{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "bzfUqSjG20hg"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import plotly.express as px\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import style\n",
"%matplotlib inline\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "code",
"source": [
"df = pd.read_csv('/content/final-v1.csv')"
],
"metadata": {
"id": "jyGqYwlQ3RS6"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df.head(5)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 226
},
"id": "HAJ8qzT93bV8",
"outputId": "404dbc1d-38cb-4d8e-c163-91a9710847bc"
},
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" edge_followed_by edge_follow username_length username_has_number \\\n",
"0 0.001 0.257 13 1 \n",
"1 0.000 0.958 9 1 \n",
"2 0.000 0.253 12 0 \n",
"3 0.000 0.977 10 1 \n",
"4 0.000 0.321 11 0 \n",
"\n",
" full_name_has_number full_name_length is_private is_joined_recently \\\n",
"0 1 13 0 0 \n",
"1 0 0 0 1 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 11 1 0 \n",
"\n",
" has_channel is_business_account has_guides has_external_url is_fake \n",
"0 0 0 0 0 1 \n",
"1 0 0 0 0 1 \n",
"2 0 0 0 0 1 \n",
"3 0 0 0 0 1 \n",
"4 0 0 0 0 1 "
],
"text/html": [
"\n",
"
\n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" edge_followed_by | \n",
" edge_follow | \n",
" username_length | \n",
" username_has_number | \n",
" full_name_has_number | \n",
" full_name_length | \n",
" is_private | \n",
" is_joined_recently | \n",
" has_channel | \n",
" is_business_account | \n",
" has_guides | \n",
" has_external_url | \n",
" is_fake | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0.001 | \n",
" 0.257 | \n",
" 13 | \n",
" 1 | \n",
" 1 | \n",
" 13 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 0.000 | \n",
" 0.958 | \n",
" 9 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 0.000 | \n",
" 0.253 | \n",
" 12 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 0.000 | \n",
" 0.977 | \n",
" 10 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 0.000 | \n",
" 0.321 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
" 11 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df",
"summary": "{\n \"name\": \"df\",\n \"rows\": 785,\n \"fields\": [\n {\n \"column\": \"edge_followed_by\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03610511134706709,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 22,\n \"samples\": [\n 0.001,\n 0.035,\n 0.004\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"edge_follow\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2938452958063848,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 506,\n \"samples\": [\n 0.393,\n 0.322,\n 0.132\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 5,\n \"max\": 26,\n \"num_unique_values\": 21,\n \"samples\": [\n 13,\n 22,\n 19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6,\n \"min\": 0,\n \"max\": 30,\n \"num_unique_values\": 30,\n \"samples\": [\n 29,\n 27\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_channel\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_guides\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "code",
"source": [
"df.tail(5)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 226
},
"id": "s44Zl9uk3e0C",
"outputId": "bfa00643-983c-4ece-b859-47385e9edd74"
},
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" edge_followed_by edge_follow username_length username_has_number \\\n",
"780 0.0 0.020 9 0 \n",
"781 0.0 0.081 18 1 \n",
"782 0.0 0.115 9 0 \n",
"783 0.0 0.049 12 0 \n",
"784 0.0 0.096 11 0 \n",
"\n",
" full_name_has_number full_name_length is_private is_joined_recently \\\n",
"780 0 14 1 0 \n",
"781 0 15 1 0 \n",
"782 0 8 1 0 \n",
"783 0 28 1 0 \n",
"784 0 0 1 0 \n",
"\n",
" has_channel is_business_account has_guides has_external_url is_fake \n",
"780 0 0 0 0 0 \n",
"781 0 0 0 0 0 \n",
"782 0 0 0 0 0 \n",
"783 0 0 0 0 0 \n",
"784 0 0 0 0 0 "
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" edge_followed_by | \n",
" edge_follow | \n",
" username_length | \n",
" username_has_number | \n",
