmzRpERUVhzpw5JhkPEVF9oBJCCFN3otS0adMQExOD8+fPw2g0olGjRvjqq68wdOhQAMDZs2fRrl07JCQkwNvbG9u3b8crr7yCK1euQKfTAQAiIiIwa9YsXL16FVZWVhVar9FohFarRW5uLjQaTaX7zfsY/ph4HwPVV7XmHENhYSG+/PJLvPnmm1CpVEhKSkJRURF8fHyUNm3btkXTpk2RkJAAAEhISECHDh2UUAAAPz8/GI1GnDp16pHrKigogNFolCYiIrqv1gTD1q1bkZOTg7FjxwIADAYDrKys4OjoKLXT6XQwGAxKm7KhUFpfWvcoYWFh0Gq1ytSkSZOnNxAiojqu1gTDF198gUGDBsHNza3a1xUaGorc3FxlysjIqPZ1EhHVFbXit5IuXbqE3bt3Y/PmzUqZq6srCgsLkZOTI+01ZGVlwdXVVWlz5MgRaVmlVy2VtimPWq2GWq1+iiMgIqo/asUeQ2RkJFxcXODv76+Ude3aFZaWloiLi1PKUlNTkZ6eDr1eDwDQ6/U4ceIEsrOzlTaxsbHQaDTw9PSsuQEQEdUjJt9jKCkpQWRkJAIDA2Fh8Z/uaLVajB8/HiEhIXBycoJGo8GUKVOg1+vh7e0NAPD19YWnpydGjx6NxYsXw2AwYPbs2QgKCuIeARFRFZk8GHbv3o309HS8+eabD9UtXboUZmZmCAgIQEFBAfz8/LBy5Uql3tzcHDExMZg8eTL0ej3s7OwQGBiIBQsW1OQQiIjqlVp1H4Op8D4Gqgrex0D1Va04x0BERLUHg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIYvJg+P333/HGG2/A2dkZNjY26NChA44dO6bUCyEwZ84cNG7cGDY2NvDx8cH58+elZdy4cQOjRo2CRqOBo6Mjxo8fj9u3b9f0UIiI6gWTBsPNmzfRo0cPWFpaYvv27Th9+jQ++eQTNGjQQGmzePFihIeHIyIiAomJibCzs4Ofnx/y8/OVNqNGjcKpU6cQGxuLmJgY/PTTT3jrrbdMMSQiojpPJYQQplr5e++9h4MHDyI+Pr7ceiEE3Nzc8M477+Ddd98FAOTm5kKn0yEqKgojRozAmTNn4OnpiaNHj6Jbt24AgB07duDll1/G5cuX4ebm9sR+GI1GaLVa5ObmQqPRVHocvSYurPQ8VPfFr/rQ1F0gqhYm3WP44Ycf0K1bNwwbNgwuLi7o3LkzVq9erdSnpaXBYDDAx8dHKdNqtejevTsSEhIAAAkJCXB0dFRCAQB8fHxgZmaGxMTEmhsMEVE9YdJg+O233/DZZ5/Bw8MDO3fuxOTJkzF16lSsWbMGAGAwGAAAOp1Omk+n0yl1BoMBLi4uUr2FhQWcnJyUNg8qKCiA0WiUJiIius/ClCsvKSlBt27dsGjRIgBA586dcfLkSURERCAwMLDa1hsWFob58+dX2/KJiOoyk+4xNG7cGJ6enlJZu3btkJ6eDgBwdXUFAGRlZUltsrKylDpXV1dkZ2dL9ffu3cONGzeUNg8KDQ1Fbm6uMmVkZDyV8RAR1QcmDYYePXogNTVVKjt37hzc3d0BAM2bN4erqyvi4uKUeqPRiMTEROj1egCAXq9HTk4OkpKSlDZ79uxBSUkJunfvXu561Wo1NBqNNBER0X0mPZQ0ffp0vPjii1i0aBFef/11HDlyBJ9//jk+//xzAIBKpcK0adPw0UcfwcPDA82bN8eHH34INzc3vPbaawDu72EMHDgQEyZMQEREBIqKihAcHIwRI0ZU6IokIiKSmTQYnn/+eWzZsgWhoaFYsGABmjdvjmXLlmHUqFFKm5kzZyIvLw9vvfUWcnJy0LNnT+zYsQPW1tZKm/Xr1yM4OBj9+/eHmZkZAgICEB4eboohERHVeSa9j6G24H0MVBW8j4HqK5P/JAYREdUuDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkJg2GefPmQaVSSVPbtm2V+vz8fAQFBcHZ2Rn29vYICAhAVlaWtIz09HT4+/vD1tYWLi4umDFjBu7du1fTQyEiqjcsTN2B5557Drt371aeW1j8p0vTp0/Hjz/+iE2bNkGr1SI4OBhDhgzBwYMHAQDFxcXw9/eHq6srDh06hMzMTIwZMwaWlpZYtGhRjY+FiKg+MHkwWFhYwNXV9aHy3NxcfPHFF/jqq6/Qr18/AEBkZCTatWuHw4cPw9vbG7t27cLp06exe/du6HQ6dOrUCQsXLsSsWbMwb948WFlZ1fRwiIjqPJOfYzh//jzc3NzQokULjBo1Cunp6QCApKQkFBUVwcfHR2nbtm1bNG3aFAkJCQCAhIQEdOjQATqdTmnj5+cHo9GIU6dO1exAiIjqCZPuMXTv3h1RUVFo06YNMjMzMX/+fPTq1QsnT56EwWCAlZUVHB0dpXl0Oh0MBgMAwGAwSKFQWl9a9ygFBQUoKChQnhuNxqc0IiKius+kwTBo0CDlsZeXF7p37w53d3d88803sLGxqbb1hoWFYf78+dW2fCKiuszkh5LKcnR0ROvWrfHrr7/C1dUVhYWFyMnJkdpkZWUp5yRcXV0fukqp9Hl55y1KhYaGIjc3V5kyMjKe7kCIiOqwWhUMt2/fxoULF9C4cWN07doVlpaWiIuLU+pTU1ORnp4OvV4PANDr9Thx4gSys7OVNrGxsdBoNPD09HzketRqNTQajTQREdF9Jj2U9O6772Lw4MFwd3fHlStXMHfuXJibm2PkyJHQarUYP348QkJC4OTkBI1GgylTpkCv18Pb2xsA4OvrC09PT4wePRqLFy+GwWDA7NmzERQUBLVabcqhERHVWSYNhsuXL2PkyJG4fv06GjVqhJ49e+Lw4cNo1KgRAGDp0qUwMzNDQEAACgoK4Ofnh5UrVyrzm5ubIyYmBpMnT4Zer4ednR0CAwOxYMECUw2JiKjOUwkhhKk7YWpGoxFarRa5ublVOqzUa+LCaugV1Xbxqz40dReIqkWtOsdARESmx2AgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIiklQ5GOLj4/HGG29Ar9fj999/BwCsW7cOBw4ceGqdIyKimlelYPjuu+/g5+cHGxsbHD9+HAUFBQCA3NxcLFq0qEod+fjjj6FSqTBt2jSlLD8/H0FBQXB2doa9vT0CAgKQlZUlzZeeng5/f3/Y2trCxcUFM2bMwL1796rUByIiqmIwfPTRR4iIiMDq1athaWmplPfo0QPJycmVXt7Ro0exatUqeHl5SeXTp09HdHQ0Nm3ahP379+PKlSsYMmSIUl9cXAx/f38UFhbi0KFDWLNmDaKiojBnzpyqDIuIiFDFYEhNTUXv3r0fKtdqtcjJyanUsm7fvo1Ro0Zh9erVaNCggVKem5uLL774AkuWLEG/fv3QtWtXREZG4tChQzh8+DAAYNeuXTh9+jS+/PJLdOrUCYMGDcLChQuxYsUKFBYWVmVoRER/eFUKBldXV/z6668PlR84cAAtWrSo1LKCgoLg7+8PHx8fqTwpKQlFRUVSedu2bdG0aVMkJCQAABISEtChQwfodDqljZ+fH4xGI06dOvXIdRYUFMBoNEoTERHdV6VgmDBhAt5++20kJiZCpVLhypUrWL9+Pd59911Mnjy5wsvZsGEDkpOTERYW9lCdwWCAlZUVHB0dpXKdTgeDwaC0KRsKpfWldY8SFhYGrVarTE2aNKlwn4mI6juLqsz03nvvoaSkBP3798edO3fQu3dvqNVqvPvuu5gyZUqFlpGRkYG3334bsbGxsLa2rko3qiw0NBQhISHKc6PRyHAgIvp/VdpjuHfvHj744APcuHEDJ0+exOHDh3H16lUsXLgQ165dq9AykpKSkJ2djS5dusDCwgIWFhbYv38/wsPDYWFhAZ1Oh8LCwofOWWRlZcHV1RXA/UNaD16lVPq8tE151Go1NBqNNBER0X1VCoYRI0ZACAErKyt4enrihRdegL29PbKystC3b98KLaN///44ceIEUlJSlKlbt24YNWqU8tjS0hJxcXHKPKmpqUhPT4derwcA6PV6nDhxAtnZ2Uqb2NhYaDQaeHp6VmVoRER/eFU6lJSeno6//vWv+OKLL5SyzMxM9OvXD88991yFluHg4ID27dtLZXZ2dnB2dlbKx48fj5CQEDg5OUGj0WDKlCnQ6/Xw9vYGAPj6+sLT0xOjR4/G4sWLYTAYMHv2bAQFBUGtVldlaEREf3hV2mPYtm0bDh06pBynv3LlCvr27YsOHTrgm2++eWqdW7p0KV555RUEBASgd+/ecHV1xebNm5V6c3NzxMTEwNzcHHq9Hm+88QbGjBmDBQsWPLU+EBH90aiEEKIqM2ZkZKBnz54ICAhATEwMunTpgvXr18Pc3Pxp97HaGY1GaLVa5ObmVul8Q6+JC6uhV1Tbxa/60NRdIKoWVTqUBABNmjRBbGwsevXqhQEDBmDdunVQqVRPs29ERGQCFQ6GBg0alPvBf+fOHURHR8PZ2Vkpu3HjxtPpHRER1bgKB8OyZcuqsRtERFRbVDgYAgMDq7MfRERUS1T5HEOp/Pz8h36wjjeMERHVXVW6XDUvLw/BwcFwcXGBnZ0dGjRoIE1ERFR3VSkYZs6ciT179uCzzz6DWq3Gv/71L8yfPx9ubm5Yu3bt0+4jERHVoCodSoqOjsbatWvRt29fjBs3Dr169UKrVq3g7u6O9evXY9SoUU+7n0REVEOqtMdw48YN5f8uaDQa5fLUnj174qeffnp6vSMiohpXpWBo0aIF0tLSANz/5zmlP4MRHR390P9PICKiuqVSwfDbb7+hpKQE48aNw88//wzg/v9mWLFiBaytrTF9+nTMmDGjWjpKREQ1o1LnGDw8PJCZmYnp06cDAIYPH47w8HCcPXsWSUlJaNWqFby8vKqlo0REVDMqtcfw4O/tbdu2DXl5eXB3d8eQIUMYCkRE9UCVzjEQEVH9ValgUKlUD/2QHn9RlYiofqnUOQYhBMaOHav8d7T8/HxMmjQJdnZ2Uruy/0yHiIjqlkoFw4M/pPfGG2881c4QEZHpVSoYIiMjq6sfRERUS/DkMxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkMWkwfPbZZ/Dy8oJGo4FGo4Fer8f27duV+vz8fAQFBcHZ2Rn29vYICAhAVlaWtIz09HT4+/vD1tYWLi4umDFjBu7du1fTQyEiqjdMGgzPPvssPv74YyQlJeHYsWPo168f/vSnP+HUqVMAgOnTpyM6OhqbNm3C/v37ceXKFQwZMkSZv7i4GP7+/igsLMShQ4ewZs0aREVFYc6cOaYaEhFRnacSD/5bNhNzcnLC3//+dwwdOhSNGjXCV199haFDhwIAzp49i3bt2iEhIQHe3t7Yvn07XnnlFVy5cgU6nQ4AEBERgVmzZuHq1auwsrKq0DqNRiO0Wi1yc3Oh0Wgq3edeExdWeh6q++JXfWjqLhBVi1pzjqG4uBgbNmxAXl4e9Ho9kpKSUFRUBB8fH6VN27Zt0bRpUyQkJAAAEhIS0KFDByUUAMDPzw9Go1HZ6yAiosqp1M9uV4cTJ05Ar9cjPz8f9vb22LJlCzw9PZGSkgIrKys4OjpK7XU6HQwGAwDAYDBIoVBaX1r3KAUFBSgoKFCeG43GpzQaIqK6z+R7DG3atEFKSgoSExMxefJkBAYG4vTp09W6zrCwMGi1WmVq0qRJta6PiKguMXkwWFlZoVWrVujatSvCwsLQsWNHLF++HK6urigsLEROTo7UPisrC66urgAAV1fXh65SKn1e2qY8oaGhyM3NVaaMjIynOygiojrM5MHwoJKSEhQUFKBr166wtLREXFycUpeamor09HTo9XoAgF6vx4kTJ5Cdna20iY2NhUajgaen5yPXoVarlUtkSyciIrrPpOcYQkNDMWjQIDRt2hS3bt3CV199hX379mHnzp3QarUYP348QkJC4OTkBI1GgylTpkCv18Pb2xsA4OvrC09PT4wePRqLFy+GwWDA7NmzERQUBLVabcqhERHVWSYNhuzsbIwZMwaZmZnQarXw8vLCzp07MWDAAADA0qVLYWZmhoCAABQUFMDPzw8rV65U5jc3N0dMTAwmT54MvV4POzs7BAYGYsGCBaYaEhFRnVfr7mMwBd7HQFXB+xiovqp15xiIiMi0GAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJTBoMYWFheP755+Hg4AAXFxe89tprSE1Nldrk5+cjKCgIzs7OsLe3R0BAALKysqQ26enp8Pf3h62tLVxcXDBjxgzcu3evJodCRFRvmDQY9u/fj6CgIBw+fBixsbEoKiqCr68v8vLylDbTp09HdHQ0Nm3ahP379+PKlSsYMmSIUl9cXAx/f38UFhbi0KFDWLNmDaKiojBnzhxTDImIqM5TCSGEqTtR6urVq3BxccH+/fvRu3dv5ObmolGjRvjqq68wdOhQAMDZs2fRrl07JCQkwNvbG9u3b8crr7yCK1euQKfTAQAiIiIwa9YsXL16FVZWVk9cr9FohFarRW5uLjQaTaX73WviwkrPQ3Vf/KoPTd0FompRq84x5ObmAgCcnJwAAElJSSgqKoKPj4/Spm3btmjatCkSEhIAAAkJCejQoYMSCgDg5+cHo9GIU6dOlbuegoICGI1GaSIiovtqTTCUlJRg2rRp6NGjB9q3bw8AMBgMsLKygqOjo9RWp9PBYDAobcqGQml9aV15wsLCoNVqlalJkyZPeTRERHVXrQmGoKAgnDx5Ehs2bKj2dYWGhiI3N1eZMjIyqn2dRER1hYWpOwAAwcHBiImJwU8//YRnn31WKXd1dUVhYSFycnKkvYasrCy4uroqbY4cOSItr/SqpdI2D1Kr1VCr1U95FERE9YNJ9xiEEAgODsaWLVuwZ88eNG/eXKrv2rUrLC0tERcXp5SlpqYiPT0der0eAKDX63HixAlkZ2crbWJjY6HRaODp6VkzAyEiqkdMuscQFBSEr776Ct9//z0cHByUcwJarRY2NjbQarUYP348QkJC4OTkBI1GgylTpkCv18Pb2xsA4OvrC09PT4wePRqLFy+GwWDA7NmzERQUxL0CIqIqMGkwfPbZZwCAvn37SuWRkZEYO3YsAGDp0qUwMzNDQEAACgoK4Ofnh5UrVyptzc3NERMTg8mTJ0Ov18POzg6BgYFYsGBBTQ2DiKheqVX3MZgK72OgquB9DFRf1ZqrkoiIqHZgMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJTBoMP/30EwYPHgw3NzeoVCps3bpVqhdCYM6cOWjcuDFsbGzg4+OD8+fPS21u3LiBUaNGQaPRwNHREePHj8ft27drcBRERPWLSYMhLy8PHTt2xIoVK8qtX7x4McLDwxEREYHExETY2dnBz88P+fn5SptRo0bh1KlTiI2NRUxMDH766Se89dZbNTUEIqJ6RyWEEKbuBACoVCps2bIFr732GoD7ewtubm5455138O677wIAcnNzodPpEBUVhREjRuDMmTPw9PTE0aNH0a1bNwDAjh078PLLL+Py5ctwc3Or0LqNRiO0Wi1yc3Oh0Wgq3fdeExdWeh6q++JXfWjqLhBVi1p7jiEtLQ0GgwE+Pj5KmVarRffu3ZGQkAAASEhIgKOjoxIKAODj4wMzMzMkJibWeJ+JiOoDC1N34FEMBgMAQKfTSeU6nU6pMxgMcHFxkeotLCzg5OSktClPQUEBCgoKlOdGo/FpdZuIqM6rtXsM1SksLAxarVaZmjRpYuouERHVGrU2GFxdXQEAWVlZUnlWVpZS5+rqiuzsbKn+3r17uHHjhtKmPKGhocjNzVWmjIyMp9x7IqK6q9YGQ/PmzeHq6oq4uDilzGg0IjExEXq9HgCg1+uRk5ODpKQkpc2ePXtQUlKC7t27P3LZarUaGo1GmoiI6D6TnmO4ffs2fv31V+V5WloaUlJS4OTkhKZNm2LatGn46KOP4OHhgebNm+PDDz+Em5ubcuVSu3btMHDgQEyYMAEREREoKipCcHAwRowYUeErkoiISGbSYDh27Bheeukl5XlISAgAIDAwEFFRUZg5cyby8vLw1ltvIScnBz179sSOHTtgbW2tzLN+/XoEBwejf//+MDMzQ0BAAMLDw2t8LERE9UWtuY/BlHgfA1UF72Og+qrWnmMgIiLTYDAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGk1v6jHiJ6PN8NoabuAtWwXSPCamQ93GMgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCT1JhhWrFiBZs2awdraGt27d8eRI0dM3SUiojqpXgTDxo0bERISgrlz5yI5ORkdO3aEn58fsrOzTd01IqI6p14Ew5IlSzBhwgSMGzcOnp6eiIiIgK2tLf7973+bumtERHWOhak78N8qLCxEUlISQkNDlTIzMzP4+PggISGh3HkKCgpQUFCgPM/NzQUAGI3GKvXhXmF+leajuq2q75en5d6dgic3onrlabznHBwcoFKpHtumzgfDtWvXUFxcDJ1OJ5XrdDqcPXu23HnCwsIwf/78h8qbNGlSLX2k+kkbtcjUXaA/GO34pf/1MnJzc6HRaB7bps4HQ1WEhoYiJCREeV5SUoIbN27A2dn5iUlK/2E0GtGkSRNkZGQ88Y1G9DTwPfffc3BweGKbOh8MDRs2hLm5ObKysqTyrKwsuLq6ljuPWq2GWq2WyhwdHauri/WeRqPhHynVKL7nqledP/lsZWWFrl27Ii4uTikrKSlBXFwc9Hq9CXtGRFQ31fk9BgAICQlBYGAgunXrhhdeeAHLli1DXl4exo0bZ+quERHVOfUiGIYPH46rV69izpw5MBgM6NSpE3bs2PHQCWl6utRqNebOnfvQYTmi6sL3XM1QCSGEqTtBRES1R50/x0BERE8Xg4GIiCQMBiIikjAYiIhIwmAgIiIJg4EqraSkBMXFxabuBhFVEwYDVcrp06cxZswY+Pn5YfLkyTh06JCpu0R/APwiUrMYDFRhqampePHFF1FcXIznn38eCQkJePvttxEeHm7qrlE9du7cOSxbtgyZmZmm7sofRr2485mqnxACa9euhZ+fH77++msAwPvvv4/w8HBERkYiPz8fM2fONHEvqb759ddfodfrcfPmTVy/fh0hISFo2LChqbtV7zEYqEJUKhWuXLkCg8GglDk4OGDq1KmwtrbGhg0b8Mwzz2DUqFEm7CXVJ3l5eQgLC8Orr76K559/HsHBwbh37x5mzpzJcKhmDAZ6IiEEVCoVunTpgvPnzyM1NRVt2rQBcD8c3nzzTaSmpmLlypX485//DFtbWxP3mOoDMzMzdO3aFc7Ozhg+fDgaNmyIESNGAADDoZrxt5Kowi5cuABvb2+8+uqrWL58Oezt7ZXQyMjIgLu7O7Zt24aBAweauqtUT+Tl5cHOzk55vnHjRowcORLvvPMO3nvvPTg7O6OkpASXLl1C8+bNTdjT+oV7DFRhLVu2xDfffINBgwbBxsYG8+bNU761WVpawsvLC1qt1sS9pPqkNBSKi4thZmaG4cOHQwiBv/zlL1CpVJg2bRr+8Y9/4NKlS1i3bh33Vp8SBgNVyksvvYRNmzZh2LBhyMzMxOuvvw4vLy+sXbsW2dnZ/L/ZVC3Mzc0hhEBJSQlGjBgBlUqF0aNH44cffsCFCxdw9OhRhsJTxENJVCXJyckICQnBxYsXYWFhAXNzc2zYsAGdO3c2ddeoHiv9uFKpVOjfvz9SUlKwb98+dOjQwcQ9q18YDFRlRqMRN27cwK1bt9C4cWOeDKQaUVxcjBkzZmDZsmVISUmBl5eXqbtU7/BQElUZ/yE7mcpzzz2H5ORkhkI14R4DEdU5pVfDUfXgT2IQUZ3DUKheDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgoBrRt29fTJs2zeTLeBKVSoWtW7dW6zqIajve+Uw1YvPmzbC0tDR1N54oMzMTDRo0MHU3/jD69u2LTp06YdmyZabuCpXBYKAa4eTkZOouVIirq6upu0BkcjyURDWi7GGglStXwsPDA9bW1tDpdBg6dGiFl3Pv3j0EBwdDq9WiYcOG+PDDD1H2V13KOxTk6OiIqKgoAEBhYSGCg4PRuHFjWFtbw93dHWFhYeXOf/HiRahUKmzevBkvvfQSbG1t0bFjRyQkJEjLP3DgAHr16gUbGxs0adIEU6dORV5enlL/uPF+++236NChA2xsbODs7AwfHx9p3kc5evQoBgwYgIYNG0Kr1aJPnz5ITk6W2uTk5GDixInQ6XSwtrZG+/btERMTo9QfPHgQffv2ha2tLRo0aAA/Pz/cvHkTAFBQUICpU6fCxcUF1tbW6NmzJ44eParMGxUVBUdHR2l9W7dule5InjdvHjp16oR169ahWbNm0Gq1GDFiBG7dugUAGDt2LPbv34/ly5dDpVJBpVLh4sWLTxw7VT8GA9WoY8eOYerUqViwYAFSU1OxY8cO9O7du8Lzr1mzBhYWFjhy5AiWL1+OJUuW4F//+leF5w8PD8cPP/yAb775BqmpqVi/fj2aNWv22Hk++OADvPvuu0hJSUHr1q0xcuRI3Lt3D8D9/2o3cOBABAQE4JdffsHGjRtx4MABBAcHP3G8mZmZGDlyJN58802cOXMG+/btw5AhQ1CRny+7desWAgMDceDAARw+fBgeHh54+eWXlQ/dkpISDBo0CAcPHsSXX36J06dP4+OPP4a5uTkAICUlBf3794enpycSEhJw4MABDB48GMXFxQDu/+vM7777DmvWrEFycjJatWoFPz8/3Lhxo8LbunT7bN26FTExMYiJicH+/fvx8ccfAwCWL18OvV6PCRMmIDMzE5mZmfx/HrWFIKoBffr0EW+//bb47rvvhEajEUajsUrLaNeunSgpKVHKZs2aJdq1a6c8ByC2bNkizafVakVkZKQQQogpU6aIfv36Scsoq+z8aWlpAoD417/+pdSfOnVKABBnzpwRQggxfvx48dZbb0nLiI+PF2ZmZuLu3buPHW9SUpIAIC5evFjhbfAoxcXFwsHBQURHRwshhNi5c6cwMzMTqamp5bYfOXKk6NGjR7l1t2/fFpaWlmL9+vVKWWFhoXBzcxOLFy8WQggRGRkptFqtNN+WLVtE2Y+UuXPnCltbW2nsM2bMEN27d1eel74vqHbhHgPVqAEDBsDd3R0tWrTA6NGjsX79ety5c6fC83t7e0uHK/R6Pc6fP698032SsWPHIiUlBW3atMHUqVOxa9euJ85T9qedGzduDADIzs4GAPz888+IioqCvb29Mvn5+aGkpARpaWmPHW/Hjh3Rv39/dOjQAcOGDcPq1auVQzlPkpWVhQkTJsDDwwNarRYajQa3b99Geno6gPt7BM8++yxat25d7vylewzluXDhAoqKitCjRw+lzNLSEi+88ALOnDlTof6VatasGRwcHJTnjRs3VrYd1V4MBqpRDg4OSE5Oxtdff43GjRtjzpw56NixI3Jycp7K8lUq1UOHYoqKipTHXbp0QVpaGhYuXIi7d+/i9ddff+I5jrJXU5WGUklJCQDg9u3bmDhxIlJSUpTp559/xvnz59GyZcvHjtfc3ByxsbHYvn07PD098emnn6JNmzZIS0t74jgDAwORkpKC5cuX49ChQ0hJSYGzszMKCwsBADY2No+d/0n1T2JmZvbY7VzqwSvRVCqVsu2o9mIwUI2zsLCAj48PFi9ejF9++QUXL17Enj17KjRvYmKi9Lz0+HrpsfNGjRohMzNTqT9//vxDeyQajQbDhw/H6tWrsXHjRnz33XeVPnZeqkuXLjh9+jRatWr10GRlZfXE8apUKvTo0QPz58/H8ePHYWVlhS1btjxxvQcPHsTUqVPx8ssv47nnnoNarca1a9eUei8vL1y+fBnnzp0rd34vLy/ExcWVW9eyZUtYWVnh4MGDSllRURGOHj0KT09PAPe3861bt6QT5SkpKU/s94OsrKwqvLdHNYeXq1KNiomJwW+//YbevXujQYMG2LZtG0pKStCmTZsKzZ+eno6QkBBMnDgRycnJ+PTTT/HJJ58o9f369cM///lP6PV6FBcXY9asWdK31iVLlqBx48bo3LkzzMzMsGnTJri6uj50hU1FzZo1C97e3ggODsZf//pX2NnZ4fTp04iNjcU///nPx443MTERcXFx8PX1hYuLCxITE3H16lW0a9fuiev18PDAunXr0K1bNxiNRsyYMUPaC+jTpw969+6NgIAALFmyBK1atcLZs2ehUqkwcOBAhIaGokOHDvjb3/6GSZMmwcrKCnv37sWwYcPQsGFDTJ48GTNmzICTkxOaNm2KxYsX486dOxg/fjwAoHv37rC1tcX777+PqVOnIjExUbnyqzKaNWuGxMREXLx4Efb29nBycoKZGb+vmpypT3LQH0PpScb4+HjRp08f0aBBA2FjYyO8vLzExo0bK7yMv/3tb2LSpElCo9GIBg0aiPfff186kfz7778LX19fYWdnJzw8PMS2bdukk8+ff/656NSpk7CzsxMajUb0799fJCcnK/OjnJPPx48fV+pv3rwpAIi9e/cqZUeOHBEDBgwQ9vb2ws7OTnh5eYn/+Z//EUKIx4739OnTws/PTzRq1Eio1WrRunVr8emnn1ZoWyQnJ4tu3boJa2tr4eHhITZt2iTc3d3F0qVLlTbXr18X48aNE87OzsLa2lq0b99exMTEKPX79u0TL774olCr1cLR0VH4+fmJmzdvCiGEuHv3rpgyZYpo2LChUKvVokePHuLIkSNSH7Zs2SJatWolbGxsxCuvvCI+//zzh04+d+zYUZpn6dKlwt3dXXmempoqvL29hY2NjQAg0tLSKjR+ql78155ERCThPhsREUkYDFQrpKenS5d8PjiVXob5R/G4bREfH2/q7lE9x0NJVCvcu3fvsT+H0KxZM1hY/HGulfj1118fWffMM8/815ebEj0Og4GIiCQ8lERERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZHk/wDqiesMkTPl/QAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "def barplot(column, horizontal):\n", " plt.figure(figsize=(4, 4))\n", " sns.countplot(x=column, data=df, palette='viridis')\n", " plt.xlabel(column)\n", " plt.ylabel(\"Fake\")\n", " plt.title(f\"Private Account\", fontweight='bold')\n", " plt.xticks(rotation=45)\n", " sns.despine()\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "barplot('is_private', True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 407 }, "id": "SKKNt1hc9cJT", "outputId": "5cb0aaf6-4db3-4065-a332-81f446a0c0d3" }, "execution_count": 32, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAGGCAYAAAB/gCblAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAt/0lEQVR4nO3df3zN9f//8fvZT792zmxsIwxvP1eGKE4oZZm1klCpxfL2TmkrLNTe7xLqkvIpSe/QT78+pKSEpESkjBhKlCjMO86mZIve9vP1/cN3r49nJqxtx+Z2vVxel855Pp+v1+vxOtbue72er3OOw7IsSwAA/H8+3i4AAHBhIRgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBhwwVuzZo0cDoccDofuvvtub5cDVHkEA8rcuHHj7F/kpy4ul0tdunTR66+/rgv5k1j27duncePGady4cVq8eHG57+/pp582Xqf77ruv3Pd5oVmzZo39mm/bts3b5Vz0/LxdAC4eOTk5Wr9+vdavX68vvvhCb7zxxjmt1759e61bt06SFB4eXp4lSjoZDOPHj5ckJSYmqk+fPuW6vzfffNN4vmjRIv373/+Wn9/F87/nmjVr7Ne8cePGateunXcLushxxoByFRcXp3Xr1mnlypX6xz/+YbfPnDlTmzdv/tN1i4qKdOLECblcLnXt2lVdu3ZV8+bNy7vkCvXtt9/q66+/Ntp+/vlnffLJJ16qCCAYUM7CwsLUtWtXxcTE6JVXXlGTJk3svuKzgFMvPb3xxht68sknFRkZKX9/f23YsKHEOYYHH3zQbnvvvfeMfT711FN237Rp0yRJixcvVu/evdWkSRMFBQUpICBAkZGRGjx4sPbt22ev2717d1177bX289mzZ5c4v3H48GGlpKSoefPmCgwMVO3atRUfH68NGzac1+tz6tnCgAED7McLFiwocfyRI0eUmpqqqKgo1ahRQ06nU5dffrn+/e9/G+MOHDig5ORkNWvWTNWqVVPt2rXldrv11ltvGeO2bNmiW2+9VREREQoICFBERIT69++v9PR0Y9yp/0azZs2y2880/3P33Xfb7R9//LHGjh2rBg0aqFq1aurSpYu++uore6zD4bDPFiRp8ODBJe4LFcgCytjjjz9uSbIkWYmJiUZf27Zt7b6nn376tPFNmza1H0uyPv30U+vTTz89bXsbNmyw2+68805jH+3bt7ckWf7+/tbPP/9sWZZl3XvvvcZ2T13Cw8OtzMxMy7Is65prrjnjuOJ979+/32rQoEGJY/z9/a3333//nF+rZs2aWZIsPz8/y+PxWHXq1LEkWU6n0zpx4oQxNiMjw2rUqFGJ+73mmmvscVu3brVCQkL+9Bgsy7Lef/99y9/f/5yO49R/o5kzZ9rtJf3bWJZlJSYmnvHfVJLVuHFjKz8/37Is64yv9x/3hYrDGQMqRG5urubOnWtcNmnTps1p43788UclJCTogw8+0Jw5c3TJJZeUuL1OnTqpWbNmkqRly5YpNzfXXn/r1q2SpF69eik0NFSS1LNnT7388staunSp1qxZoxUrVuihhx6SJGVmZuq1116TJL344ouaOnWqvZ/iS2Hr1q3Tv/71L0nS/fffr//85z+SpEGDBmnFihWaPn26atWqpfz8fP3973/X8ePHz/qabN68WXv27JEkXXvttQoPD7fnM3JycrR8+XJj/P3336+MjAxJUqNGjfTKK69oxYoVmjRpkho2bChJsixLgwYN0pEjRyRJl112mebOnasPPvhAY8eOtV+P48ePa8iQIcrPz5ckDRs2TMuXL9f9998vScrPz9eQIUPO6TjO5sCBA3rmmWf07rvv2nXu27dPH330kaSTZ46DBw+2x//zn/+0X/MbbrjhL+8fpeDtZELVc+pfl2daOnbsaBUUFJw2vkuXLqdt70x/lZ663pIlSyzLsqxnnnnGbluwYIE99pdffrFSUlKsli1bWtWrVz+tnltuueWs+yvejsPhsCRZERER1rp16+zllltusdd75513zvo6PfTQQ/b4l19+2bIsy1qxYoXddttttxn79fHxsSRZvr6+1s6dO0vc5tatW+31nU6nlZWVVeK4d9991x7XoUMHo69Dhw5233vvvXfaa32+ZwzDhw+3259++mm7fcqUKXb7mbYP7+CMARUqICBAd911l1asWCFfX9/T+m+88cZz3tZdd91lP37nnXeM/wYFBal3796SpMLCQsXExGjy5MnatWuX/vvf/562raNHj57TPvfs2WPfauvxeNStWzd7OXWu49tvv/3T7ViWZV/v9/X11S233CJJ6tGjh0JCQiSdPBMq/ot9z549KioqkiQ1bdpUrVu3LnG733//vf24U6dOqlu37jmNO9WVV15Z4rjSuuaaa+zHxWcs0rm/5qh4BAPKVfGlmM8//1xfffWVjh49qrlz5xq/IE51PrejNmvWzP6ltmTJEu3Zs0ebNm2SJPXt21fVq1eXJH3xxRf25aV69epp9uzZ+uyzz4yJ3+JfumXlbJdgPv/8c/tyVGFhocLCwuRwOOTv729fBvr999/1/vvvl2ld58LhcPxpW2Fhof34559/Puv2ateubT8+9RZc6wJ+L8vFjmBAuSq+K6lLly6Kjo62f1mfSUm/lP5MQkKCpJN/fRZfH5fMs4mffvrJfnznnXdq0KBB6tat2xm36ePzf/9b/DEwmjVrZtf4t7/9TQUFBbIsy1jy8vI0YcKEP637j+9dOJPiu5OaNWtm1/Xjjz/qu+++K3F8ixYt7MdffvnlGX9x/3HcqU59XjzO5XLZbR6Px368YsWKczqOs/mz1xwV7+J5Bw2qpAEDBiglJUUFBQVauXKlJKl+/fq67rrr7DGRkZH240WLFqlr16769ddf9cgjj5S4zVP/wv3888/14YcfKigoSC1atFBYWJji4uK0fPly/fDDD+rdu7eGDBmioKAg7d+/X1u3btW7776rtLQ0NW7cuMTtFxQU2Je8HA6Hnn32WQUEBBhjUlNTdezYMX300Uf69ddfFRISori4OH3wwQcqLCxUXFycHn30UTVs2FA7duzQli1bNHfuXLVt21aXXXaZvvnmG2VnZ6tHjx4aM2aMQkJClJ6erl9//VXPPfecevbsqdDQUP3yyy/avHmzkpOTFR8fr+XLl9vvL6lTp46uv/56SbIn+iVp8uTJqlWrlvbs2XPOb1I8m1Nf80WLFqlJkyby9/fXFVdcocDAwDLZB86DF+c3UEX92e2qZxtf0sTjn00GW5ZlxcXFGRPJKSkpRn9BQYEVHR192oRzly5dSrzdMz8/34qIiDjjrZN/drtq8bJ3794zHu+pE8x/nPgt1qdPH3vMa6+9dtb9nlp/enq6FRwcfNbbVRcvXnzOt6vm5eWVeKts69atzzr5/Omnn9rtM2fOtNsff/xxu/3rr7+2J/XP9XVE+eFSEiq9Uy8blfTc19dXH3zwgW6++Wa5XC7VrVtXw4cPt29R/SM/Pz8tWbJEXbt2VVBQ0Gn9jRo10tatWzV69Gi1atVK1apVU1BQkFq1aqVBgwZpyZIl9m2ZJTn1MlLxBPkf3XTTTfbj4stJxfsdM2aMvd9atWqpXbt26t+/vz3+8ssv11dffaVhw4apadOmCggIUHBwsDp37qy4uDh73M0336y0tDT1799fYWFh8vPzU926ddW3b1+tX7/eqM3f31+LFy+W2+1WQECAGjRooPHjxxu39v4Vbdq00Zw5c9S6dWvOEC4ADstiBggA8H84YwAAGAgGAICBYAAAGAgGAICBYAAAGAgGAICBYNDJz2zJycnhs1sAQASDJOm3336Ty+XSb7/95u1SAMDrCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAY/LxdQFXQ7d4nvF0CvGDdy495uwSgXHDGAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAIPXg+Gnn37SXXfdpdDQUFWvXl1t2rTR5s2b7X7LsjR27FjVq1dP1atXV0xMjHbv3m1s48iRI0pISJDT6VRwcLCGDBmiY8eOVfShAECV4NVg+PXXX9WlSxf5+/vrww8/1M6dO/Xcc8+pdu3a9phJkyZp6tSpmjFjhjZu3KiaNWsqNjZWJ06csMckJCRox44dWrlypZYtW6bPPvtMQ4cO9cYhAUCl57Asy/LWzh955BF98cUXWrduXYn9lmWpfv36euihhzRq1ChJUnZ2tsLDwzVr1iwNGDBA3377raKiorRp0yZ17NhRkrRixQrdcMMN+s9//qP69euftY6cnBy5XC5lZ2fL6XSe93HwsdsXJz52G1WVV88YlixZoo4dO+rWW29VWFiY2rdvr1dffdXu37t3rzwej2JiYuw2l8ulTp06KS0tTZKUlpam4OBgOxQkKSYmRj4+Ptq4cWPFHQwAVBFeDYYff/xR06dPV/PmzfXRRx9p2LBhevDBBzV79mxJksfjkSSFh4cb64WHh9t9Ho9HYWFhRr+fn59CQkLsMX+Um5urnJwcYwEAnOTVb3ArKipSx44d9dRTT0mS2rdvr2+++UYzZsxQYmJiue134sSJGj9+fLltHwAqM6+eMdSrV09RUVFGW+vWrZWRkSFJioiIkCRlZmYaYzIzM+2+iIgIZWVlGf0FBQU6cuSIPeaPUlNTlZ2dbS8HDhwok+MBgKrAq8HQpUsX7dq1y2j7/vvvFRkZKUlq0qSJIiIitGrVKrs/JydHGzdulNvtliS53W4dPXpU6enp9pjVq1erqKhInTp1KnG/gYGBcjqdxgIAOMmrl5JGjhypq666Sk899ZRuu+02ffnll3rllVf0yiuvSJIcDodGjBihJ598Us2bN1eTJk302GOPqX79+urTp4+kk2cYvXr10j333KMZM2YoPz9fycnJGjBgwDndkQQAMHk1GK644gq99957Sk1N1YQJE9SkSRNNmTJFCQkJ9pgxY8bo+PHjGjp0qI4ePaquXbtqxYoVqlatmj1m3rx5Sk5OVo8ePeTj46N+/fpp6tSp3jgkAKj0vPo+hgsF72NAafA+BlRVXv9IDADAhYVgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYvBoM48aNk8PhMJZWrVrZ/SdOnFBSUpJCQ0NVq1Yt9evXT5mZmcY2MjIyFB8frxo1aigsLEyjR49WQUFBRR8KAFQZft4u4NJLL9Unn3xiP/fz+7+SRo4cqQ8++EALFy6Uy+VScnKy+vbtqy+++EKSVFhYqPj4eEVERGj9+vU6dOiQBg0aJH9/fz311FMVfiwAUBV4PRj8/PwUERFxWnt2drZef/11zZ8/X9ddd50kaebMmWrdurU2bNigzp076+OPP9bOnTv1ySefKDw8XO3atdMTTzyhhx9+WOPGjVNAQEBFHw4AVHpen2PYvXu36tevr6ZNmyohIUEZGRmSpPT0dOXn5ysmJsYe26pVKzVq1EhpaWmSpLS0NLVp00bh4eH2mNjYWOXk5GjHjh0VeyAAUEV49YyhU6dOmjVrllq2bKlDhw5p/Pjx6tatm7755ht5PB4FBAQoODjYWCc8PFwej0eS5PF4jFAo7i/uO5Pc3Fzl5ubaz3NycsroiACg8vNqMMTFxdmPo6Oj1alTJ0VGRurtt99W9erVy22/EydO1Pjx48tt+wBQmXn9UtKpgoOD1aJFC+3Zs0cRERHKy8vT0aNHjTGZmZn2nERERMRpdykVPy9p3qJYamqqsrOz7eXAgQNleyAAUIldUMFw7Ngx/fDDD6pXr546dOggf39/rVq1yu7ftWuXMjIy5Ha7JUlut1vbt29XVlaWPWblypVyOp2Kioo6434CAwPldDqNBQBwklcvJY0aNUo33XSTIiMjdfDgQT3++OPy9fXVHXfcIZfLpSFDhiglJUUhISFyOp164IEH5Ha71blzZ0lSz549FRUVpYEDB2rSpEnyeDx69NFHlZSUpMDAQG8eGgBUWl4Nhv/85z+644479Msvv6hu3brq2rWrNmzYoLp160qSnn/+efn4+Khfv37Kzc1VbGyspk2bZq/v6+urZcuWadiwYXK73apZs6YSExM1YcIEbx0SAFR6DsuyLG8X4W05OTlyuVzKzs4u1WWlbvc+UQ5V4UK37uXHvF0CUC4uqDkGAID3EQwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAAPBAAAwEAwAAMMFEwxPP/20HA6HRowYYbedOHFCSUlJCg0NVa1atdSvXz9lZmYa62VkZCg+Pl41atRQWFiYRo8erYKCggquHgCqjgsiGDZt2qSXX35Z0dHRRvvIkSO1dOlSLVy4UGvXrtXBgwfVt29fu7+wsFDx8fHKy8vT+vXrNXv2bM2aNUtjx46t6EMAgCrD68Fw7NgxJSQk6NVXX1Xt2rXt9uzsbL3++uuaPHmyrrvuOnXo0EEzZ87U+vXrtWHDBknSxx9/rJ07d+p///d/1a5dO8XFxemJJ57QSy+9pLy8PG8dEgBUal4PhqSkJMXHxysmJsZoT09PV35+vtHeqlUrNWrUSGlpaZKktLQ0tWnTRuHh4faY2NhY5eTkaMeOHRVzAABQxfh5c+cLFizQli1btGnTptP6PB6PAgICFBwcbLSHh4fL4/HYY04NheL+4r4zyc3NVW5urv08JyentIcAAFWO184YDhw4oOHDh2vevHmqVq1ahe574sSJcrlc9tKwYcMK3T8AXMi8Fgzp6enKysrS5ZdfLj8/P/n5+Wnt2rWaOnWq/Pz8FB4erry8PB09etRYLzMzUxEREZKkiIiI0+5SKn5ePKYkqampys7OtpcDBw6U7cEBQCXmtWDo0aOHtm/frm3bttlLx44dlZCQYD/29/fXqlWr7HV27dqljIwMud1uSZLb7db27duVlZVlj1m5cqWcTqeioqLOuO/AwEA5nU5jAQCc5LU5hqCgIF122WVGW82aNRUaGmq3DxkyRCkpKQoJCZHT6dQDDzwgt9utzp07S5J69uypqKgoDRw4UJMmTZLH49Gjjz6qpKQkBQYGVvgxAUBV4NXJ57N5/vnn5ePjo379+ik3N1exsbGaNm2a3e/r66tly5Zp2LBhcrvdqlmzphITEzVhwgQvVg0AlZvDsizL20V4W05Ojlwul7Kzs0t1WanbvU+UQ1W40K17+TFvlwCUC6+/jwEAcGEhGAAABoIBAGAgGAAABoIBAGAgGAAABoIBAGAgGAAABoIBAGAgGAAAhlIHw7p163TXXXfJ7Xbrp59+kiTNnTtXn3/+eZkVBwCoeKUKhkWLFik2NlbVq1fX1q1b7W9Dy87O1lNPPVWmBQIAKlapguHJJ5/UjBkz9Oqrr8rf399u79Kli7Zs2VJmxQEAKl6pgmHXrl26+uqrT2t3uVynfeMaAKByKVUwREREaM+ePae1f/7552ratOlfLgoA4D2lCoZ77rlHw4cP18aNG+VwOHTw4EHNmzdPo0aN0rBhw8q6RgBABSrVN7g98sgjKioqUo8ePfT777/r6quvVmBgoEaNGqUHHnigrGsEAFSgUgVDQUGB/vWvf2n06NHas2ePjh07pqioKNWqVUs///yz6tSpU9Z1AgAqSKkuJQ0YMECWZSkgIEBRUVG68sorVatWLWVmZqp79+5lXCIAoCKVKhgyMjL0j3/8w2g7dOiQunfvrlatWpVJYQAA7yhVMCxfvlzr169XSkqKJOngwYPq3r272rRpo7fffrtMCwQAVKxSzTHUrVtXH3/8sbp27SpJWrZsmS6//HLNmzdPPj58/BIAVGalCgZJatiwoVauXKlu3brp+uuv19y5c+VwOMqyNgCAF5xzMNSuXbvEX/y///67li5dqtDQULvtyJEjZVMdAKDCnXMwTJkypRzLAABcKM45GBITE8uzDgDABaLUcwzFTpw4oby8PKPN6XT+1c0CALykVLcQHT9+XMnJyQoLC1PNmjVVu3ZtYwEAVF6lCoYxY8Zo9erVmj59ugIDA/Xaa69p/Pjxql+/vubMmVPWNQIAKlCpLiUtXbpUc+bMUffu3TV48GB169ZNzZo1U2RkpObNm6eEhISyrhMAUEFKdcZw5MgR+3sXnE6nfXtq165d9dlnn5VddQCACleqYGjatKn27t0rSWrVqpX9MRhLly5VcHBwmRUHAKh45xUMP/74o4qKijR48GB99dVXkk5+N8NLL72katWqaeTIkRo9enS5FAoAqBjnNcfQvHlzHTp0SCNHjpQk3X777Zo6daq+++47paenq1mzZoqOji6XQgEAFeO8zhgsyzKeL1++XMePH1dkZKT69u173qEwffp0RUdHy+l0yul0yu1268MPP7T7T5w4oaSkJIWGhqpWrVrq16+fMjMzjW1kZGQoPj5eNWrUUFhYmEaPHq2CgoLzqgMA8H+8+lGoDRo00NNPP6309HRt3rxZ1113nW6++Wbt2LFDkjRy5EgtXbpUCxcu1Nq1a3Xw4EH17dvXXr+wsFDx8fHKy8vT+vXrNXv2bM2aNUtjx4711iEBQKXnsP54GvAnfH195fF4VLduXUlSUFCQvv76azVp0qTMCgoJCdH//M//qH///qpbt67mz5+v/v37S5K+++47tW7dWmlpaercubM+/PBD3XjjjTp48KDCw8MlSTNmzNDDDz+sw4cPKyAg4Jz2mZOTI5fLpezs7FK9a7vbvU+c9zqo/Na9/Ji3SwDKxXnNMViWpbvvvluBgYGSTl7que+++1SzZk1j3LvvvnvehRQWFmrhwoU6fvy43G630tPTlZ+fr5iYGHtMq1at1KhRIzsY0tLS1KZNGzsUJCk2NlbDhg3Tjh071L59+/OuAwAuducVDH/8IL277rrrLxewfft2ud1unThxQrVq1dJ7772nqKgobdu2TQEBAafd/hoeHi6PxyNJ8ng8RigU9xf3nUlubq5yc3Pt5zk5OX/5OACgqjivYJg5c2aZF9CyZUtt27ZN2dnZeuedd5SYmKi1a9eW+X5ONXHiRI0fP75c9wEAlZXXv4czICBAzZo1U4cOHTRx4kS1bdtWL7zwgiIiIpSXl6ejR48a4zMzMxURESFJioiIOO0upeLnxWNKkpqaquzsbHs5cOBA2R4UAFRiXg+GPyoqKlJubq46dOggf39/rVq1yu7btWuXMjIy5Ha7JUlut1vbt29XVlaWPWblypVyOp2Kioo64z4CAwPtW2SLFwDASX/5+xj+itTUVMXFxalRo0b67bffNH/+fK1Zs0YfffSRXC6XhgwZopSUFIWEhMjpdOqBBx6Q2+1W586dJUk9e/ZUVFSUBg4cqEmTJsnj8ejRRx9VUlKSPUEOADg/Xg2GrKwsDRo0SIcOHZLL5VJ0dLQ++ugjXX/99ZKk559/Xj4+PurXr59yc3MVGxuradOm2ev7+vpq2bJlGjZsmNxut2rWrKnExERNmDDBW4cEAJXeeb2PoarifQwoDd7HgKrqgptjAAB4F8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADAQDAAAA8EAADB4NRgmTpyoK664QkFBQQoLC1OfPn20a9cuY8yJEyeUlJSk0NBQ1apVS/369VNmZqYxJiMjQ/Hx8apRo4bCwsI0evRoFRQUVOShAECV4dVgWLt2rZKSkrRhwwatXLlS+fn56tmzp44fP26PGTlypJYuXaqFCxdq7dq1OnjwoPr27Wv3FxYWKj4+Xnl5eVq/fr1mz56tWbNmaezYsd44JACo9ByWZVneLqLY4cOHFRYWprVr1+rqq69Wdna26tatq/nz56t///6SpO+++06tW7dWWlqaOnfurA8//FA33nijDh48qPDwcEnSjBkz9PDDD+vw4cMKCAg4635zcnLkcrmUnZ0tp9N53nV3u/eJ814Hld+6lx/zdglAubig5hiys7MlSSEhIZKk9PR05efnKyYmxh7TqlUrNWrUSGlpaZKktLQ0tWnTxg4FSYqNjVVOTo527NhRgdUDQNXg5+0CihUVFWnEiBHq0qWLLrvsMkmSx+NRQECAgoODjbHh4eHyeDz2mFNDobi/uK8kubm5ys3NtZ/n5OSU1WEAQKV3wZwxJCUl6ZtvvtGCBQvKfV8TJ06Uy+Wyl4YNG5b7PgGgsrgggiE5OVnLli3Tp59+qgYNGtjtERERysvL09GjR43xmZmZioiIsMf88S6l4ufFY/4oNTVV2dnZ9nLgwIEyPBoAqNy8GgyWZSk5OVnvvfeeVq9erSZNmhj9HTp0kL+/v1atWmW37dq1SxkZGXK73ZIkt9ut7du3Kysryx6zcuVKOZ1ORUVFlbjfwMBAOZ1OYwEAnOTVOYakpCTNnz9f77//voKCguw5AZfLperVq8vlcmnIkCFKSUlRSEiInE6nHnjgAbndbnXu3FmS1LNnT0VFRWngwIGaNGmSPB6PHn30USUlJSkwMNCbhwcAlZJXg2H69OmSpO7duxvtM2fO1N133y1Jev755+Xj46N+/fopNzdXsbGxmjZtmj3W19dXy5Yt07Bhw+R2u1WzZk0lJiZqwoQJFXUYAFClXFDvY/AW3seA0uB9DKiqLojJZwDAhYNgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgAAAYvPqdzwBKr+eCVG+XgAr28YCJFbIfzhgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAavBsNnn32mm266SfXr15fD4dDixYuNfsuyNHbsWNWrV0/Vq1dXTEyMdu/ebYw5cuSIEhIS5HQ6FRwcrCFDhujYsWMVeBQAULV4NRiOHz+utm3b6qWXXiqxf9KkSZo6dapmzJihjRs3qmbNmoqNjdWJEyfsMQkJCdqxY4dWrlypZcuW6bPPPtPQoUMr6hAAoMrx6je4xcXFKS4ursQ+y7I0ZcoUPfroo7r55pslSXPmzFF4eLgWL16sAQMG6Ntvv9WKFSu0adMmdezYUZL04osv6oYbbtCzzz6r+vXrV9ixAEBVccHOMezdu1cej0cxMTF2m8vlUqdOnZSWliZJSktLU3BwsB0KkhQTEyMfHx9t3LjxjNvOzc1VTk6OsQAATrpgg8Hj8UiSwsPDjfbw8HC7z+PxKCwszOj38/NTSEiIPaYkEydOlMvlspeGDRuWcfUAUHldsMFQnlJTU5WdnW0vBw4c8HZJAHDBuGCDISIiQpKUmZlptGdmZtp9ERERysrKMvoLCgp05MgRe0xJAgMD5XQ6jQUAcNIFGwxNmjRRRESEVq1aZbfl5ORo48aNcrvdkiS3262jR48qPT3dHrN69WoVFRWpU6dOFV4zAFQFXr0r6dixY9qzZ4/9fO/evdq2bZtCQkLUqFEjjRgxQk8++aSaN2+uJk2a6LHHHlP9+vXVp08fSVLr1q3Vq1cv3XPPPZoxY4by8/OVnJysAQMGcEcSAJSSV4Nh8+bNuvbaa+3nKSkpkqTExETNmjVLY8aM0fHjxzV06FAdPXpUXbt21YoVK1StWjV7nXnz5ik5OVk9evSQj4+P+vXrp6lTp1b4sQBAVeHVYOjevbssyzpjv8Ph0IQJEzRhwoQzjgkJCdH8+fPLozwAuChdsHMMAADvIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAAaCAQBgIBgAAIYqEwwvvfSSGjdurGrVqqlTp0768ssvvV0SAFRKVSIY3nrrLaWkpOjxxx/Xli1b1LZtW8XGxiorK8vbpQFApVMlgmHy5Mm65557NHjwYEVFRWnGjBmqUaOG3njjDW+XBgCVjp+3C/ir8vLylJ6ertTUVLvNx8dHMTExSktLK3Gd3Nxc5ebm2s+zs7MlSTk5OaWqoSDvRKnWQ+VW2p+XslLwe+7ZB6FKKYufuaCgIDkcjj8dU+mD4eeff1ZhYaHCw8ON9vDwcH333XclrjNx4kSNHz/+tPaGDRuWS42omlyznvJ2CbjIuIY8/5e3kZ2dLafT+adjKn0wlEZqaqpSUlLs50VFRTpy5IhCQ0PPmqT4Pzk5OWrYsKEOHDhw1h80oCzwM/fXBQUFnXVMpQ+GOnXqyNfXV5mZmUZ7ZmamIiIiSlwnMDBQgYGBRltwcHB5lVjlOZ1O/idFheJnrnxV+snngIAAdejQQatWrbLbioqKtGrVKrndbi9WBgCVU6U/Y5CklJQUJSYmqmPHjrryyis1ZcoUHT9+XIMHD/Z2aQBQ6VSJYLj99tt1+PBhjR07Vh6PR+3atdOKFStOm5BG2QoMDNTjjz9+2mU5oLzwM1cxHJZlWd4uAgBw4aj0cwwAgLJFMAAADAQDAMBAMAAADAQDAMBAMOC8FRUVqbCw0NtlACgnBAPOy86dOzVo0CDFxsZq2LBhWr9+vbdLwkWAP0QqFsGAc7Zr1y5dddVVKiws1BVXXKG0tDQNHz5cU6dO9XZpqMK+//57TZkyRYcOHfJ2KReNKvHOZ5Q/y7I0Z84cxcbG6s0335Qk/fOf/9TUqVM1c+ZMnThxQmPGjPFylahq9uzZI7fbrV9//VW//PKLUlJSVKdOHW+XVeURDDgnDodDBw8elMfjsduCgoL04IMPqlq1alqwYIEuueQSJSQkeLFKVCXHjx/XxIkT1bt3b11xxRVKTk5WQUGBxowZQziUM4IBZ2VZlhwOhy6//HLt3r1bu3btUsuWLSWdDIe///3v2rVrl6ZNm6ZbbrlFNWrU8HLFqAp8fHzUoUMHhYaG6vbbb1edOnU0YMAASSIcyhmflYRz9sMPP6hz587q3bu3XnjhBdWqVcsOjQMHDigyMlLLly9Xr169vF0qqojjx4+rZs2a9vO