" full_name_has_number | \n",
" full_name_length | \n",
" is_private | \n",
" is_joined_recently | \n",
" has_channel | \n",
" is_business_account | \n",
" has_guides | \n",
" has_external_url | \n",
" is_fake | \n",
"
\n",
" \n",
" \n",
" \n",
" 780 | \n",
" 0.0 | \n",
" 0.020 | \n",
" 9 | \n",
" 0 | \n",
" 0 | \n",
" 14 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 781 | \n",
" 0.0 | \n",
" 0.081 | \n",
" 18 | \n",
" 1 | \n",
" 0 | \n",
" 15 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 782 | \n",
" 0.0 | \n",
" 0.115 | \n",
" 9 | \n",
" 0 | \n",
" 0 | \n",
" 8 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 783 | \n",
" 0.0 | \n",
" 0.049 | \n",
" 12 | \n",
" 0 | \n",
" 0 | \n",
" 28 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 784 | \n",
" 0.0 | \n",
" 0.096 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"df\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"edge_followed_by\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 0.0,\n \"max\": 0.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"edge_follow\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03787743391519547,\n \"min\": 0.02,\n \"max\": 0.115,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.081\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 9,\n \"max\": 18,\n \"num_unique_values\": 4,\n \"samples\": [\n 18\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10,\n \"min\": 0,\n \"max\": 28,\n \"num_unique_values\": 5,\n \"samples\": [\n 15\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_channel\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_guides\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 0,\n \"num_unique_values\": 1,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "code",
"source": [
"df.shape"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2f2fagjf3hTW",
"outputId": "503864f5-ff9e-4ff7-b538-182224fbf23a"
},
"execution_count": 7,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(785, 13)"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"source": [
"df.columns"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "q3fZopfE3iyb",
"outputId": "d25efa66-d872-424b-86a5-1a6ad4dafbcd"
},
"execution_count": 8,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['edge_followed_by', 'edge_follow', 'username_length',\n",
" 'username_has_number', 'full_name_has_number', 'full_name_length',\n",
" 'is_private', 'is_joined_recently', 'has_channel',\n",
" 'is_business_account', 'has_guides', 'has_external_url', 'is_fake'],\n",
" dtype='object')"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"source": [
"print(df)\n",
"print('dimensions:')\n",
"print(df.shape)\n",
"print('Information:')\n",
"df.info()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gUu_nwTB3krt",
"outputId": "df958b37-f6b4-49c6-c53f-a6b8a5e96e58"
},
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" edge_followed_by edge_follow username_length username_has_number \\\n",
"0 0.001 0.257 13 1 \n",
"1 0.000 0.958 9 1 \n",
"2 0.000 0.253 12 0 \n",
"3 0.000 0.977 10 1 \n",
"4 0.000 0.321 11 0 \n",
".. ... ... ... ... \n",
"780 0.000 0.020 9 0 \n",
"781 0.000 0.081 18 1 \n",
"782 0.000 0.115 9 0 \n",
"783 0.000 0.049 12 0 \n",
"784 0.000 0.096 11 0 \n",
"\n",
" full_name_has_number full_name_length is_private is_joined_recently \\\n",
"0 1 13 0 0 \n",
"1 0 0 0 1 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 11 1 0 \n",
".. ... ... ... ... \n",
"780 0 14 1 0 \n",
"781 0 15 1 0 \n",
"782 0 8 1 0 \n",
"783 0 28 1 0 \n",
"784 0 0 1 0 \n",
"\n",
" has_channel is_business_account has_guides has_external_url is_fake \n",
"0 0 0 0 0 1 \n",
"1 0 0 0 0 1 \n",
"2 0 0 0 0 1 \n",
"3 0 0 0 0 1 \n",
"4 0 0 0 0 1 \n",
".. ... ... ... ... ... \n",
"780 0 0 0 0 0 \n",
"781 0 0 0 0 0 \n",
"782 0 0 0 0 0 \n",
"783 0 0 0 0 0 \n",
"784 0 0 0 0 0 \n",
"\n",
"[785 rows x 13 columns]\n",
"dimensions:\n",
"(785, 13)\n",
"Information:\n",
"\n",
"RangeIndex: 785 entries, 0 to 784\n",
"Data columns (total 13 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 edge_followed_by 785 non-null float64\n",
" 1 edge_follow 785 non-null float64\n",
" 2 username_length 785 non-null int64 \n",
" 3 username_has_number 785 non-null int64 \n",
" 4 full_name_has_number 785 non-null int64 \n",
" 5 full_name_length 785 non-null int64 \n",
" 6 is_private 785 non-null int64 \n",
" 7 is_joined_recently 785 non-null int64 \n",
" 8 has_channel 785 non-null int64 \n",
" 9 is_business_account 785 non-null int64 \n",
" 10 has_guides 785 non-null int64 \n",
" 11 has_external_url 785 non-null int64 \n",
" 12 is_fake 785 non-null int64 \n",
"dtypes: float64(2), int64(11)\n",
"memory usage: 79.9 KB\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(df.apply(lambda col: col.unique()))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "amrNYI8j3uUd",
"outputId": "968bb228-6b15-4d48-8d28-75602a359834"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"edge_followed_by [0.001, 0.0, 0.002, 0.005, 0.008, 0.003, 0.006...\n",
"edge_follow [0.257, 0.958, 0.253, 0.977, 0.321, 0.917, 0.0...\n",
"username_length [13, 9, 12, 10, 11, 15, 7, 8, 17, 14, 20, 18, ...\n",
"username_has_number [1, 0]\n",
"full_name_has_number [1, 0]\n",
"full_name_length [13, 0, 11, 9, 4, 6, 1, 16, 7, 5, 15, 2, 3, 12...\n",
"is_private [0, 1]\n",
"is_joined_recently [0, 1]\n",
"has_channel [0]\n",
"is_business_account [0, 1]\n",
"has_guides [0, 1]\n",
"has_external_url [0, 1]\n",
"is_fake [1, 0]\n",
"dtype: object\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"df.nunique()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 492
},
"id": "ms17DPeN3ysb",
"outputId": "5a060be3-27c0-41ac-f745-d4f7990cfbd5"
},
"execution_count": 12,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"edge_followed_by 22\n",
"edge_follow 506\n",
"username_length 21\n",
"username_has_number 2\n",
"full_name_has_number 2\n",
"full_name_length 30\n",
"is_private 2\n",
"is_joined_recently 2\n",
"has_channel 1\n",
"is_business_account 2\n",
"has_guides 2\n",
"has_external_url 2\n",
"is_fake 2\n",
"dtype: int64"
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
"
\n",
" \n",
" \n",
" \n",
" edge_followed_by | \n",
" 22 | \n",
"
\n",
" \n",
" edge_follow | \n",
" 506 | \n",
"
\n",
" \n",
" username_length | \n",
" 21 | \n",
"
\n",
" \n",
" username_has_number | \n",
" 2 | \n",
"
\n",
" \n",
" full_name_has_number | \n",
" 2 | \n",
"
\n",
" \n",
" full_name_length | \n",
" 30 | \n",
"
\n",
" \n",
" is_private | \n",
" 2 | \n",
"
\n",
" \n",
" is_joined_recently | \n",
" 2 | \n",
"
\n",
" \n",
" has_channel | \n",
" 1 | \n",
"
\n",
" \n",
" is_business_account | \n",
" 2 | \n",
"
\n",
" \n",
" has_guides | \n",
" 2 | \n",
"
\n",
" \n",
" has_external_url | \n",
" 2 | \n",
"
\n",
" \n",
" is_fake | \n",
" 2 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"metadata": {},
"execution_count": 12
}
]
},
{
"cell_type": "code",
"source": [
"df.corr()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 477
},
"id": "Fs56dEi531lj",
"outputId": "d90ffe75-b5d2-455b-a6b5-4010c075e932"
},
"execution_count": 13,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" edge_followed_by edge_follow username_length \\\n",
"edge_followed_by 1.000000 -0.054259 -0.033704 \n",
"edge_follow -0.054259 1.000000 -0.112940 \n",
"username_length -0.033704 -0.112940 1.000000 \n",
"username_has_number -0.071313 0.160248 -0.160610 \n",
"full_name_has_number -0.019349 0.104735 -0.021410 \n",
"full_name_length 0.116751 -0.089677 0.277052 \n",
"is_private -0.024593 -0.072626 0.117582 \n",
"is_joined_recently -0.044327 -0.133170 -0.099414 \n",
"has_channel NaN NaN NaN \n",
"is_business_account 0.036585 -0.132422 0.132683 \n",
"has_guides 0.002749 0.002723 -0.006861 \n",
"has_external_url 0.180392 -0.108482 0.112466 \n",
"is_fake -0.136808 0.272649 -0.151752 \n",
"\n",
" username_has_number full_name_has_number \\\n",
"edge_followed_by -0.071313 -0.019349 \n",
"edge_follow 0.160248 0.104735 \n",
"username_length -0.160610 -0.021410 \n",
"username_has_number 1.000000 0.217852 \n",
"full_name_has_number 0.217852 1.000000 \n",
"full_name_length -0.246511 0.250275 \n",