33npLd9xxhx566CE98sgjCg0NVVFRkfbv368mTZp4sdKqhTMGnLO//e1vevvttxUXF6fq1atr3Lhx9l9t/v7+io6Olsvl8nKVqEqKQ6GwsFA+Pj66/fbbZVmW7rzzTjkcDo0YMULPPvus9u/fr7lz53K2WkYIBpyXa6+9VgsXLtStt96qQ4cO6bbbblN0dLTmzJmjrKwsvjcb5cLX11eWZamoqEgDBgyQw+HQwIEDtWTJEv3www/atGkToVCGuJSEUtmyZYtSUlK0b98++fn5ydfXVwsWLFD79u29XRqqsOJfVw6HQz169NC2bdu0Zs0atWnTxsuVVS0EA0otJydHR44c0W+//aZ69eoxGYgKUVhYqNGjR2vKlCnatm2boqOjvV1SlcOlJJQaX8gOb7n00ku1ZcsWQqGccMYAoNIpvhsO5YOPxABQ6RAK5YtgAAAYCAYAgIFgAAAYCAYAgIFgAAAYCAYAgIFgwEWpe/fuGjFihFf2vW/fPjkcDm3bts0r+wfOhje44aJ05MgR+fv7KygoqML3XVhYqMOHD6tOnTry8yubDx+YNWuWRowYoaNHj5bJ9nBx4yMxcFEKCQnxyn7z8vIUEBCgiIgIr+wfOBdcSsJF6dRLSdOmTVPz5s1VrVo1hYeHq3///ue8jeTkZCUnJ8vlcqlOnTp67LHHdOpJeOPGjfXEE09o0KBBcjqdGjp0qHEpqaioSA0aNND06dONbW/dulU+Pj7av3+/JGny5Mlq06aNatasqYYNG+r+++/XsWPHJElr1qzR4MGDlZ2dLYfDIYfDoXHjxkmScnNzNWrUKF1yySWqWbOmOnXqpDVr1vy1Fw9VHsGAi9rmzZv14IMPasKECdq1a5dWrFihq6+++pzXnz17tvz8/PTll1/qhRde0OTJk/Xaa68ZY5599lm1bdtWW7du1WOPPWb0+fj46I477tD8+fON9nnz5qlLly6KjIy0x02dOlU7duzQ7NmztXr1ao0ZM0aSdNVVV2nKlClyOp06dOiQDh06pFGjRkmSkpOTlZaWpgULFujrr7/Wrbfeql69emn37t3n/VrhImIBF6FrrrnGGj58uLVo0SLL6XRaOTk5pdpG69atraKiIrvt4Ycftlq3bm0/j4yMtPr06WOst3fvXkuStXXrVsuyLGvr1q2Ww+Gw9u/fb1mWZRUWFlqXXHKJNX369DPue+HChVZoaKj9fObMmZbL5TLG7N+/3/L19bV++ukno71Hjx5WamrqeR0rLi6cMeCidv311ysyMlJNmzbVwIEDNW/ePP3+++/nvH7nzp2ND3Rzu93avXu3CgsL7baOHTv+6TbatWun1q1b22cNa9euVVZWlm699VZ7zCeffKIePXrokksuUVBQkAYOHKhffvnlT2vdvn27CgsL1aJFC9WqVcte1q5dqx9++OGcjxEXH4IBF7WgoCBt2bJFb775purVq6exY8eqbdu2ZXp3z6lfZn8mCQkJdjDMnz9fvXr1UmhoqKSTt7feeOONio6O1qJFi5Senq6XXnpJ0snJ7DM5duyYfH19lZ6erm3bttnLt99+qxdeeKEMjgxVFcGAi56fn59iYmI0adIkff3119q3b59Wr159Tutu3LjReL5hwwY1b95cvr6+51XDnXfeqW+++Ubp6el65513lJCQYPelp6erqKhIzz33nDp37qwWLVro4MGDxvoBAQHGWYoktW/fXoWFhcrKylKzZs2Mhbui8Ge4XRUXtWXLlunHH3/U1Vdfrdq1a2v58uUqKipSy5Ytz2n9jIwMpaSk6N5779WWLVv04osv6rnnnjvvOho3bqyrrrpKQ4YMUWFhoXr37m33NWvWTPn5+XrxxRd100036YsvvtCMGTNOW//YsWNatWqV2rZtqxo1aqhFixZKSEjQoEGD9Nxzz6l9+/Y6fPiwVq1apejoaMXHx593nbg4cMaAi1pwcLDeffddXXfddWrdurVmzJihN998U5deeuk5rT9o0CD997//1ZVXXqmkpCQNHz5cQ4cOLVUtCQkJ+uqrr3TLLbeoevXqdnvbtm01efJkPfPMM7rssss0b948TZw40Vj3qquu0n333afbb79ddevW1aRJkyRJM2fO1KBBg/TQQw+pZcuW6tOnjzZt2qRGjRqVqkZcHHjnM1BK3bt3V7t27TRlyhRvlwKUKc4YAAAG5hiAEmRkZCgqKuqM/Tt37qzAaoCKxaUkoAQFBQXat2/fGfsbN25cZh+AB1xoCAYAgIE5BgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABgIBgCAgWAAABj+H7zZYa24pURxAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "def barplot(column, horizontal):\n", " plt.figure(figsize=(4, 4))\n", " sns.countplot(x=column, data=df, palette='viridis')\n", " plt.xlabel(column)\n", " plt.ylabel(\"Fake\")\n", " plt.title(f\"User name has number\", fontweight='bold')\n", " plt.xticks(rotation=45)\n", " sns.despine()\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "barplot('username_has_number', True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 407 }, "id": "T9EZKFX093jj", "outputId": "9a66367c-c9b4-433c-bafa-50469abeff7f" }, "execution_count": 33, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAGGCAYAAAB/gCblAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwSElEQVR4nO3de1RUVd8H8O9wG64zCMkMpGDeQFS8JkxqmpJoqJhkaiRkdlOwEjOjvKD2SA9Wmu/ylhmkoRiVJqSkUpoFmqGUrxapj4qlAyrBCMVwO+8fvpyHLaCCwAB9P2vNWnP22efs3x4Gvpxz5qKQJEkCERHR/zMzdQFERNSyMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiImll0dDQUCgUUCgXi4+NNXU6rcv78efmxGz58uKnLabMYDG1I9T84Tz31lLCu+i+UQqEwTYFE1CowGIiISMBgoGZVXFxs6hKI6u2f9rxlMBA+++wzDBkyBGq1GlZWVtBqtRgyZAjmz5+P6h++K0kS4uLiMHjwYKhUKtjY2KBPnz547733UFlZKeyzU6dO8mmrnJwcBAcHQ61Wo1evXrespfp2er0e06ZNQ7t27eDg4IDJkycjPz9f6D937lw88MADcHV1hVKphL29Pfr374+3334b5eXlQt+q/Xbq1Ak///wzHnzwQdja2sLLywuffvopAODTTz9Fz549oVQq0adPH3z99dc1arxy5QoiIyPRrVs3KJVKtGvXDoGBgTh8+HC9Hvcqa9eulfdV25g7d+7E+PHjcd9998HBwQFWVlbw8PDA9OnTcf78eaHvtWvX8MILL8DDwwNWVlZwcHBA9+7dMXXqVBw8ePC2tVR/jE6fPo3x48fD3t4eTk5OeOGFF1BSUiL3jY+Pl/tHR0fL7XVdB6h+qnPTpk1YsmQJXF1doVKpMHXqVBQUFCA/Px/Tpk2DWq2udcybZWVl4aGHHoKtrS3c3NywcOHCGj/35njetjkStRmLFy+WAEgApLCwMGHduXPn5HXVf+wHDhyQzMzMhHXVb2VlZXLf0NDQOvtNnjxZGM/Dw0Ne17lzZ/m+h4fHLedQ13ZVt5CQEKG/Uqmss6bp06cLfavaHR0dJWdnZ6GvQqGQFixYUGMfDg4OUn5+vryPCxcuSB06dKh1PEtLS+mLL76o18+pR48etx3z+eefr3OOGo1Gys3NlfuOGDGizr5vvPHGbWur6qtSqWo8RjfvIy4uTm5fvHix3F79uTZs2LBa592lS5ca+x49erQ0aNCgW45Zfd8eHh6SSqWq0f/5558X5tQcz9u2hkcM/3DJycnyf03Lly9HWloaEhMTsWDBAnh7e8sXqj/99FNs3rwZAODp6Ylt27YhOTkZfn5+AIDt27dj+/bttY6Rm5uLd999F3v37sXrr79+x7X9/fff+Pjjj7F27VpYWVkBABITE1FYWCj3eeONN7Bt2zakpqbiwIED+Pzzz+Hr6wvgxn+0v//+e439FhQUoFu3bti1axemTJkC4MZ/lW+++SaCgoKQkpKCIUOGAACuX7+OrVu3ytvOmjVL3mdoaChSU1Oxbt062Nvbo6ysDE8//XS9Tjv88ssvmD9/Pnbt2oU+ffrUOuaoUaOwYcMGJCcn48CBA0hNTcXcuXMB3HhsP/jgA3m7b775BgDQr18/7Nq1C3v27MH69esRHBwMOzu7O67LYDCgffv2+Oyzz7Bs2TK5fcOGDXe8j1s5f/48YmNjsX37djg4OAAAUlNTcerUKXzwwQdYt27dbce8cOEC/Pz8kJycjGXLlsHc3Fzu//PPPwMwzfO2TTB1MlHjacgRw2uvvSa3JSUlSVevXq1130FBQXK/1atXS4cOHZIOHTokbdy4UW4fO3as3L/6f17vv//+Hc+h+nY7duyQ20ePHi23Z2Vlye3fffedFBQUJGm1WsnCwqLGf4TV/4Ov3v7bb79JkiRJR48eldtsbW0lg8EgSZIkJSUlye0vv/yyJEmSdO3aNUmhUEgAJK1WKz8Ghw4dkh599FG5/6effnrLOVb/OQUFBcntiYmJNcasGjcyMlLy9PSUbGxsaszx0UcflSRJkv766y/56O/hhx+WTp06JRzx3Ynq+z1+/Ljc7uXlJbcXFBRIknR3RwxPPPGE3B4YGCi3L1y4UG7v2bNnjTGr79vW1lZulyRJCgkJkdctXbpUkqTme962NRZ3nSzUYlR/Gap00xfzVV+u3i8kJAQrV66E0WjEpEmTAAAuLi4YPHgwZs2aBX9/fwDAb7/9Jm/z4osv1jr+L7/8Umv7uHHj6jmTG4YNGybfd3Z2lu8XFBQAAH744Qc89NBDKCsrq3MfVX2rc3R0RLdu3QAATk5Ocrunp6f83+s999xTYx9nzpyRH0e9Xo+hQ4fWOmZdj0NtbjfHiooK+Pv74/jx43Xuo6qvjY0Npk6dioSEBOzbtw/e3t6wtLREz549MW7cOMydOxdqtfqO6lKpVOjbt2+dtd3pfuoyaNAg+X71n8HAgQPl+zf/DG4e08vLS2gbNGgQEhISAAD/+c9/AJjmedsW8FRSG1L1Rw0Arl69Kqyrvly9X69evZCZmYkXX3wRvr6+UKvVyMvLw44dOxAQEID09PQ7Hr+uUygajeaO91Fdu3bt5PsWFv/9H6bqj/P69evlUBg7dix2796NQ4cOITQ0VO5788VFAMIfEzOz//4KqFSqWuu4OWRvpz6nkm43x++//14OBVdXV3z00Uf49ttvsW3bNrlv9TnGxcVhw4YNGD9+PLp06YKKigpkZWVh2bJlmDx5coPqqqu26v9gVFRUyPdvfu7Vpil+Bg19f05jP2/bAgZDG+Lp6SnfT09PR1FRkbz81Vdfyfe9vLzk+5IkoWfPnnjvvfdw+PBhFBQUyK/QqaysxM6dOwEA3bt3l7f55ptvIElSjdvZs2drraup3lD3xx9/yPdjYmIwZswYDBkyBLm5uU0yXteuXeW5dOnSBeXl5TUeg9LSUixdurTRxqw+xyeeeAKhoaF1HqkAN/6AP/fcc/jiiy9w5swZ/Pnnn3jggQcAAHv37m3Ul11W/+Ou1+vl+6mpqY02xq1kZ2fDYDDIy0eOHJHvd+7cGUDLfN62BjyV1IaMGDECzs7OuHbtGgoKCuDn54egoCBcunQJW7Zskfs99thj8v3Y2FgcOHAAgYGBcHd3h52dnRAiRqMRwI1TTl988QUAYNq0aXjjjTfQrVs3XLlyBadPn8aXX36JMWPGYPHixc00W8DDw0O+HxMTg7CwMOzZs0eovzE5OTlhzJgx2L17N86ePYvx48djxowZcHBwwIULF3D8+HF8/vnnyMjIQKdOnRplzOpzrHpZ8Z9//onXXnut1v5dunRBcHAw+vTpAzc3N+Tl5eHcuXMAbvwTYDQa63UR+la6du0q3//444/RpUsXFBUVITY2tlH2fzvFxcWYPHkyIiIi8NNPPyExMVFeFxQUBKBlPm9bhea7nEHNYfv27ZK5uXmdL88bNGiQ9Pfff8v9ly1bVmdfMzMz6bvvvpP73uplf7jpAmT1i3j1Udd2YWFhcvs333wjSZIkHTlyRL4YXHVTKBSSTqeTl+Pi4uR9VLVVf+lhXRdKv/nmm1ov5N/q5apVt3Pnzt1yjtUvwlavr7Yxy8vLJR8fnxpjDB48uNa6b/WzDwgIuO3jX9tjJEmSNGzYsFrnV/2xrrpVfwluXRefq8+7tp9tXWNW/3nde++9tV6Mf+aZZ4Tam+N529bwVFIb8/jjj+P777/HpEmT4ObmBgsLC/lNX8uXL8eBAwdgbW0t93/kkUfw/PPPo1evXmjXrh3Mzc3h5OSEUaNG4auvvsLgwYPlvh999BE2b96MYcOGyW+Gc3d3x8iRI7F69WrMmjWrWec6aNAg7NixA71794a1tTV69uyJpKQkjBo1qsnGdHd3x/HjxzFv3jx4eXnB2toaDg4O8PLyQmhoKHbt2oWOHTs22njm5ub48ssvERQUBLVajfbt2+Oll16SX6J6s+XLlyMgIAAdOnSAUqmEUqmEp6cn5s2bh6SkpEarq0pCQgICAgJgbW0t19YU49Sma9eu+PrrrzF48GBYW1tDq9Xi9ddfF17qCrS8521roJCkel5ZIyKiNo1HDEREJGAwEBGRgMFAREQCBgMREQkYDEREJGAwEBGRgMGAG+8INRgM9f5MHCKitojBgBufY69Wq3H9+nVTl0JEZHIMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEpg0GKKjo6FQKISbl5eXvL6kpATh4eFwdnaGvb09goODkZubK+wjJycHgYGBsLW1hYuLC+bNm4fy8vLmngoRUZthYeoCevbsif3798vLFhb/LWnOnDn48ssvkZSUBLVajYiICEycOBHff/89AKCiogKBgYHQarVIT0/H5cuXERoaCktLSyxfvrzZ50LUnEYlRpm6BGpme6fENMs4Jg8GCwsLaLXaGu2FhYXYtGkTtm7dihEjRgAA4uLi0KNHDxw+fBh+fn7Yu3cvTp06hf3790Oj0aBv375YtmwZ5s+fj+joaFhZWTX3dIiIWj2TX2M4ffo03Nzc0LlzZ4SEhCAnJwcAkJmZibKyMvj7+8t9vby84O7ujoyMDABARkYGevfuDY1GI/cJCAiAwWDAyZMn6xzTaDTCYDAINyIiusGkweDr64v4+HikpqZi3bp1OHfuHIYOHYrr169Dr9fDysoKjo6OwjYajQZ6vR4AoNfrhVCoWl+1ri4xMTFQq9XyrWPHjo07MSKiVsykp5LGjBkj3/fx8YGvry88PDzwySefwMbGpsnGjYqKQmRkpLxsMBgYDkRE/8/kp5Kqc3R0RPfu3XHmzBlotVqUlpaioKBA6JObmytfk9BqtTVepVS1XNt1iypKpRIqlUq4ERHRDS0qGIqKinD27Fm4urpiwIABsLS0RFpamrw+OzsbOTk50Ol0AACdTocTJ04gLy9P7rNv3z6oVCp4e3s3e/1ERG2BSU8lvfLKKxg3bhw8PDxw6dIlLF68GObm5pg6dSrUajVmzJiByMhIODk5QaVSYfbs2dDpdPDz8wMAjBo1Ct7e3pg2bRpiY2Oh1+uxYMEChIeHQ6lUmnJqREStlkmD4ffff8fUqVNx7do1tG/fHkOGDMHhw4fRvn17AMDKlSthZmaG4OBgGI1GBAQEYO3atfL25ubmSElJwcyZM6HT6WBnZ4ewsDAsXbrUVFMiImr1FJIkSaYuwtQMBgPUajUKCwt5vYFaDb7B7Z+nud7g1qKuMRARkekxGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhK0mGB46623oFAo8PLLL8ttJSUlCA8Ph7OzM+zt7REcHIzc3Fxhu5ycHAQGBsLW1hYuLi6YN28eysvLm7l6IqK2o0UEw9GjR7Fhwwb4+PgI7XPmzEFycjKSkpJw8OBBXLp0CRMnTpTXV1RUIDAwEKWlpUhPT8dHH32E+Ph4LFq0qLmnQETUZpg8GIqKihASEoKNGzeiXbt2cnthYSE2bdqEd999FyNGjMCAAQMQFxeH9PR0HD58GACwd+9enDp1Ch9//DH69u2LMWPGYNmyZVizZg1KS0tNNSUiolbN5MEQHh6OwMBA+Pv7C+2ZmZkoKysT2r28vODu7o6MjAwAQEZGBnr37g2NRiP3CQgIgMFgwMmTJ5tnAkREbYyFKQdPTEzEsWPHcPTo0Rrr9Ho9rKys4OjoKLRrNBro9Xq5T/VQqFpfta4uRqMRRqNRXjYYDA2dAhFRm2OyI4aLFy/ipZdeQkJCAqytrZt17JiYGKjVavnWsWPHZh2fiKglM1kwZGZmIi8vD/3794eFhQUsLCxw8OBBrF69GhYWFtBoNCgtLUVBQYGwXW5uLrRaLQBAq9XWeJVS1XJVn9pERUWhsLBQvl28eLFxJ0dE1IqZLBhGjhyJEydOICsrS74NHDgQISEh8n1LS0ukpaXJ22RnZyMnJwc6nQ4AoNPpcOLECeTl5cl99u3bB5VKBW9v7zrHViqVUKlUwo2IiG4w2TUGBwcH9OrVS2izs7ODs7Oz3D5jxgxERkbCyckJKpUKs2fPhk6ng5+fHwBg1KhR8Pb2xrRp0xAbGwu9Xo8FCxYgPDwcSqWy2edERNQWmPTi8+2sXLkSZmZmCA4OhtFoREBAANauXSuvNzc3R0pKCmbOnAmdTgc7OzuEhYVh6dKlJqyaiKh1U0iSJJm6CFMzGAxQq9UoLCzkaSVqNUYlRpm6BGpme6fENMs4Jn8fAxERtSwMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEpg0GNatWwcfHx+oVCqoVCrodDrs2bNHXl9SUoLw8HA4OzvD3t4ewcHByM3NFfaRk5ODwMBA2NrawsXFBfPmzUN5eXlzT4WIqM0waTB06NABb731FjIzM/Hjjz9ixIgRCAoKwsmTJwEAc+bMQXJyMpKSknDw4EFcunQJEydOlLevqKhAYGAgSktLkZ6ejo8++gjx8fFYtGiRqaZERNTqKSRJkkxdRHVOTk5YsWIFHnvsMbRv3x5bt27FY489BgD49ddf0aNHD2RkZMDPzw979uzB2LFjcenSJWg0GgDA+vXrMX/+fFy5cgVWVlZ3NKbBYIBarUZhYSFUKlWTzY2oMY1KjDJ1CdTM9k6JaZZxWsw1hoqKCiQmJqK4uBg6nQ6ZmZkoKyuDv7+/3MfLywvu7u7IyMgAAGRkZKB3795yKABAQEAADAaDfNRBRET1Y2HqAk6cOAGdToeSkhLY29tjx44d8Pb2RlZWFqysrODo6Cj012g00Ov1AAC9Xi+EQtX6qnV1MRqNMBqN8rLBYGik2RARtX4mP2Lw9PREVlYWjhw5gpkzZyIsLAynTp1q0jFjYmKgVqvlW8eOHZt0PCKi1sTkwWBlZYWuXbtiwIABiImJQZ8+ffDee+9Bq9WitLQUBQUFQv/c3FxotVoAgFarrfEqparlqj61iYqKQmFhoXy7ePFi406KiKgVM3kw3KyyshJGoxEDBgyApaUl0tLS5HXZ2dnIycmBTqcDAOh0Opw4cQJ5eXlyn3379kGlUsHb27vOMZRKpfwS2aobERHdYNJrDFFRURgzZgzc3d1x/fp1bN26FQcOHMBXX30FtVqNGTNmIDIyEk5OTlCpVJg9ezZ0Oh38/PwAAKNGjYK3tzemTZuG2NhY6PV6LFiwAOHh4VAqlaacGhFRq2XSYMjLy0NoaCguX74MtVoNHx8ffPXVV3j44YcBACtXroSZmRmCg4NhNBoREBCAtWvXytubm5sjJSUFM2fOhE6ng52dHcLCwrB06VJTTYmIqNVrce9jMAW+j4FaI76P4Z/nH/c+BiIiahkaHAyHDh3Ck08+CZ1Ohz/++AMAsGXLFnz33XeNVhwRETW/BgXDZ599hoCAANjY2OD48ePym8UKCwuxfPnyRi2QiIiaV4OC4c0338T69euxceNGWFpayu2DBw/GsWPHGq04IiJqfg0KhuzsbDz44IM12tVqdY03pBERUevSoGDQarU4c+ZMjfbvvvsOnTt3vuuiiIjIdBr0PoZnn30WL730Ej788EMoFApcunQJGRkZeOWVV7Bw4cLGrrHFG/r8MlOXQCZwaMM/77lO/wwNCobXXnsNlZWVGDlyJP766y88+OCDUCqVeOWVVzB79uzGrpGIiJpRg4KhvLwcb7zxBubNm4czZ86gqKgI3t7esLe3x9WrV3HPPfc0dp1ERNRMGnSNYcqUKZAkCVZWVvD29sagQYNgb2+P3NxcDB8+vJFLJCKi5tSgYMjJycEzzzwjtF2+fBnDhw+Hl5dXoxRGRESm0aBg2L17N9LT0xEZGQkAuHTpEoYPH47evXvjk08+adQCiYioeTXoGkP79u2xd+9eDBkyBACQkpKC/v37IyEhAWZm/PglIqLWrMEfu92xY0fs27cPQ4cOxcMPP4wtW7ZAoVA0Zm1ERGQCdxwM7dq1q/UP/19//YXk5GQ4OzvLbfn5+Y1THRERNbs7DoZVq1Y1YRlERNRS3HEwhIWFNWUdRETUQtz1V3uWlJSgtLRUaOO3oBERtV4NeglRcXExIiIi4OLiAjs7O7Rr1064ERFR69WgYHj11Vfx9ddfY926dVAqlfjggw+wZMkSuLm5YfPmzY1dIxERNaMGnUpKTk7G5s2bMXz4cEyfPh1Dhw5F165d4eHhgYSEBISEhDR2nURE1EwadMSQn58vf++CSqWSX546ZMgQfPvtt41XHRERNbsGBUPnzp1x7tw5AICXl5f8MRjJyclwdHRstOKIiKj51SsY/vOf/6CyshLTp0/HTz/9BODGdzOsWbMG1tbWmDNnDubNm9ckhRIRUfOo1zWGbt264fLly5gzZw4AYPLkyVi9ejV+/fVXZGZmomvXrvDx8WmSQomIqHnU64hBkiRheffu3SguLoaHhwcmTpzIUCAiagP4UahERCSoVzAoFIoaH6THT1QlImpb6nWNQZIkPPXUU1AqlQBufBzGCy+8ADs7O6Hf559/3ngVEhFRs6pXMNz8QXpPPvlkoxZDRESmV69giIuLa6o6iIioheDFZyIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiKBSYMhJiYG999/PxwcHODi4oIJEyYgOztb6FNSUoLw8HA4OzvD3t4ewcHByM3NFfrk5OQgMDAQtra2cHFxwbx581BeXt6cUyEiajNMGgwHDx5EeHg4Dh8+jH379qGsrAyjRo1CcXGx3GfOnDlITk5GUlISDh48iEuXLmHixIny+oqKCgQGBqK0tBTp6en46KOPEB8fj0WLFpliSkRErV69vsGtsaWmpgrL8fHxcHFxQWZmJh588EEUFhZi06ZN2Lp1K0aMGAHgxrfI9ejRA4cPH4afnx/27t2LU6dOYf/+/dBoNOjbty+WLVuG+fPnIzo6GlZWVqaYGhFRq9WirjEUFhYCAJycnAAAmZmZKCsrg7+/v9zHy8sL7u7uyMjIAABkZGSgd+/e0Gg0cp+AgAAYDAacPHmyGasnImobTHrEUF1lZSVefvllDB48GL169QIA6PV6WFlZwdHRUeir0Wig1+vlPtVDoWp91braGI1GGI1GedlgMDTWNIiIWr0Wc8QQHh6O//3f/0ViYmKTjxUTEwO1Wi3fOnbs2ORjEhG1Fi0iGCIiIpCSkoJvvvkGHTp0kNu1Wi1KS0tRUFAg9M/NzYVWq5X73Pwqparlqj43i4qKQmFhoXy7ePFiI86GiKh1M2kwSJKEiIgI7NixA19//TXuu+8+Yf2AAQNgaWmJtLQ0uS07Oxs5OTnQ6XQAAJ1OhxMnTiAvL0/us2/fPqhUKnh7e9c6rlKphEqlEm5ERHSDSa8xhIeHY+vWrfjiiy/g4OAgXxNQq9WwsbGBWq3GjBkzEBkZCScnJ6hUKsyePRs6nQ5+fn4AgFGjRsHb2xvTpk1DbGws9Ho9FixYgPDwcCiVSlNOj4ioVTJpMKxbtw4AMHz4cKE9Li4OTz31FABg5cqVMDMzQ3BwMIxGIwICArB27Vq5r7m5OVJSUjBz5kzodDrY2dkhLCwMS5cuba5pEBG1KSYNBkmSbtvH2toaa9aswZo1a+rs4+Hhgd27dzdmaURE/1gt4uIzERG1HAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISmDQYvv32W4wbNw5ubm5QKBTYuXOnsF6SJCxatAiurq6wsbGBv78/Tp8+LfTJz89HSEgIVCoVHB0dMWPGDBQVFTXjLIiI2haTBkNxcTH69OmDNWvW1Lo+NjYWq1evxvr163HkyBHY2dkhICAAJSUlcp+QkBCcPHkS+/btQ0pKCr799ls899xzzTUFIqI2x8KUg48ZMwZjxoypdZ0kSVi1ahUWLFiAoKAgAMDmzZuh0Wiwc+dOTJkyBb/88gtSU1Nx9OhRDBw4EADwP//zP3jkkUfw9ttvw83NrdnmQkTUVrTYawznzp2DXq+Hv7+/3KZWq+Hr64uMjAwAQEZGBhwdHeVQAAB/f3+YmZnhyJEjzV4zEVFbYNIjhlvR6/UAAI1GI7RrNBp5nV6vh4uLi7DewsICTk5Ocp/aGI1GGI1GedlgMDRW2URErV6LPWJoSjExMVCr1fKtY8eOpi6JiKjFaLHBoNVqAQC5ublCe25urrxOq9UiLy9PWF9eXo78/Hy5T22ioqJQWFgo3y5evNjI1RMRtV4tNhjuu+8+aLVapKWlyW0GgwFHjhyBTqcDAOh0OhQUFCAzM1Pu8/XXX6OyshK+vr517lupVEKlUgk3IiK6waTXGIqKinDmzBl5+dy5c8jKyoKTkxPc3d3x8ssv