"is_private -0.154072 -0.072366 \n",
"is_joined_recently 0.127046 0.066941 \n",
"has_channel NaN NaN \n",
"is_business_account -0.278637 -0.083482 \n",
"has_guides -0.048097 -0.012527 \n",
"has_external_url -0.237466 -0.039926 \n",
"is_fake 0.370164 0.128588 \n",
"\n",
" full_name_length is_private is_joined_recently \\\n",
"edge_followed_by 0.116751 -0.024593 -0.044327 \n",
"edge_follow -0.089677 -0.072626 -0.133170 \n",
"username_length 0.277052 0.117582 -0.099414 \n",
"username_has_number -0.246511 -0.154072 0.127046 \n",
"full_name_has_number 0.250275 -0.072366 0.066941 \n",
"full_name_length 1.000000 0.064409 -0.216572 \n",
"is_private 0.064409 1.000000 -0.071448 \n",
"is_joined_recently -0.216572 -0.071448 1.000000 \n",
"has_channel NaN NaN NaN \n",
"is_business_account 0.323137 -0.134444 -0.172122 \n",
"has_guides 0.122848 -0.016999 -0.026889 \n",
"has_external_url 0.309318 -0.041399 -0.150433 \n",
"is_fake -0.350433 -0.262292 0.276012 \n",
"\n",
" has_channel is_business_account has_guides \\\n",
"edge_followed_by NaN 0.036585 0.002749 \n",
"edge_follow NaN -0.132422 0.002723 \n",
"username_length NaN 0.132683 -0.006861 \n",
"username_has_number NaN -0.278637 -0.048097 \n",
"full_name_has_number NaN -0.083482 -0.012527 \n",
"full_name_length NaN 0.323137 0.122848 \n",
"is_private NaN -0.134444 -0.016999 \n",
"is_joined_recently NaN -0.172122 -0.026889 \n",
"has_channel NaN NaN NaN \n",
"is_business_account NaN 1.000000 0.126443 \n",
"has_guides NaN 0.126443 1.000000 \n",
"has_external_url NaN 0.289467 0.138415 \n",
"is_fake NaN -0.318395 -0.097421 \n",
"\n",
" has_external_url is_fake \n",
"edge_followed_by 0.180392 -0.136808 \n",
"edge_follow -0.108482 0.272649 \n",
"username_length 0.112466 -0.151752 \n",
"username_has_number -0.237466 0.370164 \n",
"full_name_has_number -0.039926 0.128588 \n",
"full_name_length 0.309318 -0.350433 \n",
"is_private -0.041399 -0.262292 \n",
"is_joined_recently -0.150433 0.276012 \n",
"has_channel NaN NaN \n",
"is_business_account 0.289467 -0.318395 \n",
"has_guides 0.138415 -0.097421 \n",
"has_external_url 1.000000 -0.426830 \n",
"is_fake -0.426830 1.000000 "
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" edge_followed_by | \n",
" edge_follow | \n",
" username_length | \n",
" username_has_number | \n",
" full_name_has_number | \n",
" full_name_length | \n",
" is_private | \n",
" is_joined_recently | \n",
" has_channel | \n",
" is_business_account | \n",
" has_guides | \n",
" has_external_url | \n",
" is_fake | \n",
"
\n",
" \n",
" \n",
" \n",
" edge_followed_by | \n",
" 1.000000 | \n",
" -0.054259 | \n",
" -0.033704 | \n",
" -0.071313 | \n",
" -0.019349 | \n",
" 0.116751 | \n",
" -0.024593 | \n",
" -0.044327 | \n",
" NaN | \n",
" 0.036585 | \n",
" 0.002749 | \n",
" 0.180392 | \n",
" -0.136808 | \n",
"
\n",
" \n",
" edge_follow | \n",
" -0.054259 | \n",
" 1.000000 | \n",
" -0.112940 | \n",
" 0.160248 | \n",
" 0.104735 | \n",
" -0.089677 | \n",
" -0.072626 | \n",
" -0.133170 | \n",
" NaN | \n",
" -0.132422 | \n",
" 0.002723 | \n",
" -0.108482 | \n",
" 0.272649 | \n",
"
\n",
" \n",
" username_length | \n",
" -0.033704 | \n",
" -0.112940 | \n",
" 1.000000 | \n",
" -0.160610 | \n",
" -0.021410 | \n",
" 0.277052 | \n",
" 0.117582 | \n",
" -0.099414 | \n",
" NaN | \n",
" 0.132683 | \n",
" -0.006861 | \n",
" 0.112466 | \n",
" -0.151752 | \n",
"
\n",
" \n",
" username_has_number | \n",
" -0.071313 | \n",
" 0.160248 | \n",
" -0.160610 | \n",
" 1.000000 | \n",
" 0.217852 | \n",
" -0.246511 | \n",
" -0.154072 | \n",
" 0.127046 | \n",
" NaN | \n",
" -0.278637 | \n",
" -0.048097 | \n",
" -0.237466 | \n",
" 0.370164 | \n",
"
\n",
" \n",
" full_name_has_number | \n",
" -0.019349 | \n",
" 0.104735 | \n",
" -0.021410 | \n",
" 0.217852 | \n",
" 1.000000 | \n",
" 0.250275 | \n",
" -0.072366 | \n",
" 0.066941 | \n",
" NaN | \n",
" -0.083482 | \n",
" -0.012527 | \n",
" -0.039926 | \n",
" 0.128588 | \n",
"
\n",
" \n",
" full_name_length | \n",
" 0.116751 | \n",
" -0.089677 | \n",
" 0.277052 | \n",
" -0.246511 | \n",
" 0.250275 | \n",
" 1.000000 | \n",
" 0.064409 | \n",