480330S3bt1w3333YeHChXBzc8OECRMAAD169MDo0aPx7LPPYv369SgrK0NERASmTJnCVyQRETWQSYPhxx9/xEMPPSQvR0ZGAgDCwsIQHx+PV199FcXFxXjuuedQUFCAIUOGIDU1FdbW1vI2CQkJiIiIwMiRI2FmZobg4GCsXr262edCRNRWmDQYhg8fDkmS6lyvUCiwdOlSLF26tM4+Tk5O2Lp1a1OUR0T0j9RirzEQEZFpMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjQZoJhzZo16NSpE6ytreHr64sffvjB1CUREbVKbSIYtm/fjsjISCxevBjHjh1Dnz59EBAQgLy8PFOXRkTU6rSJYHj33Xfx7LPPYvr06fD29sb69etha2uLDz/80NSlERG1OhamLuBulZaWIjMzE1FRUXKbmZkZ/P39kZGRUes2RqMRRqNRXi4sLAQAGAyGBtVQXlrSoO2odWvo86WxlP9lvH0nalMa4znn4OAAhUJxyz6tPhiuXr2KiooKaDQaoV2j0eDXX3+tdZuYmBgsWbKkRnvHjh2bpEZqm9Txy01dAv3DqGesvOt9FBYWQqVS3bJPqw+GhoiKikJkZKS8XFlZifz8fDg7O982Sem/DAYDOnbsiIsXL972iUbUGPicu3sODg637dPqg+Gee+6Bubk5cnNzhfbc3Fxotdpat1EqlVAqlUKbo6NjU5XY5qlUKv6SUrPic65ptfqLz1ZWVhgwYADS0tLktsrKSqSlpUGn05mwMiKi1qnVHzEAQGRkJMLCwjBw4EAMGjQIq1atQnFxMaZPn27q0oiIWp02EQyTJ0/GlStXsGjRIuj1evTt2xepqak1LkhT41IqlVi8eHGN03JETYXPueahkCRJMnURRETUcrT6awxERNS4GAxERCRgMBARkYDBQEREAgYDEREJGAxUb5WVlaioqDB1GUTURBgMVC+nTp1CaGgoAgICMHPmTKSnp5u6JPoH4D8izYvBQHcsOzsbDzzwACoqKnD//fcjIyMDL730ElavXm3q0qgN++2337Bq1SpcvnzZ1KX8Y7SJdz5T05MkCZs3b0ZAQAC2bdsGAHj99dexevVqxMXFoaSkBK+++qqJq6S25syZM9DpdPjzzz9x7do1REZG4p577jF1WW0eg4HuiEKhwKVLl6DX6+U2BwcHvPjii7C2tkZiYiLuvfdehISEmLBKakuKi4sRExOD8ePH4/7770dERATKy8vx6quvMhyaGIOBbkuSJCgUCvTv3x+nT59GdnY2PD09AdwIh6effhrZ2dlYu3YtHn30Udja2pq4YmoLzMzMMGDAADg7O2Py5Mm45557MGXKFABgODQxflYS3bGzZ8/Cz88P48ePx3vvvQd7e3s5NC5evAgPDw/s3r0bo0ePNnWp1EYUFxfDzs5OXt6+fTumTp2KuXPn4rXXXoOzszMqKytx4cIF3HfffSastG3hEQPdsS5duuCTTz7BmDFjYGNjg+joaPm/NktLS/j4+ECtVpu4SmpLqkKhoqICZmZmmDx5MiRJwhNPPAGFQoGXX34Zb7/9Ni5cuIAtW7bwaLWRMBioXh566CEkJSVh0qRJuHz5Mh5//HH4+Phg8+bNyMvL4/dmU5MwNzeHJEmorKzElClToFAoMG3aNOzatQtnz57F0aNHGQqNiKeSqEGOHTuGyMhInD9/HhYWFjA3N0diYiL69etn6tKoDav6c6VQKDBy5EhkZWXhwIED6N27t4kra1sYDNRgBoMB+fn5uH79OlxdXXkxkJpFRUUF5s2bh1WrViErKws+Pj6mLqnN4akkajB+ITuZSs+ePXHs2DGGQhPhEQMRtTpVr4ajpsGPxCCiVoeh0LQYDEREJGAwEBGRgMFAREQCBgMREQkYDEREJGAwEBGRgMFA1Ayio6PRt29fU5dhEgqFAjt37jR1GVQPDAYiIhIwGKhVqKioQGVlpanLoBaitLTU1CW0aQwGarBOnTph1apVQlvfvn0RHR0NSZIQHR0Nd3d3KJVKuLm54cUXX5T7GY1GvPLKK7j33nthZ2cHX19fHDhwQF4fHx8PR0dH7Nq1C97e3lAqlcjJyUGnTp2wfPlyPP3003BwcIC7uzvef/99oYb58+eje/fusLW1RefOnbFw4UKUlZXJ66tO63z44Ydwd3eHvb09Zs2ahYqKCsTGxkKr1cLFxQX/+te/hP0WFBTgmWeeQfv27aFSqTBixAj89NNP9XrMtmzZgk6dOkGtVmPKlCm4fv26vC41NRVDhgyBo6MjnJ2dMXbsWJw9e1ZeX1paioiICLi6usLa2hoeHh6IiYm5o3EVCgU++OAD+Rv2unXrhl27dtV4vKvbuXOn8A7jhj5uAHD58mX5ezw6d+6MTz/9VFh/8eJFPP7443B0dISTkxOCgoJw/vx5ef1TTz2FCRMm4F//+hfc3NzkbxCkpsFgoCbx2WefYeXKldiwYQNOnz6NnTt3Ch+NHBERgYyMDCQmJuLnn3/GpEmTMHr0aJw+fVru89dff+Hf//43PvjgA5w8eRIuLi4AgHfeeQcDBw7E8ePHMWvWLMycORPZ2dnydg4ODoiPj8epU6fw3nvvYePGjVi5cqVQ39mzZ7Fnzx6kpqZi27Zt2LRpEwIDA/H777/j4MGD+Pe//40FCxbgyJEj8jaTJk1CXl4e9uzZg8zMTPTv3x8jR45Efn7+HT0mZ8+exc6dO5GSkoKUlBQcPHgQb731lry+uLgYkZGR+PHHH5GWlgYzMzM8+uij8pHS6tWrsWvXLnzyySfIzs5GQkICOnXqdMc/kyVLluDxxx/Hzz//jEceeQQhISF3XHv1OdT3cQOAhQsXIjg4GD/99BNCQkIwZcoU/PLLLwCAsrIyBAQEwMHBAYcOHcL3338Pe3t7jB49WjgySEtLQ3Z2Nvbt24eUlJR61U31JBE1kIeHh7Ry5UqhrU+fPtLixYuld955R+revbtUWlpaY7sLFy5I5ubm0h9//CG0jxw5UoqKipIkSZLi4uIkAFJWVlaNMZ988kl5ubKyUnJxcZHWrVtXZ50rVqyQBgwYIC8vXrxYsrW1lQwGg9wWEBAgderUSaqoqJDbPD09pZiYGEmSJOnQoUOSSqWSSkpKhH136dJF2rBhQ51j32rMefPmSb6+vnVuc+XKFQmAdOLECUmSJGn27NnSiBEjpMrKytuOdzMA0oIFC+TloqIiCYC0Z88eSZJuPN5qtVrYZseOHVL1PxENedyqxn7hhReEffv6+kozZ86UJEmStmzZInl6egrzMhqNko2NjfTVV19JkiRJYWFhkkajkYxGY73nTvXHj92mJjFp0iSsWrUKnTt3xujRo/HII49g3LhxsLCwwIkTJ1BRUYHu3bsL2xiNRjg7O8vLVlZWtX6scvU2hUIBrVaLvLw8uW379u1YvXo1zp49i6KiIpSXl9f4ePBOnTrBwcFBXtZoNDA3N4eZmZnQVrXfn376CUVFRUJ9APD3338Lp3tu5eYxXV1dhbpPnz6NRYsW4ciRI7h69ap8pJCTk4NevXrhqaeewsMPPwxPT0+MHj0aY8eOxahRo+5obEB83Ozs7KBSqYTxGzKH2z1uVXQ6XY3lrKwsADce2zNnzgj7BYCSkhLhse3duzesrKzqVS81DIOBGszMzEz+Rq0qVefyO3bsiOzsbOzfvx/79u3DrFmzsGLFChw8eBBFRUUwNzdHZmYmzM3Nhe3t7e3l+zY2NrV+iqalpaWwrFAo5D+iGRkZCAkJwZIlSxAQEAC1Wo3ExES88847t93HrfZbVFQEV1dX4TpIlZvPzdflVvsHgHHjxsHDwwMbN26Em5sbKisr0atXL/l0Sv/+/XHu3Dns2bMH+/fvx+OPPw5/f/8a5+sbMv6tfpa328ft5nU7RUVFGDBgABISEmqsa9++vXy/6vufqekxGKjB2rdvj8uXL8vLBoMB586dk5dtbGwwbtw4jBs3DuHh4fDy8sKJEyfQr18/VFRUIC8vD0OHDm3UmtLT0+Hh4YE33nhDbrtw4cJd77d///7Q6/WwsLCo13n9O3Xt2jVkZ2dj48aN8mPy3Xff1einUqkwefJkTJ48GY899hhGjx6N/Px8ODk53dX47du3x/Xr11FcXCz/Aa76j74xHD58GKGhocJy1dfA9u/fH9u3b4eLiwu/+KmFYDBQg40YMQLx8fEYN24cHB0dsWjRIvkIID4+HhUVFfD19YWtrS0+/vhj2NjYwMPDA87OzggJCUFoaCjeeecd9OvXD1euXEFaWhp8fHwQGBjY4Jq6deuGnJwcJCYm4v7778eXX36JHTt23PVc/f39odPpMGHCBMTGxqJ79+64dOkSvvzySzz66KMYOHDgXe2/Xbt2cHZ2xvvvvw9XV1fk5OTgtddeE/q8++67cHV1Rb9+/WBmZoakpCRotdo7PmK5laqf0+uvv44XX3wRR44cQXx8/F3vt0pSUhIGDhyIIUOGICEhAT/88AM2bdoEAAgJCcGKFSsQFBSEpUuXokOHDrhw4QI+//xzvPrqq+jQoUOj1UF3hq9KogaLiorCsGHDMHbsWAQGBmLChAno0qULgBunVzZu3IjBgwfDx8cH+/fvR3JysnyOPi4uDqGhoZg7dy48PT0xYcIEHD16FO7u7ndV0/jx4zFnzhxERESgb9++SE9Px8KFC+96rgqFArt378aDDz6I6dOno3v37pgyZQouXLgAjUZz1/s3MzNDYmIiMjMz0atXL8yZMwcrVqwQ+jg4OCA2NhYDBw7E/fffj/Pnz2P37t3C+f2GcnJywscff4zdu3ejd+/e2LZtG6Kjo+96v1WWLFmCxMRE+Pj4YPPmzdi2bRu8vb0BALa2tvj222/h7u6OiRMnokePHpgxYwZKSkp4BGEi/GpPIiIS8IiBiIgEDAaiRtCzZ0/Y29vXeqvt1TaNKSEhoc6xe/bs2aRjU9vEU0lEjeDChQu1vrwTuPG6/ptfo9+Yrl+/jtzc3FrXWVpawsPDo8nGpraJwUBERAKeSiIiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjwf4bEdEYLpi8wAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "def barplot(column, horizontal):\n", " plt.figure(figsize=(4, 4))\n", " sns.countplot(x=column, data=df, palette='viridis')\n", " plt.xlabel(column)\n", " plt.ylabel(\"Fake\")\n", " plt.title(f\"User's full Name Has Number\", fontweight='bold')\n", " plt.xticks(rotation=45)\n", " sns.despine()\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "barplot('full_name_has_number', True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 407 }, "id": "KywwqxHI-RU7", "outputId": "53708e75-3f2e-4d03-e834-0540c3bcc4a3" }, "execution_count": 34, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAGGCAYAAAB/gCblAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4uklEQVR4nO3deVhUZd8H8O+wrzMIygwuoCgu5JI7I5qmJCqWJZUWCaZmGphKLlHuG722oDyXS/YUqFkuPWm5puJGghupD7mQmooJA6YxIyj7ef/g5bzcAgkIDND3c13nuphz7nPu3z0L3znLzCgkSZJARET0f0yMXQAREdUtDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAaqUadPn8bAgQPh6OgIhUIBhUKBc+fOVXo7LVu2lNcvduTIEXne2LFjq69ookcMGDBAfq7duHHD2OXUOAZDDVqwYEG5/7hu3LghLyv5z85YoqOjoVAosGDBgmrbpsFgwPDhw3H48GH89ddf1bbdqir54ra1tcWff/4pLC8ZPpcvXzZSldWjZGi2bNmy1PK/e27WlrFjx8o1mJiY4MKFC8Lyko/Xvn37jFLjPxWDgWrMqVOnkJ6eDgDQarU4dOgQYmNj4eHhYeTKgAcPHuCzzz4zdhn0fyRJwtKlS41dBv0fBsM/XFZWVo1tOyUlRf77ueeew7PPPou+ffvC1ta2xvqsjFWrViEjI8PYZdD/2bp1K65cuWLsMuqMwsJCZGdnG6VvBkMd9J///Ad9+/aFSqWChYUFNBoN+vbti9mzZ6Pkl+FKkoSoqCh4e3tDqVTC2toaXbp0wcqVK1FYWChss+RhkuTkZPj7+0OlUqFjx47l1vHw4UPMnDkTHh4esLS0hK2tLVq1aoWRI0di+/btfzuGli1bIigoSL69aNEi4bBZecdsSx7iiI6OrsS9VnkGgwGRkZGPbffRRx9hwIABaN68OaytrWFjYwNPT0/MmTMHDx48ENqWvJ9v3ryJ4cOHw9bWFm5ubli9ejWAosM8PXv2hJWVFdq2bYutW7eW6jMzMxMLFixAx44dYW1tDaVSiQEDBmDv3r3VM/hy/PrrrwgICICnpyccHR1hbm4OZ2dn+Pn54dixY0LbwsJCLF26VK7RysoKrq6u8PPzw5dfflnpvgsKChAeHv7YduUdIivrOVXykO2AAQNw+PBhdO/eHdbW1ujWrRuOHDkCAFizZg3c3d1hZWUFb29vnD9/vtz+Hzx4gKlTp8LZ2Rm2trYYPnw4rl27Vqrdf//7X7z22mtwcXGBhYUFmjVrhgkTJuCPP/4Q2pV8zn/11VdYsmQJ3NzcYG5ujhMnTjz2/qgREtWY+fPnSwAkAFJQUJCw7Pr16/Kykg/DkSNHJBMTE2FZySkvL09uGxgYWG67UaNGCf25ubnJy9zd3eW/3dzcJEmSpKioKAmANH/+fHmdcePGlbv9gICAvx17yf4enSRJkvr37y/fvn79epn3WVRUVJnbK3b48OFy79+ylOyzR48eEgDJ0dFRun//fqk+Ll26JK/Xrl27csfy7LPPljvu1q1bl2r//vvvSxYWFsI8ExMT6fLly/I2MjIypE6dOpXb56pVqx471pL3TfFjXFJ5z81vv/223H5NTEykQ4cOyW0XLVpUbltvb+/H1hgUFFTq8TA3N5du3LhR6vHau3evvF554yrrOVXyddasWTPJyspKqNPa2lqaMWNGqfpbtmwpvNZKbrtz586l2jdr1kz6888/5fZ79uyRLC0ty7xvNBqN9Pvvv5f5WJR8bQKQDh8+/Nj7sSZwj6GO2blzp/xuf9myZYiJicHmzZsxZ84ceHp6yu+4v/vuO2zYsAEA0K5dO3z77bfYuXMnvLy8AABbtmzBli1byuwjLS0Nn332Gfbv348PPvgAQNGJQEmShJPPP/zwAwDAzc0N3333Hfbv348vv/wSgYGBaNSo0d+O47vvvpO3DQBvvvkmYmNjERsbW4V7pfpNmzYNtra2uHfvnvxOvjyTJk3Cxo0bsWfPHhw5cgQ//vgjhg0bBgA4fPgw4uLiylzP1NQU27dvx9SpU+V5H330EXr27ImdO3di5MiRAIreef/73/+W23z44YdITEwEAAwbNgy7d+/Ghg0boNFoAADTp0/HrVu3KjzWmzdvChc6KBQKLFy4sMy27dq1w6effoodO3bg0KFDiImJwZo1a2BpaYnCwkLhHX3x88PBwQFff/01Dh48iA0bNmDSpElwcXGpcH0AEBgYiBYtWiAvLw//8z//U6l1K+r27dvw8fHB7t27MXDgQABFe8WffPIJJkyYgF27dqF9+/YAivY0fvrppzK3k5KSgqioKGzbtg3u7u7ytpctWwagaI8iKCgIOTk5MDMzw9KlS7F//37MmjULAKDT6fDOO++Uue3ff/8dAQEB8mPerFmzar0PKswocfQPUZU9hvfff1+et23bNuFdSEkjRoyQ20VGRkqxsbFSbGys9MUXX8jzhw8fLrcv+U523bp1Fapfo9FIAKQuXbpIZ8+elbKzsys1/uK9EDyyJyJJxt9j2Lt3r/Tee+9JACRnZ2fpwYMH5e4x/Prrr9Lo0aOl5s2bS+bm5qXeAa5cubLMOvfv3y9JkiTduXNHaH/16lVJkiTp9OnT8rwXX3xRkiRJKigokBo1aiQBkCwsLKSDBw/Kj+0777wjt//kk0/+dqwl75vHTSXvu/z8fGnFihVSz549JXt7e0mhUAhtGzVqJLf18vKS3y3Hx8dLWVlZj30MSiq5x7BmzRrpX//6lwRAsrS0lG7fvl3tewzW1taSXq+XJEmStm3bJs93dXWVCgsLJUmSpI8//liev2LFijK3/cUXX8jzDxw4ILzblyRJ2r59uzxv6NCh8uMXGxsrtWzZUgIgKRQK6c6dO5Ikic/5iuxp1QazSicJVVjJy1ClR34or+Ttku0CAgIQERGBnJwcvPLKKwAAZ2dneHt745133oGPjw8A4LfffpPXeffdd8vs/9KlS2XOf/755ytU//jx47F06VKcP38eXbt2hampKdq2bYshQ4Zg5syZlX5XWNfMmDEDq1atQnp6OtatW1dmm5s3b6JPnz4wGAzlbqe8E9i9evUCADg6OsrzGjVqhNatWwMAGjduXGobf/75p3xpb25urvx4P6q8x7YsGo0G27ZtE+Z99dVXiIqKKtU2NDT0b8+7lBzr+PHjceLECdy+fRtarRYKhQLu7u4YNGgQ3nvvPbRt27bCNQLAhAkTsHTpUuh0Onz88ceVWrci2rVrB6VSCUB8TLp37y6/Bst6TB7Vu3dv+e/ixxgo2suQJEl4be7du7fM80KSJOHy5cvo27evMH/48OGVGFHN4aGkGmRvby///eg18yVvl2zXsWNHJCQk4N1330Xv3r2hUqmQnp6O7du3w9fXt9zDFmUp74ojtVpdofUXL16Mb7/9Fq+88gratWsHhUKBS5cuISIiAoMHD0Z+fn6Fa3lUyTAsKCiQ/370fqpJGo0GEyZMAAB8/PHHyM3NLdVm/fr1cihotVrs2LEDsbGx8mEBAKVO9BdTqVQAABOT/3+ZFf9jetSjbxwepzJXk1laWqJv377C5OrqWqpdbm6uHJBmZmb46KOPcPjwYcTGxsr/MEvWOWHCBOzduxdjxoxBx44dYWFhgWvXrmHdunXo379/pa/4srKywowZMwAA69atw507d/62fcnnDfD4507x4wFU32PyJJ9BKusxrOhrs6YxGGpQu3bt5L/j4uKQmZkp3y55/LL4uCZQ9GR86qmnsHLlSpw4cQIZGRn47rvvABT9A9qxYwcACO/GDh8+DEmSSk1lXSkBVO7JPHr0aGzduhWXL1/G/fv38fLLLwMounql5Dujyir5ItXpdACKxnfgwIEqb7MqZs2aBQsLC9y+fRupqamllt++fVv++4MPPsCIESPQt29f6PX6GqmncePG8vkbOzs73L9/v9TjWlBQUOa7/Sd19+5d+fLILl26YPbs2RgwYADc3d1x7969Uu0lScKQIUOwYcMGJCYmIjMzE9OmTQNQ9JhW5k1MsUmTJqFx48Z48OABLl68WGab4ufO3bt3kZeXB6Do3XptfSjx1KlT8t8nT56U/y6+Iq3kazMoKKjM12ZWVhZ8fX1LbbsufNgVAHgoqQYNHDgQTk5OuHv3LjIyMuDl5YURI0YgJSUFGzdulNsV/7MFgOXLl+PIkSPw8/ODq6srbG1thRDJyckBUHTIqfjk35gxY/Dhhx/Cw8MDd+7cwZUrV7B7924MHToU8+fPr3L93t7e6Nq1K3r16oVmzZrh/v37wou1uJaqaNOmjfz3lClT5JN/TxI2VdGiRQsEBgYKJ39LcnNzk/+OjIyEhYUFTp48WaXLMSvCxMQEr732GlavXo3MzEwMHjwY7777Lho3bow//vgDv/76K77//nt89dVXGDBgQLX2rVarYWVlhezsbCQmJmLdunVQq9VYvHhxmXtFL7/8Muzt7dGvXz80b94c+fn5OHPmjLy8Ks8PW1tbTJs2DXPmzCm3TZs2bZCQkICHDx/i9ddfxzPPPIPVq1eX2oOoKWFhYTAzM4OtrS3CwsLk+SNGjABQ9JmdJk2a4M6dO9iwYQMcHR3x3HPPoaCgADdu3MDx48dx/vz5coOvTqjF8xn/SFu2bJFMTU3LPfHXq1cv6eHDh3L7xYsXl9vWxMRE+vnnn+W2f3e5Kh454VvWydvHKetyy+LJ09NTys/P/9v1/+7k88WLF8u8LLd9+/a1dvK52LVr10o9RsUnn2/evCnZ2NiUqtPb27tS93PxvJInTEueGO3fv788/6+//vrby1WBx1/GWNXLVYODg0v15eHhITk7O5ca16BBg8qtT61WSxkZGX9b46Mnn4tlZGRIKpVK2F7Jx+vzzz8v1Z+dnZ3UvHnzvz35XPI+Lu+5U95ztuRzx8PDo1T/Li4uUnp6utx+9+7d5V6u+uhjUt4FF8bEQ0k17NVXX8Xx48fxyiuvoGnTpjAzM4OdnR26deuGZcuW4ciRI7CyspLbDxs2DG+//TY6duyIRo0awdTUFI6Ojhg8eDB++ukneHt7y23Xr1+PDRs2oH///vKH4VxdXTFo0CBERkaWe0lcRYWFhWHEiBFwc3ODjY0NzM3N0bJlS0yaNAmHDh2CqalplbfdoUMHbNq0CW3atIGFhQU6duyIrVu3YtSoUU9Uc1W4u7vj9ddfL3OZq6sr9u/fj169esHa2hqtW7fG6tWr5XMTNcHBwQHx8fFYvHgxunTpIn+ozsPDAy+//DK+/fZb+bLk6vbJJ59g2rRpcHFxgZ2dHV544QXExMTA2tq6VNt33nkHo0aNQuvWrWFnZwczMzM0a9YMAQEB+Pnnn4XDhZWhUqnKvaACKDq3ERYWBmdnZ1hbW2PgwIGIjY2VT+rXtG3btmHixIlwcnKCtbU1hg4dimPHjqFJkyZym2HDhuHMmTMYM2YMmjdvDnNzczRu3BhPP/00QkNDS10MUNcoJKmSZ72IiKhB4x4DEREJGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMKDoo/0Gg6HS31dDRNQQMRgA3L9/HyqVCvfv3zd2KURERsdgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIigVGDoWXLllAoFKWm4OBgAEB2djaCg4Ph5OQEOzs7+Pv7Iy0tTdhGcnIy/Pz8YGNjA2dnZ8ycORP5+fnGGA4RUYNg1GA4ffo0UlNT5enAgQMAgFdeeQUAMH36dOzcuRPbtm3D0aNHkZKSgpEjR8rrFxQUwM/PD7m5uYiLi8P69esRHR2NefPmGWU8REQNglSHTJ06VWrdurVUWFgoZWRkSObm5tK2bdvk5ZcuXZIASPHx8ZIkSdKePXskExMTSafTyW3WrFkjKZVKKScnp8L96vV6CYCk1+urbzBERPVUnTnHkJubi6+//hrjxo2DQqFAQkIC8vLy4OPjI7dp3749XF1dER8fDwCIj49Hp06doFar5Ta+vr4wGAy4cOFCuX3l5OTAYDAIExERFakzwbBjxw5kZGRg7NixAACdTgcLCws4ODgI7dRqNXQ6ndymZCgULy9eVp7w8HCoVCp5atGiRfUNhIionjMzdgHFvvzySwwdOhRNmzat8b7CwsIQGhoq3zYYDE8UDv3eXlwdZVE9E/v5XGOXQFQj6kQw3Lx5EwcPHsT3338vz9NoNMjNzUVGRoaw15CWlgaNRiO3OXXqlLCt4quWituUxdLSEpaWltU4AiKihqNOHEqKioqCs7Mz/Pz85Hndu3eHubk5YmJi5HlJSUlITk6GVqsFAGi1WiQmJiI9PV1uc+DAASiVSnh6etbeAIiIGhCj7zEUFhYiKioKQUFBMDP7/3JUKhXGjx+P0NBQODo6QqlUYsqUKdBqtfDy8gIADB48GJ6enhgzZgyWL18OnU6HOXPmIDg4mHsERERVZPRgOHjwIJKTkzFu3LhSyyIiImBiYgJ/f3/k5OTA19cXq1evlpebmppi165dmDx5MrRaLWxtbREUFIRFixbV5hCIiBoUhSRJkrGLMDaDwQCVSgW9Xg+lUlnp9Xny+Z+JJ5+poaoT5xiIiKjuYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZHA6MFw+/ZtvPHGG3BycoK1tTU6deqEM2fOyMslScK8efPg4uICa2tr+Pj44MqVK8I27t27h4CAACiVSjg4OGD8+PHIzMys7aEQETUIRg2Gv/76C97e3jA3N8fevXtx8eJFfPrpp2jUqJHcZvny5YiMjMTatWtx8uRJ2NrawtfXF9nZ2XKbgIAAXLhwAQcOHMCuXbtw7NgxTJw40RhDIiKq9xSSJEnG6vz999/H8ePHERsbW+ZySZLQtGlTvPfee5gxYwYAQK/XQ61WIzo6GqNHj8alS5fg6emJ06dPo0ePHgCAffv2YdiwYfjjjz/QtGnTx9ZhMBigUqmg1+uhVCorPY5+by+u9DpU/8V+PtfYJRDVCKPuMfz444/o0aMHXnnlFTg7O6Nr16744osv5OXXr1+HTqeDj4+PPE+lUqF3796Ij48HAMTHx8PBwUEOBQDw8fGBiYkJTp48WWa/OTk5MBgMwkREREWMGgy///471qxZAw8PD/z000+YPHky3n33Xaxfvx4AoNPpAABqtVpYT61Wy8t0Oh2cnZ2F5WZmZnB0dJTbPCo8PBwqlUqeWrRoUd1DIyKqt4waDIWFhejWrRuWLVuGrl27YuLEiXjrrbewdu3aGu03LCwMer1enm7dulWj/RER1SdGDQYXFxd4enoK8zp06IDk5GQAgEajAQCkpaUJbdLS0uRlGo0G6enpwvL8/Hzcu3dPbvMoS0tLKJVKYSIioiJGDQZvb28kJSUJ83777Te4ubkBAFq1agWNRoOYmBh5ucFgwMmTJ6HVagEAWq0WGRkZSEhIkNscOnQIhYWF6N27dy2MgoioYTEzZufTp09Hnz59sGzZMrz66qs4deoU1q1bh3Xr1gEAFAoFpk2bhiVLlsDDwwOtWrXC3Llz0bRpU7z44osAivYwhgwZIh+CysvLQ0hICEaPHl2hK5KIiEhk1GDo2bMntm/fjrCwMCxatAitWrXCihUrEBAQILeZNWsWsrKyMHHiRGRkZKBv377Yt28frKys5DabNm1CSEgIBg0aBBMTE/j7+yMyMtIYQyIiqveM+jmGuoKfY6Cq4OcYqKEy+ldiEBFR3cJgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIigVGDYcGCBVAoFMLUvn17eXl2djaCg4Ph5OQEOzs7+Pv7Iy0tTdhGcnIy/Pz8YGNjA2dnZ8ycORP5+fm1PRQiogbDzNgFPPXUUzh48KB828zs/0uaPn06du/ejW3btkGlUiEkJAQjR47E8ePHAQAFBQXw8/ODRqNBXFwcUlNTERgYCHNzcyxbtqzWx0JE1BAYPRjMzMyg0WhKzdfr9fjyyy/xzTffYODAgQCAqKgodOjQASdOnICXlxf279+Pixcv4uDBg1Cr1Xj66aexePFizJ49GwsWLICFhUVtD4eIqN4z+jmGK1euoGnTpnB3d0dAQACSk5MBAAkJCcjLy4OPj4/ctn379nB1dUV8fDwAID4+Hp06dYJarZbb+Pr6wmAw4MKFC7U7ECKiBsKoewy9e/dGdHQ02rVrh9TUVCxcuBD9+vXDr7/+Cp1OBwsLCzg4OAjrqNVq6HQ6AIBOpxNCoXh58bLy5OTkICcnR75tMBiqaURERPWfUYNh6NCh8t+dO3dG79694ebmhq1bt8La2rrG+g0PD8fChQtrbPtERPWZ0Q8lleTg4IC2bdvi6tWr0Gg0yM3NRUZGhtAmLS1NPieh0WhKXaVUfLus8xbFwsLCoNfr5enWrVvVOxAionqsTgVDZmYmrl27BhcXF3Tv3h3m5uaIiYmRlyclJSE5ORlarRYAoNVqkZiYiPT0dLnNgQMHoFQq4enpWW4/lpaWUCqVwkREREWMeihpxowZeP755+Hm5oaUlBTMnz8fpqameO2116BSqTB+/HiEhobC0dERSqUSU6ZMgVarhZeXFwBg8ODB8PT0xJgxY7B8+XLodDrMmTMHwcHBsLS0NObQiIjqLaMGwx9//IHXXnsNd+/eRZMmTdC3b1+cOHECTZo0AQBERETAxMQE/v7+yMnJga+vL1avXi2vb2pqil27dmHy5MnQarWwtbVFUFAQFi1aZKwhERHVewpJkiRjF2FsBoMBKpUKer2+SoeV+r29uAaqorou9vO5xi6BqEbUqXMMRERkfAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiISMBiIiEjAYCAiIgGDgYiIBAwGIiIS1Jlg+Oijj6BQKDBt2jR5XnZ2NoKDg+Hk5AQ7Ozv4+/sjLS1NWC85ORl+fn6wsbGBs7MzZs6cifz8/Fqunoio4agTwXD69Gl8/vnn6Ny5szB/+vTp2LlzJ7Zt24ajR48iJSUFI0eOlJcXFBTAz88Pubm5iIuLw/r16xEdHY158+bV9hCIiBoMowdDZmYmAgIC8MUXX6BRo0byfL1ejy+//BKfffYZBg4ciO7duyMqKgpxcXE4ceIEAGD//v24ePEivv76azz99NMYOnQoFi9ejFWrViE3N9dYQyIiqteMHgzBwcHw8/ODj4+PMD8hIQF5eXnC/Pbt28PV1RXx8fEAgPj4eHTq1AlqtVpu4+vrC4PBgAsXLtTOAIiIGhgzY3a+efNm/PLLLzh9+nSpZTqdDhYWFnBwcBDmq9Vq6HQ6uU3JUCheXrysPDk5OcjJyZFvGwyGqg6BiKjBMdoew61btzB16lRs2rQJVlZWtdp3eHg4VCqVPLVo0aJW+yciqsuqHAyxsbF44403oNVqcfv2bQDAxo0b8fPPP1do/YSEBKSnp6Nbt24wMzODmZkZjh49isjISJiZmUGtViM3NxcZGRnCemlpadBoNAAAjUZT6iql4tvFbcoSFhYGvV4vT7du3arosImIGrwqBcN//vMf+Pr6wtraGmfPnpUPy+j1eixbtqxC2xg0aBASExNx7tw5eerRowcCAgLkv83NzRETEyOvk5SUhOTkZGi1WgCAVqtFYmIi0tPT5TYHDhyAUqmEp6dnuX1bWlpCqVQKExERFanSOYYlS5Zg7dq1CAwMxObNm+X53t7eWLJkSYW2YW9vj44dOwrzbG1t4eTkJM8fP348QkND4ejoCKVSiSlTpkCr1cLLywsAMHjwYHh6emLMmDFYvnw5dDod5syZg+DgYFhaWlZlaERE/3hVCoakpCQ888wzpearVKpSh36eREREBExMTODv74+cnBz4+vpi9erV8nJTU1Ps2rULkydPhlarha2tLYKCgrBo0aJqq4GI6J+mSsGg0Whw9epVtGzZUpj/888/w93dvcrFHDlyRLhtZWWFVatWYdWqVeWu4+bmhj179lS5TyIiElXpHMNbb72FqVOn4uTJk1AoFEhJScGmTZswY8YMTJ48ubprJCKiWlSlPYb3338fhYWFGDRoEB48eIBnnnkGlpaWmDFjBqZMmVLdNRIRUS2qUjDk5+fjww8/xMyZM3H16lVkZmbC09MTdnZ2+PPPP9G4cePqrpOIiGpJlQ4ljR49GpIkwcLCAp6enujVqxfs7OyQlpaGAQMGVHOJRERUm6oUDMnJyZgwYYIwLzU1FQMGDED79u2rpTAiIjKOKgXDnj17EBcXh9DQUABASkoKBgwYgE6dOmHr1q3VWiAREdWuKp1jaNKkCfbv34++ffsCAHbt2oVu3bph06ZNMDEx+he2EhHRE6jyt6u2aNECBw4cQL9+/fDcc89h48aNUCgU1VkbEREZQYWDoVGjRmX+43/w4AF27twJJycned69e/eqpzoiIqp1FQ6GFStW1GAZRERUV1Q4GIKCgmqyDiIiqiOe+BfcsrOzS/2+Mr/Gmoio/qrSJURZWVkICQmBs7MzbG1t0ahRI2EiIqL6q0rBMGvWLBw6dAhr1qyBpaUl/v3vf2PhwoVo2rQpNmzYUN01EhFRLarSoaSdO3diw4YNGDBgAN58803069cPbdq0gZubGzZt2oSAgIDqrpOIiGpJlfYY7t27J//uglKplC9P7du3L44dO1Z91RERUa2rUjC4u7vj+vXrAID27dvLX4Oxc+dOODg4VFtxRERU+yoVDL///jsKCwvx5ptv4vz58wCKfpth1apVsLKywvTp0zFz5swaKZSIiGpHpc4xeHh4IDU1FdOnTwcAjBo1CpGRkbh8+TISEhLQpk0bdO7cuUYKJSKi2lGpPQZJkoTbe/bsQVZWFtzc3DBy5EiGAhFRA8CvQiUiIkGlgkGhUJT6Ij1+oyoRUcNSqXMMkiRh7NixsLS0BFD0dRiTJk2Cra2t0O7777+vvgqJiKhWVSoYHv0ivTfeeKNaiyEiIuOrVDBERUXVVB1ERFRH8OQzEREJGAxERCRgMBARkYDBQEREAgYDEREJjBoMa9asQefOnaFUKqFUKqHVarF37155eXZ2NoKDg+Hk5AQ7Ozv4+/sjLS1N2EZycjL8/PxgY2MDZ2dnzJw5E/n5+bU9FCKiBsOowdC8eXN89NFHSEhIwJkzZzBw4ECMGDECFy5cAABMnz4dO3fuxLZt23D06FGkpKRg5MiR8voFBQXw8/NDbm4u4uLisH79ekRHR2PevHnGGhIRUb2nkB79Zjwjc3R0xMcff4yXX34ZTZo0wTfffIOXX34ZAHD58mV06NAB8fHx8PLywt69ezF8+HCkpKRArVYDANauXYvZs2fjzp07sLCwqFCfBoMBKpUKer0eSqWy0jX3e3txpdeh+i/287nGLoGoRtSZcwwFBQXYvHkzsrKyoNVqkZCQgLy8PPj4+Mht2rdvD1dXV8THxwMA4uPj0alTJzkUAMDX1xcGg0He6yAiosqp0m8+V6fExERotVpkZ2fDzs4O27dvh6enJ86dOwcLC4tSvwinVquh0+kAADqdTgiF4uXFy8qTk5ODnJwc+bbBYKim0RAR1X9G32No164dzp07h5MnT2Ly5MkICgrCxYsXa7TP8PBwqFQqeWrRokWN9kdEVJ8YPRgsLCzQpk0bdO/eHeHh4ejSpQtWrlwJjUaD3NxcZGRkCO3T0tKg0WgAABqNptRVSsW3i9uUJSwsDHq9Xp5u3bpVvYMiIqrHjB4MjyosLEROTg66d+8Oc3NzxMTEyMuSkpKQnJwMrVYLANBqtUhMTER6errc5sCBA1AqlfD09Cy3D0tLS/kS2eKJiIiKGPUcQ1hYGIYOHQpXV1fcv38f33zzDY4cOYKffvoJKpUK48ePR2hoKBwdHaFUKjFlyhRotVp4eXkBAAYPHgxPT0+MGTMGy5cvh06nw5w5cxAcHCz/ZgQREVWOUYMhPT0dgYGBSE1NhUqlQufOnfHTTz/hueeeAwBERETAxMQE/v7+yMnJga+vL1avXi2vb2pqil27dmHy5MnQarWwtbVFUFAQFi1aZKwhERHVe3XucwzGwM8xUFXwcwzUUNW5cwxERGRcDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISMBgICIiAYOBiIgEDAYiIhIwGIiISGDUYAgPD0fPnj1hb28PZ2dnvPjii0hKShLaZGdnIzg4GE5OTrCzs4O/vz/S0tKENsnJyfDz84ONjQ2cnZ0xc+ZM5Ofn1+ZQiIgaDKMGw9GjRxEcHIwTJ07gwIEDyMvLw+DBg5GVlSW3mT59Onbu3Ilt27bh6NGjSElJwciRI+XlBQUF8PPzQ25uLuLi4rB+/XpER0dj3rx5xhgSEVG9p5AkSTJ2EcXu3LkDZ2dnHD16FM888wz0ej2aNGmCb775Bi+//DIA4PLly+jQoQPi4+Ph5eWFvXv3Yvjw4UhJSYFarQYArF27FrNnz8adO3dgYWHx2H4NBgNUKhX0ej2USmWl6+739uJKr0P1X+znc41dAlGNqFPnGPR6PQDA0dERAJCQkIC8vDz4+PjIbdq3bw9XV1fEx8cDAOLj49GpUyc5FADA19cXBoMBFy5cKLOfnJwcGAwGYSIioiJ1JhgKCwsxbdo0eHt7o2PHjgAAnU4HCwsLODg4CG3VajV0Op3cpmQoFC8vXlaW8PBwqFQqeWrRokU1j4aIqP6qM8EQHByMX3/9FZs3b67xvsLCwqDX6+Xp1q1bNd4nEVF9YWbsAgAgJCQEu3btwrFjx9C8eXN5vkajQW5uLjIyMoS9hrS0NGg0GrnNqVOnhO0VX7VU3OZRlpaWsLS0rOZREBE1DEbdY5AkCSEhIdi+fTsOHTqEVq1aCcu7d+8Oc3NzxMTEyPOSkpKQnJwMrVYLANBqtUhMTER6errc5sCBA1AqlfD09KydgRARNSBG3WMIDg7GN998gx9++AH29vbyOQGVSgVra2uoVCqMHz8eoaGhcHR0hFKpxJQpU6DVauHl5QUAGDx4MDw9PTFmzBgsX74cOp0Oc+bMQXBwMPcKiIiqwKjBsGbNGgDAgAEDhPlRUVEYO3YsACAiIgImJibw9/dHTk4OfH19sXr1armtqakpdu3ahcmTJ0Or1cLW1hZBQUFYtGhRbQ2DiKhBqVOfYzAWfo6BqoKfY6CGqs5clURERHUDg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiAQMBiIiEjAYiIhIwGAgIiIBg4GIiARGDYZjx47h+eefR9OmTaFQKLBjxw5huSRJmDdvHlxcXGBtbQ0fHx9cuXJFaHPv3j0EBARAqVTCwcEB48ePR2ZmZi2OgoioYTFqMGRlZaFLly5YtWpVmcuXL1+OyMhIrF27FidPnoStrS18fX2RnZ0ttwkICMCFCxdw4MAB7Nq1C8eOHcPEiRNrawhERA2OQpIkydhFAIBCocD27dvx4osvAijaW2jatCnee+89zJgxAwCg1+uhVqsRHR2N0aNH49KlS/D09MTp06fRo0cPAMC+ffswbNgw/PHHH2jatGmF+jYYDFCpVNDr9VAqlZWuvd/biyu9DtV/sZ/PNXYJRDWizp5juH79OnQ6HXx8fOR5KpUKvXv3Rnx8PAAgPj4eDg4OcigAgI+PD0xMTHDy5Mlyt52TkwODwSBMRERUpM4Gg06nAwCo1WphvlqtlpfpdDo4OzsLy83MzODo6Ci3KUt4eDhUKpU8tWjRopqrJyKqv+psMNSksLAw6PV6ebp165axSyIiqjPqbDBoNBoAQFpamjA/LS1NXqbRaJCeni4sz8/Px7179+Q2ZbG0tIRSqRQmIiIqUmeDoVWrVtBoNIiJiZHnGQwGnDx5ElqtFgCg1WqRkZGBhIQEuc2hQ4dQWFiI3r1713rNREQNgZkxO8/MzMTVq1fl29evX8e5c+fg6OgIV1dXTJs2DUuWLIGHhwdatWqFuXPnomnTpvKVSx06dMCQIUPw1ltvYe3atcjLy0NISAhGjx5d4SuSiIhIZNRgOHPmDJ599ln5dmhoKAAgKCgI0dHRmDVrFrKysjBx4kRkZGSgb9++2LdvH6ysrOR1Nm3ahJCQEAwaNAgmJibw9/dHZGRkrY+FiKihqDOfYzAmfo6BqsLYn2MYvDnMqP1T7ds/OrxW+qmz5xiIiMg4GAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRoMMGwatUqtGzZElZWVujduzdOnTpl7JKIiOqlBhEMW7ZsQWhoKObPn49ffvkFXbp0ga+vL9LT041dGhFRvdMgguGzzz7DW2+9hTfffBOenp5Yu3YtbGxs8NVXXxm7NCKiesfM2AU8qdzcXCQkJCAsLEyeZ2JiAh8fH8THx5e5Tk5ODnJycuTber0eAGAwGKpUQ35udpXWo/qtqs+X6pL/IOfxjahBqY7nnL29PRQKxd+2qffB8Oeff6KgoABqtVqYr1arcfny5TLXCQ8Px8KFC0vNb9GiRY3USA2TKnqZsUugfxjV+Ign3oZer4dSqfzbNvU+GKoiLCwMoaGh8u3CwkLcu3cPTk5Oj01S+n8GgwEtWrTArVu3HvtEI6oOfM49OXt7+8e2qffB0LhxY5iamiItLU2Yn5aWBo1GU+Y6lpaWsLS0FOY5ODjUVIkNnlKp5IuUahWfczWr3p98trCwQPfu3RETEyPPKywsRExMDLRarRErIyKqn+r9HgMAhIaGIigoCD169ECvXr2wYsUKZGVl4c033zR2aURE9U6DCIZRo0bhzp07mDdvHnQ6HZ5++mns27ev1Alpql6WlpaYP39+qcNyRDWFz7naoZAkSTJ2EUREVHfU+3MMRERUvRgMREQkYDAQEZGAwUBERAIGAxERCRgMVGmFhYUoKCgwdhlEVEMYDFQpFy9eRGBgIHx9fTF58mTExcUZuyT6B+AbkdrFYKAKS0pKQp8+fVBQUICePXsiPj4eU6dORWRkpLFLowbst99+w4oVK5CammrsUv4xGsQnn6nmSZKEDRs2wNfXF99++y0A4IMPPkBkZCSioqKQnZ2NWbNmGblKamiuXr0KrVaLv/76C3fv3kVoaCgaN25s7LIaPAYDVYhCoUBKSgp0Op08z97eHu+++y6srKywefNmNGvWDAEBAUaskhqSrKwshIeH44UXXkDPnj0REhKC/Px8zJo1i+FQwxgM9FiSJEGhUKBbt264cuUKkpKS0K5dOwBF4TBu3DgkJSVh9erVeOmll2BjY2PkiqkhMDExQffu3eHk5IRRo0ahcePGGD16NAAwHGoYvyuJKuzatWvw8vLCCy+8gJUrV8LOzk4OjVu3bsHNzQ179uzBkCFDjF0qNRBZWVmwtbWVb2/ZsgWvvfYa3nvvPbz//vtwcnJCYWEhbt68iVatWhmx0oaFewxUYa1bt8bWrVsxdOhQWFtbY8GCBfK7NnNzc3Tu3BkqlcrIVVJDUhwKBQUFMDExwahRoyBJEl5//XUoFApMmzYNn3zyCW7evImNGzdyb7WaMBioUp599lls27YNr7zyClJTU/Hqq6+ic+fO2LBhA9LT0/m72VQjTE1NIUkSCgsLMXr0aCgUCowZMwY//vgjrl27htOnTzMUqhEPJVGV/PLLLwgNDcWNGzdgZmYGU1NTbN68GV27djV2adSAFf+7UigUGDRoEM6dO4cjR46gU6dORq6sYWEwUJUZDAbcu3cP9+/fh4uLC08GUq0oKCjAzJkzsWLFCpw7dw6dO3c2dkkNDg8lUZXxB9nJWJ566in88ssvDIUawj0GIqp3iq+Go5rBr8QgonqHoVCzGAxERCRgMBARkYDBQEREAgYDEREJGAxERCRgMBARkYDBQE9EkiRMnDgRjo6OUCgUOHfu3GPXUSgU2LFjBwDgxo0bFV6vPmvZsiVWrFhh7DJqXXR0NBwcHIxdBlUSP/lMT2Tfvn2Ijo7GkSNH4O7uzq/FIGoAGAz0RK5duwYXFxf06dPH2KXQP0heXh7Mzc2NXUaDxUNJVGVjx47FlClTkJycDIVCgZYtW5Z5yOTpp5/GggULnri/I0eOQKFQICYmBj169ICNjQ369OmDpKQkuc21a9cwYsQIqNVq2NnZoWfPnjh48KCwnZYtW2LJkiUIDAyEnZ0d3Nzc8OOPP+LOnTsYMWIE7Ozs0LlzZ5w5c0ZY7+eff0a/fv1gbW2NFi1a4N1330VWVlaF63/w4AHGjRsHe3t7uLq6Yt26dcLy2bNno23btrCxsYG7uzvmzp2LvLw8efn58+fx7LPPwt7eHkqlEt27dy9VY1mKD+f89NNP6NChA+zs7DBkyBCkpqbKbQYMGIBp06YJ67344osYO3bsE99vALBjxw54eHjAysoKvr6+uHXrlrD8hx9+QLdu3WBlZQV3d3csXLgQ+fn58nKFQoE1a9bghRdegK2tLZYuXfrYcVPVMRioylauXIlFixahefPmSE1NxenTp2ul3w8//BCffvopzpw5AzMzM4wbN05elpmZiWHDhiEmJgZnz57FkCFD8PzzzyM5OVnYRkREBLy9vXH27Fn4+flhzJgxCAwMxBtvvIFffvkFrVu3RmBgoPw1z9euXcOQIUPg7++P//73v9iyZQt+/vlnhISEVLjuTz/9FD169MDZs2fxzjvvYPLkyUKo2dvbIzo6GhcvXsTKlSvxxRdfICIiQl4eEBCA5s2b4/Tp00hISMD7779f4XfNDx48wCeffIKNGzfi2LFjSE5OxowZMypce7HK3m/FfS9duhQbNmzA8ePHkZGRIf9EJwDExsYiMDAQU6dOxcWLF/H5558jOjq61D//BQsW4KWXXkJiYqLwmFMNkIieQEREhOTm5ibfdnNzkyIiIoQ2Xbp0kebPny/fBiBt375dkiRJun79ugRAOnv27GP7Onz4sARAOnjwoDxv9+7dEgDp4cOH5a731FNPSf/617+EGt944w35dmpqqgRAmjt3rjwvPj5eAiClpqZKkiRJ48ePlyZOnChsNzY2VjIxMfnbvsvrs7CwUHJ2dpbWrFlT7joff/yx1L17d/m2vb29FB0d/di+HhUVFSUBkK5evSrPW7VqlaRWq+Xb/fv3l6ZOnSqsN2LECCkoKKjcMVTkfivu+8SJE3KbS5cuSQCkkydPSpIkSYMGDZKWLVsm9L1x40bJxcVFvg1AmjZtWqXHTlXDPQaqd0p+1bKLiwsAID09HUDRHsOMGTPQoUMHODg4wM7ODpcuXSq1x1ByG2q1GgCEH3spnle83fPnzyM6Ohp2dnby5Ovri8LCQly/fr3SdSsUCmg0Gnn7QNHvGXt7e0Oj0cDOzg5z5swR6g4NDcWECRPg4+ODjz76CNeuXatQvwBgY2OD1q1by7ddXFyEviuqsvcbAJiZmaFnz57y7fbt28PBwQGXLl0CUHTfLlq0SLhv33rrLaSmpuLBgwfyej169Kh0vVQ1DAaqViYmJsJhBADCcfLqUPLwSfG3bBYWFgIAZsyYge3bt2PZsmWIjY3FuXPn0KlTJ+Tm5j52G3+33czMTLz99ts4d+6cPJ0/fx5XrlwR/uFWtO7iPoq3Hx8fj4CAAAwbNgy7du3C2bNn8eGHHwp1L1iwABcuXICfnx8OHToET09PbN++vcp9l3ycKvq4VfZ+q4jMzEwsXLhQuG8TExNx5coVWFlZye2Kf/+Zah6vSqJq1aRJE+GkpsFgqPA76upw/PhxjB07Fi+99BKAon86N27ceOLtduvWDRcvXkSbNm2eeFtliYuLg5ubGz788EN53s2bN0u1a9u2Ldq2bYvp06fjtddeQ1RUlDzWJ/Ho41ZQUIBff/0Vzz777BNvOz8/H2fOnEGvXr0AAElJScjIyECHDh0AFN23SUlJNXbfUuVxj4Gq1cCBA7Fx40bExsYiMTERQUFBMDU1rbX+PTw88P3338vv6F9//fVKvXstz+zZsxEXF4eQkBCcO3cOV65cwQ8//FCpk89/x8PDA8nJydi8eTOuXbuGyMhIYW/g4cOHCAkJwZEjR3Dz5k0cP34cp0+flv+5PqmBAwdi9+7d2L17Ny5fvozJkycjIyOjWrZtbm6OKVOm4OTJk0hISMDYsWPh5eUlB8W8efOwYcMGLFy4EBcuXMClS5ewefNmzJkzp1r6p8pjMFC1CgsLQ//+/TF8+HD4+fnhxRdfrPChlurw2WefoVGjRujTpw+ef/55+Pr6olu3bk+83c6dO+Po0aP47bff0K9fP3Tt2hXz5s1D06ZNq6Fq4IUXXsD06dMREhKCp59+GnFxcZg7d6683NTUFHfv3kVgYCDatm2LV199FUOHDsXChQurpf9x48YhKCgIgYGB6N+/P9zd3atlbwEoOr8xe/ZsvP766/D29oadnR22bNkiL/f19cWuXbuwf/9+9OzZE15eXoiIiICbm1u19E+Vx5/2JCIiAfcYiIhIwGCgOmPSpEnCJYslp0mTJhm7vHLFxsaWW7ednV2N9z906NBy+162bFmN908NDw8lUZ2Rnp4Og8FQ5jKlUglnZ+darqhiHj58iNu3b5e7vKavtrl9+zYePnxY5jJHR0c4OjrWaP/U8DAYiIhIwENJREQkYDAQEZGAwUBERAIGAxERCRgMREQkYDAQEZGAwUBERAIGAxERCf4XZF5Ic88lLHkAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "def barplot(column, horizontal):\n", " plt.figure(figsize=(4, 4))\n", " sns.countplot(x=column, data=df, palette='viridis')\n", " plt.xlabel(column)\n", " plt.ylabel(\"Fake\")\n", " plt.title(f\"Users are Joined Recently\", fontweight='bold')\n", " plt.xticks(rotation=45)\n", " sns.despine()\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "barplot('is_joined_recently', True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 407 }, "id": "wwidajZ9-q2S", "outputId": "0d1a63f5-444e-43ce-9b46-93e503266b12" }, "execution_count": 37, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAGGCAYAAAB/gCblAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAy50lEQVR4nO3deVxU9f4/8NeAMKwzLApoCi6ZiArmyiQoFomKS4nldpW8ZGmoKYXJzRS1K+b1kcu9omYFapplLgXumZrpqIjadcuSVOzqQKkwojFsn98f/jhfPgoKCAzQ6/l4nMdj5nM+55z3Z5iZF2eZGZUQQoCIiOj/szB3AUREVLswGIiISMJgICIiCYOBiIgkDAYiIpIwGIiISMJgICIiCYOBiIgkDAYiIpIwGIiqUfPmzaFSqaBSqcxdSq2qpS5ITExUHq/Y2Fhzl1OjGAy1WGxsrPLEfOWVV6R5ly9fVubxhV71Sr4pBAUFmbucGldy/MWTpaUlXFxcEBQUhM8++8zcJVaJ2NhYxMbGYvHixeYupVZpYO4CiOqzr776Crm5ueYuo0oUFRXh1q1bOHDgAA4cOICbN29i8uTJ5i7rscyePRsA4OXlhSlTppi3mFqEewz0WO7cuWPuEhS1qZZiXbp0QUBAAAICAsxdSqV17NgRBw8exLZt29C7d2+lfenSpWasiqoTg6Ee2rRpEwICAqDVamFtbQ0PDw8EBATgnXfeQckv0xVCICEhAT169IBGo4GtrS38/PywZMkSFBUVSesseXw6PT0dYWFh0Gq1aN++PQDgxo0bGD9+PLy8vGBtbQ1HR0c89dRTGDFiBA4cOPDImufPn4+goCA0bdoUtra2sLOzg4+PD2bMmIG7d+9WqBYA+P333xEVFYXWrVtDrVbD2dkZoaGhOHLkyOM8tACAvLw8fPDBB+jYsSPs7e1hZ2cHPz8/zJ8/H3l5eWXWWmz//v3SIcJdu3aha9eusLGxgaenZ6lvuDk5OYiNjUX79u1ha2sLjUaDoKAg7Nix44G+d+/exeTJk9GoUSM4ODhg0KBBuHz5cqXHq9VqERAQgP79+2PhwoVK+9WrVx/oe+nSJYwbNw5eXl5Qq9Vwc3PDsGHDcP78+Qf6FhYWIj4+HjqdDlqtFra2tmjdujVef/31So295OHVoKAgpKSkoHfv3rCzs4OHhwdmzJihPK+LD9MWu3LlirJs8+bNy3wsAgMDlX6//vqrNO/FF19U5qWmppb9gNYFgmqtWbNmCQACgAgPD5fmXbp0SZlX8s+4f/9+YWFhIc0rOeXn5yt9x4wZU2a/YcOGSdvz8vJS5rVs2VK57eXlJYQQ4tlnny1zXe++++4jx9qmTZsyl+/du3eFarly5Ypo2rRpqeuysrISX3/99SPrSUhIUJbp1auX0p6bmyt69uxZZq09e/YUJpOp1FqL7du3T6q5tL/Xnj17lP5ZWVmiQ4cOZW5z2bJlUu2hoaEP9GnatKlwcXF5oJaKjv/48eNKe/PmzaVlUlNThZOTU6k1Ojg4iKNHjyp98/LyREhISJljqszYS74mGjduLGxtbR/ov2rVKiGE/Nq6fyp+HpV8DGbNmvVA29y5c5Vt//nnn8Le3l4AEE899dQjH9/ajsFQi1UmGN566y2lbd68eWLv3r1iw4YNYsaMGcLHx0cUFBQIIYTYuHGj0q9Nmzbi888/F0lJScLf319p37Bhg7Lekm9w9vb24sMPPxS7d+8WK1euFEajUahUKgFAPP300+Kbb74RO3bsECtWrBBhYWFi3rx5jxzrokWLxNq1a8X27dvF/v37xTfffCP69++vbPPQoUPlqkUI+Y1xzJgxYufOnWL58uXCwcFBABCurq4iJyfnofWU9cY4f/58pb1Zs2Zi/fr14vPPPxeenp5K+/z580uttVjJYAAgBg8eLJKSksTw4cOVtqFDhyr9IyMjlfb+/fuLbdu2iTVr1ggPDw8BQFhbW4v09HQhhBA7d+5U+tra2orFixeLrVu3ii5dupT6fCnP+Dt27CgOHjwotm3bJnr37q20x8XFKf2LiopE+/btlXlvvfWW2L17t/jggw+EpaWlACB8fHxEUVGREEKIhQsXKn3t7OzE3Llzxc6dO8WqVatE165dKzX2+18TPXr0EF9//bWYPHmy0talSxchxL1/Hg4ePKi0e3h4iIMHD4qDBw+KlJSUBx6D4mDIyckRjo6OAoDw9vZW6kxOTn6gb13GYKjFKhMM06dPV9o2btwo/vjjj1LXPXjwYKXf0qVLlRfFqlWrlPYBAwYo/Uu+wX300UfSuu7evav81/v888+Lc+fOSXsm5XHmzBkxfPhw0bRpU2FlZfXAf3FLliwpVy03btxQQqrki/3gwYPixRdfVJb76quvHlpPWcHg6+urtCclJSntSUlJSrufn1+ptRYrGQxubm4iNzdXCCGEwWCQ3oyFEKKwsFA4Ozsrb4LffvutMp433nhD6b9w4UIhhBATJkxQ2qKjo5Vt/vzzz5UOhvsnBwcHZXvFTp48+UCQFE86nU6Zd/z4cSGEEH5+fkpbcaDfr6JjL/masLa2FgaDQVmPnZ2dACCcnJykbRT3L95LKOsxKPlmP27cOKU9NTVVCCHE66+/rrT99NNPj3x8aztelVSLlTwGKu77ob2S90v2GzVqFBYtWgSTyYSXXnoJAODm5oYePXrgjTfeQHBwMADg559/VpYp68qS0o4LA8DAgQOl+7a2thgxYgTWrVuHPXv2wMfHB1ZWVmjXrh0GDhyIt956C1qttsxxXrlyBc888wyMRmOZfbKysspVy8WLF5XHxmAwIDAwsNTlyhrbo5R83Lp3767c7tatW6l9HsXf3x9qtRoA4OrqqrQXj/ePP/7ArVu3ANw7t1H897tf8XhKHvfu2rWrcrt169ZwdnZW1vU4cnJykJqaiqKiIlhY3DtNWXLMp06deujj3rlzZ6n/gAEDSu1b0bGX5O3tDXd3dwCAhYUFnJ2dcffu3TKfRxURERGBVatWAQDWrVuHp59+GsnJyQCAp59+Gm3atHnsbZgbTz7XYo6OjsrtP/74Q5pX8n7Jfu3bt0dqaiomT56M7t27Q6vVIjMzE1u2bEFISAgOHz5c7u2XdZVP8QuupISEBKxcuRKDBg1Cq1atUFhYiFOnTmHu3LkYNmzYQ7ezevVqJRR0Oh22bt2KgwcPYtq0aUqf+0+GP6yW8qjqK5gq+1kSZ2dn5XaDBv/3f9r9/wg8SnnGU9kae/XqhcLCQhw9elR5vD///HMsW7aswuuqjivHSltnyccVkB/bx9W9e3e0a9cOwL3HISUlBf/73/8AACNHjqyy7ZgTg6EWK/mfx+HDh5GTk6Pc37Vrl3Lb29tbuS2EQLt27bBkyRIcOXIEWVlZ+OqrrwDce3PdunUrAOCpp55Sltm3bx/EvcOK0pSWllZqXaW9wTRo0ACvvfYavv76a1y8eBG3bt3CM888AwDYvXv3Q98Qil9UAPCPf/wDgwcPRkBAALKzs8tcpqxannzySaWtVatWKCgoeGBceXl5mDNnziPXXZqSj9uxY8eU20ePHi21z+Nq2LCh8ibn4OCA27dvPzCewsJCJCQkAABatmypLHv8+HHl9sWLF3Hz5s1K12FhYYFu3brhgw8+UNr++c9/Kp/RKDnmXr16lfp8unPnjnLFUcn+27Ztq5KxV0bxc6WsfzzKEhERAQC4fv06oqKilHU96p+guoKHkmqxZ599Fq6urrhx4waysrLg7++PwYMH49q1a1i7dq3Sb+jQocrtBQsWYP/+/QgNDYWnpyfs7e2lEDGZTADuHXL6+uuvAQCjR4/Gu+++i9atW+P333/HL7/8gm3btqFfv36YNWtWuWpt1aoVwsLC4OfnhyZNmiAzMxOXLl0CcC+sTCYT7O3tS13Wy8tLub106VJYW1vj6NGj+OSTT8r5SP0fFxcX9OvXD9u3b0daWhoGDRqEiIgIODo64sqVKzh58iQ2b94MvV7/0MsSyzJy5Ej897//BQBERkbi9u3bUKlUmD59utJnxIgRFV5vWSwsLDBixAjEx8cjJycHffr0weTJk9GwYUP89ttvOHPmDDZv3oxPP/0UQUFBGDRoEJYvXw4A+M9//oOmTZvCy8sL//znP6uknlGjRuG9997D1atXkZGRgTVr1uC1116Dn58f2rdvjzNnzuDAgQMYM2YMXnrpJVhZWeHy5cs4duwYtmzZohwa+tvf/oYff/wRADB16lRkZmaia9eu+N///oePPvoIer2+wmOvDGdnZ9y8eRPXrl3DunXr4OXlBXd3d7Ru3fqhy40ePRrTp09HXl4eDh06BAAICAhAs2bNKlVHrVMzpzKosr744gvlqo7Spm7duok///xT6T937twy+1pYWIgffvhB6fuwy1Vx3wm30k6ilvSwGkNCQh46xitXrignB0tOPXr0qFQtD7tctXi6dOnSQ2t62OWqgYGBZa63oper3n9RQXF7yZOht27deuglmwDEvn37lP79+vV7YH6jRo2EVqut1MnnkuMXQoh//etfyrynnnpKFBYWCiEefrnq/dvNy8sTwcHBj+xXkbGXPPl8f81lPWfCwsIeWF/x36Ssk8/Fhg4dKi0XHx//yMe1ruChpFru5ZdfxqFDh/DSSy+hSZMmaNCgARwcHNCpUyfMmzcP+/fvh42NjdK/f//+eP3119G+fXs4Ozsr32/Tp08f7Nq1Cz169FD6rl69GmvWrEGvXr2UD8N5enriueeew9KlS/HGG2+Uu8558+YhJCQETZs2hVqthlqtRps2bRAdHY2NGzc+dFlPT0/s3r0b3bp1g62tLVq1aoX4+Hi8+uqrFX/A/v/6Tp48iejoaHh7e8PGxgaOjo7w9vbGmDFj8M033zzyP7vbt28rt21tbZXbarUae/bswfz58+Hr6wtbW1vY2NigQ4cOiIuLw+7du2FtbV2pusvi5OQEvV6PuXPnws/PT/kAYOvWrTF06FB8/vnn8Pf3V/pv3LgRkZGRcHV1hZ2dHUJCQvD999/DycmpSuoZN26ccl7r559/VvY8O3XqhFOnTmH8+PFo2bIlrK2t4eTkhPbt22P8+PHYu3evsg4rKyvs2LEDS5cuRbdu3eDg4AAbGxs8+eSTGDduXKXHXlH/+c9/8PLLL6NRo0YVXrb4cBJw71Bq8cUe9YFKiAqe5SL6Cxg4cKBypclrr72GlStXmrkiqm0KCgpgb2+PvLw85fBlfcFzDEQlLFy4EElJSfj++++VttDQUDNWRLVNXl4e7t69i8TEROUrUMaMGWPmqqoW9xiISujYsaNyUhS4d439N998w682J0VsbKzyrawA0LZtW/z3v/+t0ktizY3nGIhKUKlUsLe3R6dOnbBw4UJs2bKFoUClcnBwQL9+/ZCcnFyvQgHgHgMREd2HewxERCRhMBARkYTBgHufzDUajRX+fhoiovqIwYB7H2bSarXSh5qIiP6qGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkcSswRAbGwuVSiVN3t7eyvzc3Fzlt2sdHBwQFhaGjIwMaR3p6ekIDQ2FnZ0d3NzcEB0djYKCgpoeChFRvWH2X5do164dvv32W+V+yR+8mDp1KrZt24aNGzdCq9Vi4sSJGDJkCA4dOgQAKCwsRGhoKDw8PHD48GFcv34dY8aMgZWVFebNm1fjYyEiqheEGc2aNUv4+fmVOi8rK0tYWVmJjRs3Km3nz58XAIRerxdCCLF9+3ZhYWEhDAaD0mf58uVCo9EIk8lU7jqys7MFAJGdnV25gRAR1SNmP8fwyy+/oEmTJmjZsiVGjRqF9PR0AEBqairy8/MRHBys9PX29oanpyf0ej0AQK/Xo0OHDnB3d1f6hISEwGg04uzZs2Vu02QywWg0ShMREd1j1kNJ3bt3R2JiItq0aYPr169j9uzZCAwMxJkzZ2AwGGBtbQ0nJydpGXd3dxgMBgCAwWCQQqF4fvG8ssTFxUk/5v24Al+fW2Xrorrj4Mr3zF0CUbUwazD069dPue3r64vu3bvDy8sLX375JWxtbattuzExMYiKilLuG41GNGvWrNq2R0RUl5j9UFJJTk5OeOqpp3Dx4kV4eHggLy8PWVlZUp+MjAx4eHgAADw8PB64Sqn4fnGf0qjVamg0GmkiIqJ7alUw5OTkIC0tDY0bN0bnzp1hZWWFvXv3KvMvXLiA9PR06HQ6AIBOp8Pp06eRmZmp9NmzZw80Gg18fHxqvH4iovrArIeS3n77bQwcOBBeXl64du0aZs2aBUtLS4wYMQJarRYRERGIioqCi4sLNBoNJk2aBJ1OB39/fwBAnz594OPjg9GjR2PBggUwGAyYMWMGIiMjoVarzTk0IqI6y6zB8Ntvv2HEiBG4ceMGGjVqhICAABw5cgSNGjUCACxatAgWFhYICwuDyWRCSEgI4uPjleUtLS2RnJyMCRMmQKfTwd7eHuHh4ZgzZ465hkREVOephBDC3EWYm9FohFarRXZ2dqXON/CqpL8mXpVE9VWtOsdARETmx2AgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiIJg4GIiCQMBiIikjAYiIhIwmAgIiJJrQmG+fPnQ6VSYcqUKUpbbm4uIiMj4erqCgcHB4SFhSEjI0NaLj09HaGhobCzs4Obmxuio6NRUFBQw9UTEdUftSIYUlJSsHLlSvj6+krtU6dORVJSEjZu3IgDBw7g2rVrGDJkiDK/sLAQoaGhyMvLw+HDh7F69WokJiZi5syZNT0EIqJ6w+zBkJOTg1GjRmHVqlVwdnZW2rOzs/HJJ5/gww8/xLPPPovOnTsjISEBhw8fxpEjRwAAu3fvxrlz5/DZZ5+hY8eO6NevH+bOnYtly5YhLy/PXEMiIqrTzB4MkZGRCA0NRXBwsNSempqK/Px8qd3b2xuenp7Q6/UAAL1ejw4dOsDd3V3pExISAqPRiLNnz9bMAIiI6pkG5tz4hg0bcOLECaSkpDwwz2AwwNraGk5OTlK7u7s7DAaD0qdkKBTPL55XFpPJBJPJpNw3Go2VHQIRUb1jtj2Gq1ev4s0338S6detgY2NTo9uOi4uDVqtVpmbNmtXo9omIajOzBUNqaioyMzPRqVMnNGjQAA0aNMCBAwewdOlSNGjQAO7u7sjLy0NWVpa0XEZGBjw8PAAAHh4eD1ylVHy/uE9pYmJikJ2drUxXr16t2sEREdVhZguG5557DqdPn8apU6eUqUuXLhg1apRy28rKCnv37lWWuXDhAtLT06HT6QAAOp0Op0+fRmZmptJnz5490Gg08PHxKXPbarUaGo1GmoiI6B6znWNwdHRE+/btpTZ7e3u4uroq7REREYiKioKLiws0Gg0mTZoEnU4Hf39/AECfPn3g4+OD0aNHY8GCBTAYDJgxYwYiIyOhVqtrfExERPWBWU8+P8qiRYtgYWGBsLAwmEwmhISEID4+XplvaWmJ5ORkTJgwATqdDvb29ggPD8ecOXPMWDURUd2mEkIIcxdhbkajEVqtFtnZ2ZU6rBT4+txqqIpqu4Mr3zN3CUTVwuyfYyAiotqFwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERScwaDMuXL4evry80Gg00Gg10Oh127NihzM/NzUVkZCRcXV3h4OCAsLAwZGRkSOtIT09HaGgo7Ozs4ObmhujoaBQUFNT0UIiI6g2zBkPTpk0xf/58pKam4vjx43j22WcxePBgnD17FgAwdepUJCUlYePGjThw4ACuXbuGIUOGKMsXFhYiNDQUeXl5OHz4MFavXo3ExETMnDnTXEMiIqrzVEIIYe4iSnJxccG//vUvDB06FI0aNcL69esxdOhQAMBPP/2Etm3bQq/Xw9/fHzt27MCAAQNw7do1uLu7AwBWrFiBd955B7///jusra3LtU2j0QitVovs7GxoNJoK1xz4+twKL0N138GV75m7BKJqUWvOMRQWFmLDhg24c+cOdDodUlNTkZ+fj+DgYKWPt7c3PD09odfrAQB6vR4dOnRQQgEAQkJCYDQalb2O0phMJhiNRmkiIqJ7zB4Mp0+fhoODA9RqNcaPH48tW7bAx8cHBoMB1tbWcHJykvq7u7vDYDAAAAwGgxQKxfOL55UlLi4OWq1WmZo1a1a1gyIiqsPMHgxt2rTBqVOncPToUUyYMAHh4eE4d+5ctW4zJiYG2dnZynT16tVq3R4RUV3SwNwFWFtb48knnwQAdO7cGSkpKViyZAmGDRuGvLw8ZGVlSXsNGRkZ8PDwAAB4eHjg2LFj0vqKr1oq7lMatVoNtVpdxSMhIqofzL7HcL+ioiKYTCZ07twZVlZW2Lt3rzLvwoULSE9Ph06nAwDodDqcPn0amZmZSp89e/ZAo9HAx8enxmsnIqoPzLrHEBMTg379+sHT0xO3b9/G+vXrsX//fuzatQtarRYRERGIioqCi4sLNBoNJk2aBJ1OB39/fwBAnz594OPjg9GjR2PBggUwGAyYMWMGIiMjuUdARFRJZg2GzMxMjBkzBtevX4dWq4Wvry927dqF559/HgCwaNEiWFhYICwsDCaTCSEhIYiPj1eWt7S0RHJyMiZMmACdTgd7e3uEh4djzpw55hoSEVGdV+s+x2AO/BwDVQY/x0D1Va07x0BERObFYCAiIkmlzzEcPHgQK1euRFpaGr766is88cQTWLt2LVq0aIGAgICqrJGIStFnQ4y5S6Aatnt4XI1sp1J7DJs2bUJISAhsbW1x8uRJmEwmAEB2djbmzZtXpQUSEVHNqlQwvP/++1ixYgVWrVoFKysrpb1Hjx44ceJElRVHREQ1r1LBcOHCBfTs2fOBdq1Wi6ysrMetiYiIzKhSweDh4YGLFy8+0P7DDz+gZcuWj10UERGZT6WCYdy4cXjzzTdx9OhRqFQqXLt2DevWrcPbb7+NCRMmVHWNRERUgyp1VdL06dNRVFSE5557Dnfv3kXPnj2hVqvx9ttvY9KkSVVdIxER1aBKBUNBQQHeffddREdH4+LFi8jJyYGPjw8cHBzwxx9/oGHDhlVdJxER1ZBKHUoaPnw4hBCwtraGj48PunXrBgcHB2RkZCAoKKiKSyQioppUqWBIT0/Hq6++KrVdv34dQUFB8Pb2rpLCiIjIPCoVDNu3b8fhw4cRFRUFALh27RqCgoLQoUMHfPnll1VaIBER1axKnWNo1KgRdu/erXz1RXJyMjp16oR169bBwoJfv0REVJdV+ruSmjVrhj179iAwMBDPP/881q5dC5VKVZW1ERGRGZQ7GJydnUt947979y6SkpLg6uqqtN28ebNqqiMiohpX7mBYvHhxNZZBRES1RbmDITw8vDrrICKiWuKxf/M5NzcXeXl5Ultlfh6TiIhqh0pdQnTnzh1MnDgRbm5usLe3h7OzszQREVHdValgmDZtGr777jssX74carUaH3/8MWbPno0mTZpgzZo1VV0jERHVoEodSkpKSsKaNWsQFBSEsWPHIjAwEE8++SS8vLywbt06jBo1qqrrJCKiGlKpPYabN28qv7ug0WiUy1MDAgLw/fffV111RERU4yoVDC1btsSlS5cAAN7e3srXYCQlJcHJyanKiiMioppXoWD49ddfUVRUhLFjx+LHH38EcO+3GZYtWwYbGxtMnToV0dHR1VIoERHVjAqdY2jdujWuX7+OqVOnAgCGDRuGpUuX4qeffkJqaiqefPJJ+Pr6VkuhRERUMyq0xyCEkO5v374dd+7cgZeXF4YMGcJQICKqB/hVqEREJKlQMKhUqge+SI/fqEpEVL9U6ByDEAKvvPIK1Go1gHtfhzF+/HjY29tL/TZv3lx1FRIRUY2qUDDc/0V6f/vb36q0GCIiMr8KBUNCQkJ11UFERLUETz4TEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBKzBkNcXBy6du0KR0dHuLm54YUXXsCFCxekPrm5uYiMjISrqyscHBwQFhaGjIwMqU96ejpCQ0NhZ2cHNzc3REdHo6CgoCaHQkRUb5g1GA4cOIDIyEgcOXIEe/bsQX5+Pvr06YM7d+4ofaZOnYqkpCRs3LgRBw4cwLVr1zBkyBBlfmFhIUJDQ5GXl4fDhw9j9erVSExMxMyZM80xJCKiOq9CP9RT1Xbu3CndT0xMhJubG1JTU9GzZ09kZ2fjk08+wfr16/Hss88CuPdjQW3btsWRI0fg7++P3bt349y5c/j222/h7u6Ojh07Yu7cuXjnnXcQGxsLa2trcwyNiKjOqlXnGLKzswEALi4uAIDU1FTk5+cjODhY6ePt7Q1PT0/o9XoAgF6vR4cOHeDu7q70CQkJgdFoxNmzZ2uweiKi+sGsewwlFRUVYcqUKejRowfat28PADAYDLC2toaTk5PU193dHQaDQelTMhSK5xfPK43JZILJZFLuG43GqhoGEVGdV2v2GCIjI3HmzBls2LCh2rcVFxcHrVarTM2aNav2bRIR1RW1IhgmTpyI5ORk7Nu3D02bNlXaPTw8kJeXh6ysLKl/RkYGPDw8lD73X6VUfL+4z/1iYmKQnZ2tTFevXq3C0RAR1W1mDQYhBCZOnIgtW7bgu+++Q4sWLaT5nTt3hpWVFfbu3au0XbhwAenp6dDpdAAAnU6H06dPIzMzU+mzZ88eaDQa+Pj4lLpdtVoNjUYjTUREdI9ZzzFERkZi/fr1+Prrr+Ho6KicE9BqtbC1tYVWq0VERASioqLg4uICjUaDSZMmQafTwd/fHwDQp08f+Pj4YPTo0ViwYAEMBgNmzJiByMhIqNVqcw6PiKhOMmswLF++HAAQFBQktSckJOCVV14BACxatAgWFhYICwuDyWRCSEgI4uPjlb6WlpZITk7GhAkToNPpYG9vj/DwcMyZM6emhkFEVK+YNRiEEI/sY2Njg2XLlmHZsmVl9vHy8sL27dursjQior+sWnHymYiIag8GAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERSRgMREQkYTAQEZGEwUBERBIGAxERScwaDN9//z0GDhyIJk2aQKVSYevWrdJ8IQRmzpyJxo0bw9bWFsHBwfjll1+kPjdv3sSoUaOg0Wjg5OSEiIgI5OTk1OAoiIjqF7MGw507d+Dn54dly5aVOn/BggVYunQpVqxYgaNHj8Le3h4hISHIzc1V+owaNQpnz57Fnj17kJycjO+//x6vvfZaTQ2BiKjeaWDOjffr1w/9+vUrdZ4QAosXL8aMGTMwePBgAMCaNWvg7u6OrVu3Yvjw4Th//jx27tyJlJQUdOnSBQDw73//G/3798fChQvRpEmTGhsLEVF9UWvPMVy6dAkGgwHBwcFKm1arRffu3aHX6wEAer0eTk5OSigAQHBwMCwsLHD06NEar5mIqD4w6x7DwxgMBgCAu7u71O7u7q7MMxgMcHNzk+Y3aNAALi4uSp/SmEwmmEwm5b7RaKyqsomI6rxau8dQneLi4qDVapWpWbNm5i6JiKjWqLXB4OHhAQDIyMiQ2jMyMpR5Hh4eyMzMlOYXFBTg5s2bSp/SxMTEIDs7W5muXr1axdUTEdVdtTYYWrRoAQ8PD+zdu1dpMxqNOHr0KHQ6HQBAp9MhKysLqampSp/vvvsORUVF6N69e5nrVqvV0Gg00kRERPeY9RxDTk4OLl68qNy/dOkSTp06BRcXF3h6emLKlCl4//330bp1a7Ro0QLvvfcemjRpghdeeAEA0LZtW/Tt2xfjxo3DihUrkJ+fj4kTJ2L48OG8IomIqJLMGgzHjx9H7969lftRUVEAgPDwcCQmJmLatGm4c+cOXnvtNWRlZSEgIAA7d+6EjY2Nssy6deswceJEPPfcc7CwsEBYWBiWLl1a42MhIqovzBoMQUFBEEKUOV+lUmHOnDmYM2dOmX1cXFywfv366iiPiOgvqdaeYyAiIvNgMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREEgYDERFJGAxERCRhMBARkYTBQEREknoTDMuWLUPz5s1hY2OD7t2749ixY+YuiYioTqoXwfDFF18gKioKs2bNwokTJ+Dn54eQkBBkZmaauzQiojqnXgTDhx9+iHHjxmHs2LHw8fHBihUrYGdnh08//dTcpRER1TkNzF3A48rLy0NqaipiYmKUNgsLCwQHB0Ov15e6jMlkgslkUu5nZ2cDAIxGY6VqKMjLrdRyVLdV9vlSVQrumh7dieqVqnjOOTo6QqVSPbRPnQ+GP/74A4WFhXB3d5fa3d3d8dNPP5W6TFxcHGbPnv1Ae7NmzaqlRqqftInzzF0C/cVoIxY99jqys7Oh0Wge2qfOB0NlxMTEICoqSrlfVFSEmzdvwtXV9ZFJSv/HaDSiWbNmuHr16iOfaERVgc+5x+fo6PjIPnU+GBo2bAhLS0tkZGRI7RkZGfDw8Ch1GbVaDbVaLbU5OTlVV4n1nkaj4YuUahSfc9Wrzp98tra2RufOnbF3716lraioCHv37oVOpzNjZUREdVOd32MAgKioKISHh6NLly7o1q0bFi9ejDt37mDs2LHmLo2IqM6pF8EwbNgw/P7775g5cyYMBgM6duyInTt3PnBCmqqWWq3GrFmzHjgsR1Rd+JyrGSohhDB3EUREVHvU+XMMRERUtRgMREQkYTAQEZGEwUBERBIGAxERSRgMVGFFRUUoLCw0dxlEVE0YDFQh586dw5gxYxASEoIJEybg8OHD5i6J/gL4j0jNYjBQuV24cAHPPPMMCgsL0bVrV+j1erz55ptYunSpuUujeuznn3/G4sWLcf36dXOX8pdRLz75TNVPCIE1a9YgJCQEn3/+OQDgH//4B5YuXYqEhATk5uZi2rRpZq6S6puLFy9Cp9Ph1q1buHHjBqKiotCwYUNzl1XvMRioXFQqFa5duwaDwaC0OTo6YvLkybCxscGGDRvwxBNPYNSoUWaskuqTO3fuIC4uDoMGDULXrl0xceJEFBQUYNq0aQyHasZgoEcSQkClUqFTp0745ZdfcOHCBbRp0wbAvXD4+9//jgsXLiA+Ph4vvvgi7OzszFwx1QcWFhbo3LkzXF1dMWzYMDRs2BDDhw8HAIZDNeN3JVG5paWlwd/fH4MGDcKSJUvg4OCghMbVq1fh5eWF7du3o2/fvuYuleqJO3fuwN7eXrn/xRdfYMSIEXjrrbcwffp0uLq6oqioCFeuXEGLFi3MWGn9wj0GKrdWrVrhyy+/RL9+/WBra4vY2FjlvzYrKyv4+vpCq9WauUqqT4pDobCwEBYWFhg2bBiEEBg5ciRUKhWmTJmChQsX4sqVK1i7di33VqsIg4EqpHfv3ti4cSNeeuklXL9+HS+//DJ8fX2xZs0aZGZm8nezqVpYWlpCCIGioiIMHz4cKpUKo0ePxjfffIO0tDSkpKQwFKoQDyVRpZw4cQJRUVG4fPkyGjRoAEtLS2zYsAFPP/20uUujeqz47UqlUuG5557DqVOnsH//fnTo0MHMldUvDAaqNKPRiJs3b+L27dto3LgxTwZSjSgsLER0dDQWL16MU6dOwdfX19wl1Ts8lESVxh9kJ3Np164dTpw4wVCoJtxjIKI6p/hqOKoe/EoMIqpzGArVi8FAREQSBgMREUkYDEREJGEwEBGRhMFAREQSBgMREUkYDFQrBAUFYcqUKY+1jldeeQUvvPBCufvv378fKpUKWVlZj7XdR7l8+TJUKhVOnTpVrdsxl+bNm2Px4sXmLoOqED/5TLXC5s2bYWVl9VjrWLJkCSryec1nnnkG169f5zfCllNiYiKmTJlS7UFK5sdgoFrBxcXlsddR0Td4a2treHh4PPZ2q5MQAoWFhWjQgC9Vqjk8lES1QslDSfHx8WjdujVsbGzg7u6OoUOHlmsd9x9KMplMmDx5Mtzc3GBjY4OAgACkpKQo8+8/lJSYmAgnJyfs2rULbdu2hYODA/r27fvAj9B//PHHaNu2LWxsbODt7Y34+Hhp/rFjx/D000/DxsYGXbp0wcmTJ8v9OBTXtGPHDnTu3BlqtRo//PADioqKEBcXhxYtWsDW1hZ+fn746quvpGXPnj2LAQMGQKPRwNHREYGBgUhLSytX3cWHuzZv3ozevXvDzs4Ofn5+0Ov1Sl1jx45FdnY2VCoVVCoVYmNjH6j/73//OwYMGCC15efnw83NDZ988km5HwcyM0FUC/Tq1Uu8+eabIiUlRVhaWor169eLy5cvixMnToglS5aUax3h4eFi8ODByv3JkyeLJk2aiO3bt4uzZ8+K8PBw4ezsLG7cuCGEEGLfvn0CgLh165YQQoiEhARhZWUlgoODRUpKikhNTRVt27YVI0eOVNb52WeficaNG4tNmzaJX3/9VWzatEm4uLiIxMREIYQQt2/fFo0aNRIjR44UZ86cEUlJSaJly5YCgDh58uQjx1Bck6+vr9i9e7e4ePGiuHHjhnj//feFt7e32Llzp0hLSxMJCQlCrVaL/fv3CyGE+O2334SLi4sYMmSISElJERcuXBCffvqp+Omnn8pV96VLlwQA4e3tLZKTk8WFCxfE0KFDhZeXl8jPzxcmk0ksXrxYaDQacf36dXH9+nVx+/ZtIYQQXl5eYtGiRUIIIQ4dOiQsLS3FtWvXlDFt3rxZ2NvbK/2p9mMwUK1QHAybNm0SGo1GGI3GCq+jZDDk5OQIKysrsW7dOmV+Xl6eaNKkiViwYIEQovRgACAuXryoLLNs2TLh7u6u3G/VqpVYv369tN25c+cKnU4nhBBi5cqVwtXVVfz555/K/OXLl1c4GLZu3aq05ebmCjs7O3H48GGpb0REhBgxYoQQQoiYmBjRokULkZeXV+p6H1V3cTB8/PHHyvyzZ88KAOL8+fNCiHuPj1arfWDdJYNBCCF8fHzEBx98oNwfOHCgeOWVVx45dqo9eOCSapXnn38eXl5eaNmyJfr27Yu+ffvixRdfrPCvc6WlpSE/Px89evRQ2qysrNCtWzecP3++zOXs7OzQqlUr5X7jxo2RmZkJ4N7vD6elpSEiIgLjxo1T+hQUFCjnN86fPw9fX1/Y2Ngo83U6XYVqB4AuXbooty9evIi7d+/i+eefl/rk5eUpP4x06tQpBAYGlnoCvzx1Fyv5NdaNGzcGAGRmZsLb27vctb/66qv46KOPMG3aNGRkZGDHjh347rvvyr08mR+DgWoVR0dHnDhxAvv378fu3bsxc+ZMxMbGIiUlBU5OTtW+/fvfWFUqlXKlU05ODgBg1apV6N69u9TP0tKySuso/q3jktvdtm0bnnjiCamfWq0GANja2pa5rorUXXL8xd9gWlRUVKHax4wZg+nTp0Ov1+Pw4cNo0aIFAgMDK7QOMi8GA9U6DRo0QHBwMIKDgzFr1iw4OTnhu+++w5AhQ8q9jlatWsHa2hqHDh2Cl5cXgHsnQVNSUir9eQl3d3c0adIEv/76K0aNGlVqn7Zt22Lt2rXIzc1V9hqOHDlSqe0V8/HxgVqtRnp6Onr16lVqH19fX6xevRr5+fkPhFt56i4Pa2trFBYWPrKfq6srXnjhBSQkJECv12Ps2LGV3iaZB4OBapXk5GT8+uuv6NmzJ5ydnbF9+3YUFRWhTZs2FVqPvb09JkyYgOjoaLi4uMDT0xMLFizA3bt3ERERUen6Zs+ejcmTJ0Or1aJv374wmUw4fvw4bt26haioKIwcORLvvvsuxo0bh5iYGFy+fBkLFy6s9PaAe3tRb7/9NqZOnYqioiIEBAQgOzsbhw4dgkajQXh4OCZOnIh///vfGD58OGJiYqDVanHkyBF069YNbdq0eWTd5dG8eXPk5ORg79698PPzg52dXZmH+F599VUMGDAAhYWFCA8Pf6zxkxmY+yQHkRD/d/L54MGDolevXsLZ2VnY2toKX19f8cUXX5RrHfdflfTnn3+KSZMmiYYNGwq1Wi169Oghjh07pswv7eTz/SdXt2zZIu5/maxbt0507NhRWFtbC2dnZ9GzZ0+xefNmZb5erxd+fn7C2tpadOzYUWzatKnCJ5+LaypWVFQkFi9eLNq0aSOsrKxEo0aNREhIiDhw4IDS58cffxR9+vQRdnZ2wtHRUQQGBoq0tLRy1V188rlkjbdu3RIAxL59+5S28ePHC1dXVwFAzJo1Swjx4Mnn4nq9vLxE//79Hzlmqn34055Ub4wYMQKWlpb47LPPzF3KX15OTg6eeOIJJCQkVOgQINUO/IAb1XkFBQU4d+4c9Ho92rVrZ+5y/tKKioqQmZmJuXPnwsnJCYMGDTJ3SVQJDAaqE9LT0+Hg4FDq5OTkhPbt26Ndu3YYP368uUt9qPHjx5c5jtpee3mkp6fD3d0d69evx6effsqv8qijeCiJ6oSCggJcvny5zPnNmzevE29CmZmZMBqNpc7TaDRwc3Or4YqIHsRgICIiCQ8lERGRhMFAREQSBgMREUkYDEREJGEwEBGRhMFAREQSBgMREUkYDEREJPl/nrn4FS3AJcMAAAAASUVORK5CYII=\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "def barplot(column, horizontal):\n", " plt.figure(figsize=(6, 6))\n", " sns.countplot(x=column, data=df, palette='viridis')\n", " plt.xlabel(column)\n", " plt.ylabel(\"Fake\")\n", " plt.title(f\"User's full name length\", fontweight='bold')\n", " plt.xticks(rotation=45)\n", " sns.despine()\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "barplot('username_length', True)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 607 }, "id": "cukOW_4J_ZOr", "outputId": "e17f3943-77b3-4454-eed4-9b9ede9f60b3" }, "execution_count": 38, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAJOCAYAAACqbjP2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNCklEQVR4nO3dd3hU1fr28XtCCS0JBCQBqdJCkyLFCAIiGmmKgsI5IIigR6UcQEE6ShEFC0cPYqcozS4oYEFRPBQREBUBpQgoEkCkJEBIed4/eLN/GUlwJZmQgN/Pdc11Zfbe86y19kwmd/Zee8ZnZiYAAACcU1BudwAAAOBCQGgCAABwQGgCAABwQGgCAABwQGgCAABwQGgCAABwQGgCAABwQGgCAABwQGgCAABwQGgCkGPWrVun1q1bKzw8XD6fTz6fT998802m61SqVMl7fKoVK1Z4y+64447AdfoC9tBDD3n7ZNasWbndnSxJ77kG8gpCE5BD0v4B+/Mf9Z9//tlblxf+OMyaNUs+n08PPfRQwGoeO3ZMHTp00GeffaY//vgjYHVxYVuxYoUeeughPfTQQ1kK0EBuyp/bHQBwcfrqq6904MABSVJ0dLQmTZqkAgUKqFq1arncM+SmFStW6OGHH5Z05qhS/fr1c7dDQCYQmoC/sfj4eBUtWjRHau/bt8/7+brrrtM111yTI+0AwPnC6Tkgj3nrrbfUvHlzhYWFqWDBgoqMjFTz5s314IMPysy87cxMM2fOVLNmzRQaGqrChQurXr16+s9//qOUlBS/mmnniezZs0edO3dWWFiY6tSpk2E/Tp48qaFDh6patWoKDg5W0aJFVblyZd1yyy165513zjmGSpUqqVevXt798ePH+52KbNWqlXf/559/9rbLyTk5affB/v37dfvtt6tEiRIKCQlR165ddfjwYb/t77//fl111VUqU6aMgoODVaxYMTVs2FCPP/64kpKS/LZNrVupUiV9++23atGihYoUKaKoqCi9+eabkqQ333xTtWvXVnBwsOrVq6dPP/30rD4ePHhQQ4YM8fZ5iRIl1L59e61Zsybb4//222/1j3/8Q2XKlFHBggV16aWXqm/fvvrll1/8tkv7HMycOVPTpk1T1apVz9nvN998U3Xq1FGhQoVUp04dvf766+k+lz6fzzvKJEm9e/c+5/N96NAh3XHHHed8noDzygDkiHHjxpkkk2S9evXyW7dr1y5vXdpfwxUrVlhQUJDfurS3xMREb9uePXtmuF3Xrl392qtYsaK37rLLLvN+rlixopmZzZw50yTZuHHjvMfceeedGdbv3r37Oceetr0/38zMWrZs6d3ftWtXuvts5syZ6dZL9dlnn2W4f/+qT2n3QUZjCg4OznAMvXv39ts2dXnx4sWtZMmSftv6fD4bPXr0WTVCQkLs8OHDXo3du3dbuXLl0m2vQIEC9t577/3lGDPaf0uWLMlwPJGRkbZz5850a6S3n/7c77feest8Pt9Z29WrV++svmS0P9Nuk/Z5qlmzZqZfe0BO4kgTkIcsXrzYO0r0yCOPaPny5VqwYIFGjx6tWrVqeUdq3nzzTc2ZM0eSVKNGDc2fP1+LFy/WlVdeKUlauHChFi5cmG4bsbGxevLJJ/XRRx9p5MiRkqQ77rhDZuY3Efy9996TJFWsWFFvvvmmPvroI7388svq2bOnSpQocc5xvPnmm15t6cwRhZUrV2rlypVZ2CuBd/LkSb322mt69tlnVbBgQUnSggULdPToUW+bUaNGaf78+Vq2bJlWrFiht99+W02bNpV0ZuL8n4/QSNKRI0dUrVo1LVq0SN26dZN05ojgxIkTddNNN+n9999X8+bNJUnHjx/XvHnzvMfed999Xs2ePXtq2bJlmjFjhooVK6bExETdeeedio+Pz/RYT5w4oV69eikhIUH58+fXpEmT9NFHH2nYsGGSpP379+u+++5L97E7d+7Ugw8+qEWLFqlevXpn9Ts5OVmDBg3yjoDeeuut+uCDDzRw4EBt2rTprHorV65U7969vfsjR470Xhft2rU7a/sjR4785fMEnE/MaQLykAIFCng/V6tWTfXq1VPJkiXVtWtXTZgwwVv32muveT/369dP5cqVkyT16dPHO5Xz2muvqWvXrme18dRTT+muu+5y7kvx4sVVpUoV1axZU8HBwbrzzjv/8rGNGjXS999/792vUKGCFxbygmeffVadOnWSJC1atEjLli1TcnKyfv75Zy8ctG7dWlOnTtXatWt16NAhv1NyZqYNGzZ4+z2tOXPmqFq1aipTpowWLFggSSpSpIheffVVhYSE6OTJk/ryyy8lSdu3b5ckHT58WEuWLJEkRUZGes9PnTp1dN111+mdd97R77//rmXLlqlz586ZGutHH32kgwcPSjozt6xFixaSpI4dO+r111/Xzz//rA8//FCHDh1SqVKl/B5700036dFHH5V0JnylBsHUfq9fv1579+71+j137lwVKFBA7dq101dffXXWacXmzZvrk08+8e5Xq1btnK8Ll+cJOJ8ITUAOSftRApZmLtKf76fdrnv37nrqqaeUkJCgW2+9VZJUunRpNWvWTPfdd5/atGkjSfrxxx+9xwwcODDd9rds2ZLu8o4dOzr1v0+fPpo0aZI2bdqkBg0aKF++fKpevbpuuOEGDR06VGXKlHGqkxe1bNnS+7lkyZLez0eOHJF05sq/a665RomJiRnWSN02reLFi3tXB4aHh3vLa9SooZCQEEnyCyapNbZv3+69Jvbv36+rr7463TYzek7PJe1rZenSpVq6dOlZ25iZtm7delaA+av9tHPnTm9Zw4YN/UJ/dHR0tudi/VX7wPnG6Tkgh6T+kZTOTGhNK+39tNvVqVNH69ev18CBA9W0aVOFhYXpwIEDeueddxQTE6NVq1Y5t5/RqZyIiAinx0+YMEHz58/Xrbfeqho1asjn82nLli166qmndP311581GToz0gbF5ORk7+c/76eckvb0Yv78//e/Y2pwee6557zA1KFDBy1ZskQrV65Uz549vW3/PNleksLCwryfg4L+7+01NDQ03X78OUz/laycnstO7b/aT2nlxOeNZaZ94HwgNAE5pEaNGt7Pq1atUlxcnHf/ww8/9H6OioryfjYz1a5dW//5z3+0Zs0aHTlyxLv6KiUlRe+++64kqXr16t5jPvvsM5nZWbcdO3ak26/M/HHr1q2bXn/9dW3dulXHjx9Xly5dJEnff/+93xGMzEobLvbv3y/pzPg+/vjjLNcMpF9//dX7efLkyWrbtq2aN2+u2NjYHGmvatWq3vNSpUoVJSUlnfV8nj59WuPHj8907bSvlV69eqX7WomPj1dMTEyma1epUsX7eePGjX4BePXq1ek+Jm2YTC94AnkZp+eAHNK6dWuVLFlSv//+u44cOaIrr7xSN910k/bt26dXX33V2y41iEjSlClTtGLFCrVv314VKlRQ0aJF/QJWQkKCpDOn8VInat9+++0aNWqUqlWrpoMHD+qnn37SBx98oLZt22rcuHFZ7n+zZs3UoEEDNWnSRJdeeqmOHz+uH3744ay+ZEXVqlW9nwcMGKC+ffvq/fffz1YQC6SKFSt6P0+ePFm9evXS0qVL/Z6LQAoPD1fbtm21ZMkS7dixQzfeeKP69OmjkJAQ7d69Wxs3btTbb7+t1atXq1KlSpmqfd111+mSSy7RwYMHNWfOHIWHh+u6667z5gb973//06ZNm/yeW1cNGzZU+fLltXfvXu3bt089e/ZU9+7d9eGHH2Z4ai7t0aO33npLlStXVoECBdS4cWMFBwdnug/AeXWertID/pYWLlxo+fLly/Ay6yZNmtjJkye97SdMmJDhtkFBQfbll196257rIwf0p48PSO+S/b9SpUqVDGvXqlXLkpKSzvn41I8x+HNfzMx++OGHdD9aISoq6rx85EBavXr18pZ/9tlnZma2du3asy6j9/l8Fh0dnW7/UpelfoSDmf/HSrRs2fIv+32ujxxIvaX9eIb0ZPSRAx988ME5P0Ihbb8zqpFRvzP6yIG6deumW+fbb79Nd/vUsWXmeQLON07PATnotttu0//+9z/deuutKlu2rPLnz+99SOIjjzyiFStWqFChQt727dq107/+9S/VqVNHJUqUUL58+RQeHq7rr79eH374oZo1a+ZtO3v2bM2ZM0ctW7b0PgizQoUKuvbaa/X0009neBm5qxEjRuimm25SxYoVVaRIERUoUECVKlXSPffco08//VT58uXLcu2aNWtq7ty5qlq1qgoWLOh9IGJ6V/vlhiZNmuidd95R3bp1VahQIdWuXVtvvPGGrr/++hxrs0KFCtq4caOGDh2qqKgoFSpUSCEhIYqKilLPnj21aNEilS9fPku127Vrp6+//lq33367ypUrpwIFCqhUqVKqX7++hgwZojfeeCPL/b7lllv0+uuvq1atWipYsKBq1qypefPm6dprr/W2KVKkiPdz3bp1NWfOHO9qTOBC4jNjRh0AIGvMLN15cldeeaXWrl0rSdqwYYMaNGhwvrsGBBxHmgAAWbZy5Ur94x//0Icffqjdu3dr06ZN6tevnxeYatSowWcq4aLBkSYAQJatWLEiwy9jDgkJ0UcffeR9Uj1woeNIEwAgyy677DL16NFDVapUUZEiRRQcHKyqVavq3nvv1aZNmwhMuKhwpAkAAMABR5oAAAAcEJoAAAAcEJp05pLZY8eO8X1GAAAgQ4QmScePH1dYWJiOHz+e210BAAB5FKEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAQf7c7gCQW9p0nxCwWp/MHROwWgCAvIkjTQAAAA4ITQAAAA4ITQAAAA4ITQAAAA4ITQAAAA4ITQAAAA4ITQAAAA74nCbkSTd0fjig9Za9NS6g9QAAfz8caQIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHCQP7c7AFysWvadENB6n780JqD1AACZw5EmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB7kamr744gt17NhRZcuWlc/n07vvvuu33sw0duxYlSlTRoULF1abNm30008/+W1z+PBhde/eXaGhoSpevLj69OmjuLi48zgKAADwd5CroSk+Pl716tXT9OnT010/ZcoUPf3003ruuee0du1aFS1aVDExMTp16pS3Tffu3bV582Z9/PHHev/99/XFF1/o7rvvPl9DAAAAfxP5c7Pxtm3bqm3btumuMzNNmzZNo0eP1k033SRJmjNnjiIiIvTuu++qW7du2rJli5YtW6Z169apUaNGkqRnnnlG7dq10+OPP66yZcuet7EAAICLW56d07Rr1y7t379fbdq08ZaFhYWpadOmWr16tSRp9erVKl68uBeYJKlNmzYKCgrS2rVrM6ydkJCgY8eO+d0AAADOJc+Gpv3790uSIiIi/JZHRER46/bv36/SpUv7rc+fP7/Cw8O9bdIzefJkhYWFebfy5csHuPcAAOBik2dDU04aMWKEjh496t327t2b210CAAB5XJ4NTZGRkZKk2NhYv+WxsbHeusjISB04cMBvfVJSkg4fPuxtk57g4GCFhob63QAAAM4lz4amypUrKzIyUsuXL/eWHTt2TGvXrlV0dLQkKTo6WkeOHNH69eu9bT799FOlpKSoadOm573PAADg4pWrV8/FxcVp+/bt3v1du3bpm2++UXh4uCpUqKBBgwZp4sSJqlatmipXrqwxY8aobNmy6tSpkySpZs2auuGGG3TXXXfpueeeU2Jiovr3769u3bpx5RwAAAioXA1NX3/9ta655hrv/pAhQyRJvXr10qxZszRs2DDFx8fr7rvv1pEjR9S8eXMtW7ZMhQoV8h4zd+5c9e/fX9dee62CgoLUuXNnPf300+d9LAAA4OKWq6GpVatWMrMM1/t8Po0fP17jx4/PcJvw8HDNmzcvJ7oHAADgybNzmgAAAPISQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAIADQhMAAICDPB2akpOTNWbMGFWuXFmFCxdWlSpVNGHCBJmZt42ZaezYsSpTpowKFy6sNm3a6KeffsrFXgMAgItRng5Njz32mGbMmKH//ve/2rJlix577DFNmTJFzzzzjLfNlClT9PTTT+u5557T2rVrVbRoUcXExOjUqVO52HMAAHCxyZ/bHTiXVatW6aabblL79u0lSZUqVdL8+fP11VdfSTpzlGnatGkaPXq0brrpJknSnDlzFBERoXfffVfdunXLtb4DAICLS54+0nTVVVdp+fLl+vHHHyVJmzZt0pdffqm2bdtKknbt2qX9+/erTZs23mPCwsLUtGlTrV69Olf6DAAALk55+kjT8OHDdezYMUVFRSlfvnxKTk7WpEmT1L17d0nS/v37JUkRERF+j4uIiPDWpSchIUEJCQne/WPHjuVA7wEAwMUkTx9pev311zV37lzNmzdPGzZs0OzZs/X4449r9uzZ2ao7efJkhYWFebfy5csHqMcAAOBiladD09ChQzV8+HB169ZNdevW1e23367Bgwdr8uTJkqTIyEhJUmxsrN/jYmNjvXXpGTFihI4ePerd9u7dm3ODAAAAF4U8HZpOnDihoCD/LubLl08pKSmSpMqVKysyMlLLly/31h87dkxr165VdHR0hnWDg4MVGhrqdwMAADiXPD2nqWPHjpo0aZIqVKig2rVra+PGjXryySd15513SpJ8Pp8GDRqkiRMnqlq1aqpcubLGjBmjsmXLqlOnTrnbeQAAcFHJ06HpmWee0ZgxY3TffffpwIEDKlu2rP71r39p7Nix3jbDhg1TfHy87r77bh05ckTNmzfXsmXLVKhQoVzsOQAAuNjk6dAUEhKiadOmadq0aRlu4/P5NH78eI0fP/78dQwAAPzt5Ok5TQAAAHkFoQkAAMBBnj49ByB3Nb1/QkDrrX1iTEDrAcD5xJEmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB4QmAAAAB3xhL3ABu6p/4L5Qd9V/+TJdADgXjjQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4yJ/bHcCFqf0NYwJW64NlEwJWCwCAnMKRJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAdZDk0rV65Ujx49FB0drV9//VWS9Oqrr+rLL78MWOcAAADyiiyFprfeeksxMTEqXLiwNm7cqISEBEnS0aNH9cgjjwS0gwAAAHlBlkLTxIkT9dxzz+nFF19UgQIFvOXNmjXThg0bAtY5AACAvCJLoWnbtm1q0aLFWcvDwsJ05MiR7PYJAAAgz8lSaIqMjNT27dvPWv7ll1/qsssuy3anAAAA8poshaa77rpL//73v7V27Vr5fD7t27dPc+fO1QMPPKB77703oB389ddf1aNHD5UsWVKFCxdW3bp19fXXX3vrzUxjx45VmTJlVLhwYbVp00Y//fRTQPsAAACQPysPGj58uFJSUnTttdfqxIkTatGihYKDg/XAAw9owIABAevcH3/8oWbNmumaa67R0qVLdckll+inn35SiRIlvG2mTJmip59+WrNnz1blypU1ZswYxcTE6IcfflChQoUC1hcAAPD3lqXQlJSUpFGjRmno0KHavn274uLiVKtWLRUrVkyHDh1SqVKlAtK5xx57TOXLl9fMmTO9ZZUrV/Z+NjNNmzZNo0eP1k033SRJmjNnjiIiIvTuu++qW7duAekHAABAlk7PdevWTWamggULqlatWmrSpImKFSum2NhYtWrVKmCdW7RokRo1aqRbb71VpUuXVoMGDfTiiy9663ft2qX9+/erTZs23rKwsDA1bdpUq1evzrBuQkKCjh075ncDAAA4lyyFpj179qhv375+y3777Te1atVKUVFRAemYJO3cuVMzZsxQtWrV9OGHH+ree+/VwIEDNXv2bEnS/v37JUkRERF+j4uIiPDWpWfy5MkKCwvzbuXLlw9YnwEAwMUpS6FpyZIlWrVqlYYMGSJJ2rdvn1q1aqW6devq9ddfD1jnUlJS1LBhQz3yyCNq0KCB7r77bt1111167rnnslV3xIgROnr0qHfbu3dvgHoMAAAuVlma03TJJZfoo48+UvPmzSVJ77//vho2bKi5c+cqKChwX2dXpkwZ1apVy29ZzZo19dZbb0k689EHkhQbG6syZcp428TGxqp+/foZ1g0ODlZwcHDA+gkAAC5+WU445cuX18cff6y5c+eqSZMmmj9/vvLlyxfIvqlZs2batm2b37Iff/xRFStWlHRmUnhkZKSWL1/urT927JjWrl2r6OjogPYFAAD8vTkfaSpRooR8Pt9Zy0+cOKHFixerZMmS3rLDhw8HpHODBw/WVVddpUceeUS33XabvvrqK73wwgt64YUXJEk+n0+DBg3SxIkTVa1aNe8jB8qWLatOnToFpA8AAABSJkLTtGnTcrAb6WvcuLHeeecdjRgxQuPHj1flypU1bdo0de/e3dtm2LBhio+P1913360jR46oefPmWrZsGZ/RBAAAAso5NPXq1Ssn+5GhDh06qEOHDhmu9/l8Gj9+vMaPH38eewUAAP5usjQRPK1Tp07p9OnTfstCQ0OzWxYAACBPydJE8Pj4ePXv31+lS5dW0aJFVaJECb8bAADAxSZLoWnYsGH69NNPNWPGDAUHB+ull17Sww8/rLJly2rOnDmB7iMAAECuy9LpucWLF2vOnDlq1aqVevfurauvvlpVq1ZVxYoVNXfuXL+J2gAAABeDLB1pOnz4sC677DJJZ+YvpX7EQPPmzfXFF18ErncAAAB5RJZC02WXXaZdu3ZJkqKioryvTlm8eLGKFy8esM4BAADkFZkKTTt37lRKSop69+6tTZs2SZKGDx+u6dOnq1ChQho8eLCGDh2aIx0FAADITZma01StWjX99ttvGjx4sCSpa9euevrpp7V161atX79eVatW1eWXX54jHQUAAMhNmTrSZGZ+95csWaL4+HhVrFhRt9xyC4EJAABctLL8hb0AAAB/J5kKTT6f76wv7U3vS3wBAAAuNpma02RmuuOOOxQcHCzpzFeo3HPPPSpatKjfdm+//XbgeggAAJAHZCo0/flLe3v06BHQzgAAAORVmQpNM2fOzKl+AAAA5GlMBAcAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHBAaAIAAHCQP7c7AAA5qf7EhwJa75vRga0H4MLBkSYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAH+XO7AwD+vq4YNT6g9dZPGhvQegCQFkeaAAAAHBCaAAAAHBCaAAAAHBCaAAAAHBCaAAAAHBCaAAAAHBCaAAAAHFxQoenRRx+Vz+fToEGDvGWnTp1Sv379VLJkSRUrVkydO3dWbGxs7nUSAABclC6Y0LRu3To9//zzuvzyy/2WDx48WIsXL9Ybb7yhzz//XPv27dMtt9ySS70EAAAXqwsiNMXFxal79+568cUXVaJECW/50aNH9fLLL+vJJ59U69atdcUVV2jmzJlatWqV1qxZk4s9BgAAF5sLIjT169dP7du3V5s2bfyWr1+/XomJiX7Lo6KiVKFCBa1evfp8dxMAAFzE8vx3zy1YsEAbNmzQunXrzlq3f/9+FSxYUMWLF/dbHhERof3792dYMyEhQQkJCd79Y8eOBay/AADg4pSnjzTt3btX//73vzV37lwVKlQoYHUnT56ssLAw71a+fPmA1QYAABenPB2a1q9frwMHDqhhw4bKnz+/8ufPr88//1xPP/208ufPr4iICJ0+fVpHjhzxe1xsbKwiIyMzrDtixAgdPXrUu+3duzeHRwIAAC50efr03LXXXqvvvvvOb1nv3r0VFRWlBx98UOXLl1eBAgW0fPlyde7cWZK0bds27dmzR9HR0RnWDQ4OVnBwcI72HQAAXFzydGgKCQlRnTp1/JYVLVpUJUuW9Jb36dNHQ4YMUXh4uEJDQzVgwABFR0fryiuvzI0uAwCAi1SeDk0unnrqKQUFBalz585KSEhQTEyMnn322dzuFgAAuMhccKFpxYoVfvcLFSqk6dOna/r06bnTIQAA8LeQpyeCAwAA5BWEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAeEJgAAAAf5c7sDCLwOVz0Q0Hrvr3o8oPUAALgQcaQJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAAaEJAADAQf7c7gAA4NyueHZsQOutv298QOsBfxccaQIAAHBAaAIAAHBAaAIAAHDAnCYAyIZ6j48LaL1NDzwc0HoAAocjTQAAAA4ITQAAAA4ITQAAAA7ydGiaPHmyGjdurJCQEJUuXVqdOnXStm3b/LY5deqU+vXrp5IlS6pYsWLq3LmzYmNjc6nHAADgYpWnQ9Pnn3+ufv36ac2aNfr444+VmJio66+/XvHx8d42gwcP1uLFi/XGG2/o888/1759+3TLLbfkYq8BAMDFKE9fPbds2TK/+7NmzVLp0qW1fv16tWjRQkePHtXLL7+sefPmqXXr1pKkmTNnqmbNmlqzZo2uvPLK3Og2AAC4COXpI01/dvToUUlSeHi4JGn9+vVKTExUmzZtvG2ioqJUoUIFrV69Olf6CAAALk55+khTWikpKRo0aJCaNWumOnXqSJL279+vggULqnjx4n7bRkREaP/+/RnWSkhIUEJCgnf/2LFjOdJnAABw8bhgjjT169dP33//vRYsWJDtWpMnT1ZYWJh3K1++fAB6CAAALmYXRGjq37+/3n//fX322WcqV66ctzwyMlKnT5/WkSNH/LaPjY1VZGRkhvVGjBiho0ePere9e/fmVNcBAMBFIk+HJjNT//799c477+jTTz9V5cqV/dZfccUVKlCggJYvX+4t27Ztm/bs2aPo6OgM6wYHBys0NNTvBgAAcC55ek5Tv379NG/ePL333nsKCQnx5imFhYWpcOHCCgsLU58+fTRkyBCFh4crNDRUAwYMUHR0NFfOAQCAgMrToWnGjBmSpFatWvktnzlzpu644w5J0lNPPaWgoCB17txZCQkJiomJ0bPPPnueewoAAC52eTo0mdlfblOoUCFNnz5d06dPPw89AgAAf1d5ek4TAABAXkFoAgAAcEBoAgAAcEBoAgAAcEBoAgAAcEBoAgAAcJCnP3IAAJDzms8aFdB6X94xKaD1gLyCI00AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAOCE0AAAAO8ud2B/6O2tW9N2C1lnw3I2C1AABAxjjSBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDvngMA5LgObw4PaL33uzwa0HqAC440AQAAOCA0AQAAOCA0AQAAOCA0AQAAOGAiOADggtd76ZCA1pvZ9smA1sPFgSNNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADghNAAAADvLndgcAAID02Jc9AlrvweavBbQeONIEAADghNAEAADggNAEAADggDlNAAA4GLrivoDVmtrq2YDVwvnDkSYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHhCYAAAAHF80X9k6fPl1Tp07V/v37Va9ePT3zzDNq0qRJputcV757QPv18d65Aa0HAEBWzVzdPmC1ekd/cNayxWubB6y+JHVs+uVZy75ad0XA6jdpvD5T218UR5oWLlyoIUOGaNy4cdqwYYPq1aunmJgYHThwILe7BgAALhIXRWh68sknddddd6l3796qVauWnnvuORUpUkSvvPJKbncNAABcJC7403OnT5/W+vXrNWLECG9ZUFCQ2rRpo9WrV6f7mISEBCUkJHj3jx49Kkk6duyYklISA9q/Y8eOnbUsMfl0ztZPSkhny7zbRnr1kxJPBaz++Wgj3fqnz8MYAthGevWTE3J2DDldX5KST+Xs70NO15ek5JM520ZSDteXpMQTOdvG6RyuL0kJ8Tn73n0qPuf//pwMYBvp1T8RnxSw+hm1EReXnGP1Q0JC5PP5Mn6AXeB+/fVXk2SrVq3yWz506FBr0qRJuo8ZN26cSeLGjRs3bty4cfNuR48ePWfmuOCPNGXFiBEjNGTIEO9+SkqKDh8+rJIlS547Yf5/x44dU/ny5bV3716FhoYGvH85Xf98tMEY8kYbjCFvtMEY8kYbjCFvtJGXxxASEnLO9Rd8aCpVqpTy5cun2NhYv+WxsbGKjIxM9zHBwcEKDg72W1a8ePFMtx0aGppjT/j5qH8+2mAMeaMNxpA32mAMeaMNxpA32rgQx3DBTwQvWLCgrrjiCi1fvtxblpKSouXLlys6OjoXewYAAC4mF/yRJkkaMmSIevXqpUaNGqlJkyaaNm2a4uPj1bt379zuGgAAuEhcFKGpa9euOnjwoMaOHav9+/erfv36WrZsmSIiInKkveDgYI0bN+6sU3wXSv3z0QZjyBttMIa80QZjyBttMIa80caFPAafmVlAKwIAAFyELvg5TQAAAOcDoQkAAMABoQkAAMABoQkAAMABoQkAAFyUAn2tG6EpE5KTz3xJYE5dcHjixAmdPh24L4RMzy+//KKNGzfmaBs5KSUlRSkpKbndDSBPio+PP29tXQwXXl8MY8jp98Oc2kdJSYH9Yt8/O3jwoMzM6avRMoPQ5Oibb75Rp06ddOLEiYA/CZL0/fff67bbbtOaNWuUkBDYb+tOtXnzZl111VV67bXXJAX+l+2XX37R66+/rrffflvfffddQGtL0g8//KA77rhDbdq00d13360FCxYEvI2/cjG8yQaamXn/UOSEw4cP6+DBgzlWX5K2b9+udevW5Wj9d955J0f/Kdq2bZvuuece/fLLLzlS/8SJE/rjjz906tQpScqR98H0BPJ37rffftNXX32lDz/8UMnJyQEfQ+rvQU4Gmd9//11bt27VmjVrJElBQUEBbe/XX3/Vxx9/rNmzZyspKUk+ny/g73vbtm3T6NGjtX379oDWTfX999/r6quv1owZMwL/XJzz63xhZmbffPONFS5c2B588EG/5SkpKQGp//3331vx4sXtX//6l+3ZsycgNf/sm2++sSJFiljlypUtMjLSYmNjA1r/22+/tYoVK1qjRo0sIiLCOnbsaNu3bw9Y/S1btliJEiWsT58+9sQTT1hMTIxVrVrV+vfvH7A20tq2bZsNGzbM7rjjDps2bZr9+OOP3rpAPe+xsbH2xx9/BKRWenbu3GlPPvmkDRkyxBYsWJAjbWzbts3+/e9/W/v27e3hhx+2Q4cOBbT+jh077LLLLrMxY8bYr7/+GtDaqTZu3GihoaH2wgsv5Ej9TZs22SWXXGJ33XVXjo0h9T3K5/PZzJkzA17/+++/tw4dOljNmjWtU6dO9v777we8ja1bt9rw4cOtR48eNnXqVNu4caO3LhC/c5s2bbKKFSta9erVLSwszKKiomzevHn2+++/Z7u2mdl3331nrVq18t7Dk5OTA1I3rW+//daaNGliNWrUsNKlS1tMTIy3LhD76Ntvv7Xq1atbw4YNrWjRotawYUM7ffp0tuumSklJsRMnTljjxo3N5/PZPffc4/c3LxBjSP1bMWTIENu9e3e26/0ZoekvbNq0yYoWLWpDhw71W56QkBCQ+nFxcXb99dfbvffe6y3bsmWLbdy4MWBPeOob6siRI+3gwYNWu3ZtmzhxoqWkpATkRfrzzz/bpZdeasOHD7e4uDhbsmSJRUZG2tq1awPQe7NTp05Z9+7dbeDAgd6ykydPWoMGDczn89k//vGPgLSTavPmzRYWFmY33HCDde7c2cLCwqxNmzb24osvettkd7/98MMPVrBgQevSpYsdPXo0u10+y7fffmvlypWza6+91q666ioLCgqyKVOmBLyN0qVLW5cuXexf//qXFSxY0B566KGAtvHcc8+Zz+ezBg0a2KRJk+y3337z1gXi9Zv6z8SQIUOy29V07d692ypUqHDW+0dagRhD4cKFbdiwYfbAAw/Y1Vdf7befsmvz5s1WokQJ69evnz333HPWrFkz++c//+m3TXbHsHnzZitevLjdeuutds8991j58uWtYcOGNmPGjIC0ceDAAYuKirKRI0fajh077Ndff7WuXbtazZo1bdy4cXbgwIFs9X/Xrl1WtWpV8/l8Vq1aNdu7d6+ZBTY4bd261UqVKmXDhw+31atX24cffmiXXXaZjRgxIiD1t2zZYqVKlbLRo0fb7t27befOnVaqVKkcCcgjR4603r17W+HChe0f//iH7dq1KyB1k5OT7e6777bevXt797/44gt75ZVXbNu2bQH5J5XQdA6//fabRUZGemk+KSnJBg0aZO3bt7eoqCh76qmnbMuWLdlq49SpU9a8eXPbsGGDJSUlWUxMjDVu3NhCQkLsyiuvtJdeeilb9Tdt2mTBwcE2cuRIMzvzIurSpYs1btzY2ya7b3jPP/+8tWrVyq9Ou3bt7Pnnn7fZs2fbp59+mq36ZmbXXnut9wf55MmTZmY2bNgw69y5szVs2NCmTp2a7TbMzoThHj162F133eUt++mnn6xr16525ZVX2n/+859st7F//3676qqrrHXr1laqVCm79dZbAxqcfv75Z6tataoNGzbMe9N++eWXLSIiwu+IWXbs3LnTKlWq5PeG/dBDD9l999131n+m2Xl9bdq0yXr16mUTJ060smXL2oQJEwJ2dO7HH3+04OBgGzVqlJmZnT592hYtWmQvvPCCvffeexYXF5ftNhYvXmzt2rXz6o8aNco6depkffv2tdmzZ3vbZXUfff311xYaGur9fs+fP9/CwsLsyy+/NLPs/9E+ceKEderUyf797397y9577z27+eabLTY21o4fP+4tz+oYjh8/bjExMTZs2DBv2S+//GIlS5a0iIgImzRpUpb7n2rz5s1WqVIl+/rrr/2WP/jgg1a3bl2bMmWKxcfHZ6n2yZMnbfTo0XbzzTfb8uXLrUWLFlaxYsWABqfjx4/bbbfdZvfdd5+3LDk52QYMGGA33nhjtusfOXLE2rVrZ4MGDfJbHhMTYy+++KI9+eST9sMPP9iJEyey1U7qvvj3v/9t06dPt82bN1twcLD17NnT4uPjberUqfbzzz9nuX5SUpI1b97c+91q2bKlXXHFFRYWFmZVqlQJyNkc5jT9hejoaP3+++9677331KFDB3333XeKiorStddeq6efflqPP/649uzZk+X6R44c0bZt23To0CENHTpUkvTSSy/p9ddf19VXX63Ro0frzTffzHL9hIQEDRs2TJMmTVJKSoqCgoI0ceJE/fjjj5oxY4ak7M9NMDPt2bNH33zzjSRp0qRJWrp0qd544w3997//Vbdu3TRr1qws106dIL9jxw4lJSWpUKFC+vXXX7Vw4UK1b99etWrV0pIlS7I1hlQFCxZUbGyst0/MTFWrVtWUKVMUFRWlN998U4sXL85WGxs3blSlSpX02GOP6YMPPtDy5cvVt29fHTt2LNv9T0lJ0YIFC1S1alWNHDlSQUFnfsUbN26sAgUKBOT8fnJyst566y21bdtWw4cP95anXmTQrFkz3Xvvvd5+ys7ry8y0atUqjRw5Uv/617/0wgsvaPbs2brllls0atSoLNdNSkrSf//7XxUrVkz169eXJHXq1EmjR4/WI488optvvlm9e/fO9kUTGzZs0OHDhyVJ7dq10//+9z9VrFhRu3fv1lNPPaWRI0dKyto+io+PV8uWLdWnTx9NmjRJktStWzc1atRIY8eOVVJSkvf8Z1VwcLB+//13hYeHe8tWrlypjRs3qmHDhrrppps0YsSILI9BOjMn5/Dhw97zcOLECV166aVq3bq16tSpow8++EBLly7N1jgSExOVlJSkEydOSJJOnjwpSXr00Ud1zTXXaMaMGd78Gsvk/J1ChQqpTp066tatm1q3bq05c+aoQoUKat68uX755ZeAzTkKCQnx9pF0Zr81b95cu3bt0unTp5WYmJjl2mFhYbrxxht12223ecsmTpyo5cuXa968eXrxxRd1zTXXeL/Tmd1HafssSTfccIM2bNigWrVqaeXKlVq4cKFq166tadOmZWtf5cuXT6VLl9aRI0c0duxYBQcHa+HChTp06JAGDBig7777TjNnzszWGDjS9Bf27dtnPXv2tMKFC9t1113nN2dj7ty5Vrx4cVuyZEmW66ekpFi3bt2sf//+1qFDB1u2bJm3bu/evdajRw+75557LCkpKSCn0lJSUuzIkSPWqVMnu+222wJSd+fOnXbVVVdZ1apVrXPnzubz+ezdd9+1lJQUi42NtYEDB1qrVq3s0KFDWW7ryy+/tKCgIGvRooXdfvvtVrRoUevbt6+ZnZlLEBISYlu3bs3WWJKSkuz06dPWu3dv69Kli506dcpSUlK8/4527Nhh0dHR1rVr1yy3YXbmVMFnn33m3V+9erWFh4fbrbfeakeOHPGWZ3Usn3/+uQ0fPtxvWXJyslWqVMmv3ezYu3evrV692rs/YcIEy5cvn40aNcqefvppa9y4sbVu3Togp4muv/567/D9lClTrGjRohYWFmYffvhhtur++OOPdvfdd9uVV15p5cuXt3bt2tmWLVvsxIkT9vXXX9ull15qPXv2zFYbH3/8sbVu3dpeeuklu+666+yXX34xszP/2T/88MN25ZVX2ubNm7NcP+1pjaSkJDMze/HFF6169eq2fv16M8v6kY7k5GQ7evSoxcTE2M0332zTp0+3ESNGWOHChW3mzJm2dOlSe/jhh61hw4b23nvvZamN1PeIsmXL+h0t3rt3r9WqVctmz55tl19+ufe7nh2NGze2a665xrt/6tQp7+dGjRpZt27dst2G2Zkx7dixwzvilPqcnzp1yjZs2JClI1rJycl+R2BS3xsWLlxodevW9ds2s/XTe5/54osvrEqVKrZo0SKv3o033miNGjXKbNfTbWf58uVWo0YN78hV27ZtLSgoyNq2bZvl94zU1/k999xj9evXt+7du9vzzz/vt80DDzxgNWvWzNY8LUKTg19//dVGjBhhy5cvNzP/J79q1arnnK/gYt26dVa0aFHz+Xy2aNEiv3X333+/tWjRImCTj1O99dZb5vP5vMP42bVz505buHChjRs3zrp06eK37tFHH7V69ep5p9Wy6quvvrIePXpY3759bfr06d7y9957z2rWrOkXODIj9Y9NqhUrVli+fPn8TsWlbrNixQoLCgqy77//PlttpEr9RV+zZo0XnI4ePWqnT5+2Z5991j766KNs1U993SQnJ1vlypX96n3yySeZmsuRURuHDh2yQYMG2dKlS71lP/zwg/l8Pr9lWa3fqlUr73B7nz59LDQ01CIjI23KlCmZnlj95za2b99ut99+u7Vv3962bt3qt27RokXm8/ls27ZtWa6/ZcsWK1u2rNWqVcvatGnjt27Pnj1WpEgRmzdvXpbHkN77wvHjx618+fLWr1+/TNVNr77ZmdfmDTfcYP/85z+tRo0a9vLLL3vr9u/fbxUqVLDJkydnq43//ve/5vP57M4777TRo0dbsWLFvFPkb7zxhlWqVMkOHTrkHADj4uLs2LFjfqe9N2zYYKVLl/abA5mYmGhmZkOGDLGOHTs69z+9+mb+AXX79u1ecNq5c6f169fPGjVq5Hx62aWNN954w2rXru3dHzJkiHXo0CHD3yWX+mZnTo/u2LHDzP5vH02dOtWaNm2aqcCRURv79u2zDh06mJlZ7969rVy5cjZr1iwrVqyY3XjjjV7QzEr9+Ph4q1evnvl8Pu+0daqPPvrI6tWrl61T/IQmR0ePHvWb/J2SkmKHDh2y6Ohomzt3brbrf/HFF+bz+axDhw5+f5AHDhxoffv2DegVDGZn5u5cf/311r1792yfp07rxRdftPbt2/vtq8GDB9tNN90UkDki6f2ReOCBB6xVq1ZZmhe0bds2e/zxx23fvn1+yx9//HELCgrym/xtZrZ+/XqrWbNmpiYuZtTGn61du9bCw8Pttttus969e1uBAgWcrkBMr37a/ZSYmGhxcXFWtWpVW7NmjZmZjRgxwnw+n3Po+KsxpP43mnpk7ttvv7WGDRvat99+m+X6qa/5Bx980F599VUbMGCAlS1b1nbu3GmPPPKIFSlSxJ544gmnPxDnGsPu3btt6dKlXnup++7NN9+0qKgo5zfYjOq///77lj9/fitdurStWrXKW56QkGCtW7f2O7qc1TZSpe6L6dOnW5UqVc6aw5PV+nFxcZaUlGTR0dG2cOFCb/np06ftuuuu8/6JcfnnLr02kpOTbdasWda4cWO74YYb7LHHHvPWPfPMM9agQQPnfxw3b95s119/vTVo0MDKli1rr732mpmdmXs0f/58K1WqlHXp0sVOnz7tBZAePXpYt27dLDEx8S/byah+eo/bsWOHtWrVynw+nxUtWtS++uqrbI3hz2188MEHVqNGDTMz7yhg2iPAgRhDqj59+tidd97phaistmF25nXasmVLK1OmjEVERNi6devM7MzfwYiICKf3pfTqp77+16xZY3Xq1LHKlSvbsmXLvL89999/v7Vs2TLL89fMCE3ZMnbsWKtWrVq2Jq6l9fnnn1vZsmWtSZMm1qdPH7v99tstLCzMvvvuu4DU/7PJkydbaGhowK+0CQsLsylTpticOXNs2LBhVrx4cec/npnx7bff2n333WehoaH2zTffZPrxP/30k4WHh5vP57MRI0bYwYMHvXXx8fH28MMPm8/ns9GjR9uGDRvs999/t+HDh1vVqlWdj9Ccq430fPnll+bz+Sw8PNw7vZLd+snJyXby5Envj+j48eMz9QZ+rjZS32T//GY7cuRIa9q0qdN++qsxvPLKK+bz+axMmTLem6uZ2WOPPeY8sf2v2sgojMfExDiF8b+qP3/+fAsKCrKYmBibP3++/fTTTzZ8+HArW7as88TUzLyWUk8vpj0im536ycnJFhcXZ02bNrUxY8bYH3/8YcePH7cxY8ZYmTJlbOfOnQEZw8mTJ/1Om5mZ9e/f37p06WInT550CjQlS5a0wYMH29y5c23IkCFWoEAB27Bhg5md+b1etGiRlStXzqKiorxpCkWLFnV6n82oftqPR0grISHBunXrZuHh4c6nYTPTxnvvvWdXXnmljRw50goWLOj0npHZMZw+fdpGjx5tpUqVcr7w6a/aSExMtNGjR1urVq28PqcGHpczEn/1PCcnJ9v3339vDRo0sAoVKli9evWsY8eOVrx48Sz9rUiL0JQF8+fPt7vvvttKlCjhPUmBsnXrVhs9erS1adPG7r333hwJTKlvPIcPH7YrrrgiYJd7pvr000+tSpUqVq1aNWvVqpVt2rQpoPXNzswPePvtt61bt25Zqh8XF2d33nmn3XHHHTZ9+nTz+Xw2dOhQvz/yycnJNnv2bIuMjLRLL73UoqKirGzZsk5vTOdqI6M/dgkJCXbPPfdYSEiI0xtsZus3aNDAGjdubAULFvQLH4FsY/PmzTZ69GgLDQ11el5c6m/bts1Gjx7tveFmdo6OSxtp/xh///33NmrUKAsNDXUK+6776JNPPrHo6GiLiIiwqKgoq169uvP7R2afBzOzXr16WY0aNez06dN/GTZc6y9cuNB8Pp9Vr17dmjZtahUrVgzoGNL2c8uWLTZo0CALCQlxeh5+//13u/766/0+msTszOndAQMG+C07duyYDRs2zPr27Wv9+/d3+n1zqZ+2/8nJyfbMM89Yvnz5nPdRZttIfT5KlCjhdFQxs/U/+eQT69y5s5UrVy6gYzA7c3V6ekdM/+q1mtkxvPDCCzZ27Fh79NFHM3WqPSP5szxN/W+sVq1aeu2117Ry5UrVrl07oLVr1KihCRMmeFcQZPfql/SkXuVSvHhxff755ypatGhA619zzTX66quvlJiYqODgYBUvXjyg9aUzV/W0a9dO119/fZb6HxQUpCuuuEIlS5ZU165dVapUKXXr1k2SNHToUF1yySUKCgpSz5491aJFC+3Zs0cnTpxQ3bp1demll2a7jWHDhqlUqVJ+22/atEkrV67U8uXLVatWrYDVT05O1tGjR7Vz507FxcVp48aNqlu3bsDHsGfPHo0ePVpbt27VF198ocsvvzwg9atXr64RI0aoSJEikjJ/lZZLG6k1f/75Zz3wwAP68ccf9fnnnzvtJ9d9dO2116p+/fo6fPiw4uPjVa5cubNeA9ltQ5L31RH33nuvxo0bpwIFCgSs/m233aZLL71UK1asUKlSpRQTE6NKlSoFbAypz8Px48f18ccfa+PGjfriiy+cnofExEQdOXJEXbp0kSTvauHKlSt7VzDamQMFCgkJ0WOPPea3XSDqp31tBgUFqWLFitqyZYuqVavmtI8y28YVV1yh5s2ba/r06QHbR2mvHK5cubLq1q2rSZMmqUaNGgEbQ0pKiiIjI9N9/F/9fruOITk5Wfny5dNdd93l1G9n2Y5df1OB+nBL5J4/z7FasGCB+Xw+e+CBB7z/fhMTE7P1IaPnaiP1Sszk5GTvFM3hw4cDXj8xMdEOHjxoy5Yty/QEdtc2kpKSLDY21vbu3et9Pk0g6qce+UtOTnY+BZSdMRw4cMB27dqV6efc9XnIzlFd19dS6gTeQNZP/X04ffr0X55izmobf34tJSYmZvr3Ie3p2tQ5aqNHj7bbb7/db7u0p1wzc5GNa/1jx465dzqLbaR+RlZm54q61k+tm5WrLzM7hpyqn/Z5CNTFVBxpyqKCBQvmdheQTalHqJKTkxUUFKSuXbvKzPTPf/5TPp9PgwYN0uOPP67du3drzpw5KlKkSKaPcri2sWvXLs2bN08lSpTIkfo///yzXnvtNe9oTU6NYf78+SpUqFCO1N+9e7deffXVC34MOf1aSt1PhQsXzlQbmXktpT4Pee33IfWITkpKineEzcx04MABb5vJkycrODhYAwcOVP78+TM1hqzUzyzXNgoWLKhBgwZl+kh7XhpDVtvI6ef5nAISvYALXNrPY1qwYIEVKFDAatSoYfnz589wgmQg2wjE3LiM6ufLl++CH8PF8DycrzEEoo3cHkOgngczs1GjRlnbtm3NzGzMmDHm8/myPRn4fNQ/H20whswjNAH/X9rvMmvdurWFh4cH/Kq/nG6DMeSNNhhD7reRGsjGjRtnd999t02dOtWCg4OdL+TI7frnow3GkHmEJiCNpKQkGzx4sPl8vhy56u98tMEY8kYbjCFvtDFx4kTz+XwWFhbmfNVoXqp/PtpgDO747jngT2rXrq0NGzY4Xf2VV9tgDHmjDcaQ+23ExMRIklatWqVGjRpdcPXPRxuMwZ3PLKvfWgdcnOz/X7J9IbfBGPJGG4whb7QRHx8f8I9WOZ/1z0cbjMENoQkAAMABp+cAAAAcEJoAAAAcEJoAAAAcEJoAAAAcEJoAAAAcEJoAAAAcEJoAIAAeeugh1a9fP7e74fH5fHr33XdzuxvARYXQBAAXsLwW1oCLGaEJQJ6QnJyslJSU3O4GAGSI0AQgQ5UqVdK0adP8ltWvX18PPfSQzEwPPfSQKlSooODgYJUtW1YDBw70tktISNADDzygSy+9VEWLFlXTpk21YsUKb/2sWbNUvHhxLVq0SLVq1VJwcLD27NmjSpUq6ZFHHtGdd96pkJAQVahQQS+88IJfHx588EFVr15dRYoU0WWXXaYxY8YoMTHRW5969OWVV15RhQoVVKxYMd13331KTk7WlClTFBkZqdKlS2vSpEl+dY8cOaK+ffvqkksuUWhoqFq3bq1NmzZlef+99NJLqlmzpgoVKqSoqCg9++yz3rqff/5ZPp9Pb7/9tq655hoVKVJE9erV0+rVq/1qvPjiiypfvryKFCmim2++WU8++aSKFy/u7cOHH35YmzZtks/nk8/n06xZs7zHHjp0SDfffLOKFCmiatWqadGiRVkeCwBJOfZVwAAueBUrVrSnnnrKb1m9evVs3Lhx9sYbb1hoaKgtWbLEdu/ebWvXrrUXXnjB265v37521VVX2RdffGHbt2+3qVOnWnBwsP34449mZjZz5kwrUKCAXXXVVfa///3Ptm7davHx8VaxYkULDw+36dOn208//WSTJ0+2oKAg27p1q1d7woQJ9r///c927dplixYtsoiICHvssce89ePGjbNixYpZly5dbPPmzbZo0SIrWLCgxcTE2IABA2zr1q32yiuvmCRbs2aN97g2bdpYx44dbd26dfbjjz/a/fffbyVLlrTff//9L/fVuHHjrF69et791157zcqUKWNvvfWW7dy509566y0LDw+3WbNmmZnZrl27TJJFRUXZ+++/b9u2bbMuXbpYxYoVLTEx0czMvvzySwsKCrKpU6fatm3bbPr06RYeHm5hYWFmZnbixAm7//77rXbt2vbbb7/Zb7/9ZidOnDAzM0lWrlw5mzdvnv300082cOBAK1asmNNYAKSP0AQgQ+cKTU888YRVr17dTp8+fdbjdu/ebfny5bNff/3Vb/m1115rI0aMMLMzoUmSffPNN2e12aNHD+9+SkqKlS5d2mbMmJFhP6dOnWpXXHGFd3/cuHFWpEgRO3bsmLcsJibGKlWqZMnJyd6yGjVq2OTJk83MbOXKlRYaGmqnTp3yq12lShV7/vnnM2w7bZtpQ1OVKlVs3rx5fttMmDDBoqOjzez/QtNLL73krd+8ebNJsi1btpiZWdeuXa19+/Z+Nbp37+6FpvTaTSXJRo8e7d2Pi4szSbZ06dK/HAuA9OXPvWNcAC5kt956q6ZNm6bLLrtMN9xwg9q1a6eOHTsqf/78+u6775ScnKzq1av7PSYhIUElS5b07hcsWFCXX375WbXTLvP5fIqMjNSBAwe8ZQsXLtTTTz+tHTt2KC4uTklJSQoNDfWrUalSJYWEhHj3IyIilC9fPgUFBfktS627adMmxcXF+fVPkk6ePKkdO3ZkZtcoPj5eO3bsUJ8+fXTXXXd5y5OSkhQWFpbhWMuUKSNJOnDggKKiorRt2zbdfPPNfts3adJE77//vlM/0tYuWrSoQkND/fYjgMwhNAHIUFBQkMzMb1nq3KHy5ctr27Zt+uSTT/Txxx/rvvvu09SpU/X5558rLi5O+fLl0/r165UvXz6/xxcrVsz7uXDhwvL5fGe1W6BAAb/7Pp/PmyS+evVqde/eXQ8//LBiYmIUFhamBQsW6IknnvjLGueqGxcXpzJlyvjNu0qVOofIVVxcnKQz85GaNm3qt+7P+yNtn1L3RaAmxJ9rvAAyj9AEIEOXXHKJfvvtN+/+sWPHtGvXLu9+4cKF1bFjR3Xs2FH9+vVTVFSUvvvuOzVo0EDJyck6cOCArr766oD2adWqVapYsaJGjRrlLdu9e3e26zZs2FD79+9X/vz5ValSpWzVioiIUNmyZbVz50517949y3Vq1KihdevW+S378/2CBQsqOTk5y20AcEdoApCh1q1ba9asWerYsaOKFy+usWPHekdKZs2apeTkZDVt2lRFihTRa6+9psKFC6tixYoqWbKkunfvrp49e+qJJ55QgwYNdPDgQS1fvlyXX3652rdvn+U+VatWTXv27NGCBQvUuHFjffDBB3rnnXeyPdY2bdooOjpanTp10pQpU1S9enXt27dPH3zwgW6++WY1atQoU/UefvhhDRw4UGFhYbrhhhuUkJCgr7/+Wn/88YeGDBniVGPAgAFq0aKFnnzySXXs2FGffvqpli5d6nd0rlKlStq1a5e++eYblStXTiEhIQoODs5UXwG44SMHAGRoxIgRatmypTp06KD27durU6dOqlKliqQzp6xefPFFNWvWTJdffrk++eQTLV682JsTNHPmTPXs2VP333+/atSooU6dOmndunWqUKFCtvp04403avDgwerfv7/q16+vVatWacyYMdkeq8/n05IlS9SiRQv17t1b1atXV7du3bR7925FRERkul7fvn310ksvaebMmapbt65atmypWbNmqXLlys41mjVrpueee05PPvmk6tWrp2XLlmnw4MEqVKiQt03nzp11ww036JprrtEll1yi+fPnZ7qvANz47M8TFgAAedZdd92lrVu3auXKlbndFeBvh9NzAJCHPf7447ruuutUtGhRLV26VLNnz/b7kEwA5w9HmgDAQe3atTOccP78889na8L3udx2221asWKFjh8/rssuu0wDBgzQPffckyNtATg3QhMAONi9e7ffV7WkFRER4feZUAAuToQmAAAAB1w9BwAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4IDQBAAA4OD/AQ/q48aaN8IbAAAAAElFTkSuQmCC\n" }, "metadata": {} } ] } ] }