" -0.216572 | \n",
" NaN | \n",
" 0.323137 | \n",
" 0.122848 | \n",
" 0.309318 | \n",
" -0.350433 | \n",
"
\n",
" \n",
" is_private | \n",
" -0.024593 | \n",
" -0.072626 | \n",
" 0.117582 | \n",
" -0.154072 | \n",
" -0.072366 | \n",
" 0.064409 | \n",
" 1.000000 | \n",
" -0.071448 | \n",
" NaN | \n",
" -0.134444 | \n",
" -0.016999 | \n",
" -0.041399 | \n",
" -0.262292 | \n",
"
\n",
" \n",
" is_joined_recently | \n",
" -0.044327 | \n",
" -0.133170 | \n",
" -0.099414 | \n",
" 0.127046 | \n",
" 0.066941 | \n",
" -0.216572 | \n",
" -0.071448 | \n",
" 1.000000 | \n",
" NaN | \n",
" -0.172122 | \n",
" -0.026889 | \n",
" -0.150433 | \n",
" 0.276012 | \n",
"
\n",
" \n",
" has_channel | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" is_business_account | \n",
" 0.036585 | \n",
" -0.132422 | \n",
" 0.132683 | \n",
" -0.278637 | \n",
" -0.083482 | \n",
" 0.323137 | \n",
" -0.134444 | \n",
" -0.172122 | \n",
" NaN | \n",
" 1.000000 | \n",
" 0.126443 | \n",
" 0.289467 | \n",
" -0.318395 | \n",
"
\n",
" \n",
" has_guides | \n",
" 0.002749 | \n",
" 0.002723 | \n",
" -0.006861 | \n",
" -0.048097 | \n",
" -0.012527 | \n",
" 0.122848 | \n",
" -0.016999 | \n",
" -0.026889 | \n",
" NaN | \n",
" 0.126443 | \n",
" 1.000000 | \n",
" 0.138415 | \n",
" -0.097421 | \n",
"
\n",
" \n",
" has_external_url | \n",
" 0.180392 | \n",
" -0.108482 | \n",
" 0.112466 | \n",
" -0.237466 | \n",
" -0.039926 | \n",
" 0.309318 | \n",
" -0.041399 | \n",
" -0.150433 | \n",
" NaN | \n",
" 0.289467 | \n",
" 0.138415 | \n",
" 1.000000 | \n",
" -0.426830 | \n",
"
\n",
" \n",
" is_fake | \n",
" -0.136808 | \n",
" 0.272649 | \n",
" -0.151752 | \n",
" 0.370164 | \n",
" 0.128588 | \n",
" -0.350433 | \n",
" -0.262292 | \n",
" 0.276012 | \n",
" NaN | \n",
" -0.318395 | \n",
" -0.097421 | \n",
" -0.426830 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"df\",\n \"rows\": 13,\n \"fields\": [\n {\n \"column\": \"edge_followed_by\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3019330153290216,\n \"min\": -0.13680775047960891,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n 0.18039167346443685,\n 0.0027487605792974523,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"edge_follow\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.32032618427845355,\n \"min\": -0.13317037891635897,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.10848153331203463,\n 0.0027234821464119804,\n -0.054258853252096034\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.31644673288236946,\n \"min\": -0.16060962893999606,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n 0.1124664550691376,\n -0.006861318955189048,\n -0.033703693932309216\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3617701949721209,\n \"min\": -0.27863745599024425,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.23746610864482043,\n -0.04809668291848156,\n -0.07131297171457342\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2961123601561181,\n \"min\": -0.0834815250678617,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.039925892131660624,\n -0.012527159481685037,\n -0.01934875187214717\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.35776106346126996,\n \"min\": -0.35043268814522366,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n 0.309318338209586,\n 0.12284817184007918,\n 0.1167512089705357\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.32159219920981325,\n \"min\": -0.26229211742185954,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.041399451047463544,\n -0.016999493539874802,\n -0.02459348509217303\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3310655400342606,\n \"min\": -0.21657236508946606,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [\n -0.15043282199094957,\n -0.026889472075542223,\n -0.04432738505974311\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_channel\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": null,\n \"min\": null,\n \"max\": null,\n \"num_unique_values\": 0,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.35960934853930476,\n \"min\": -0.31839477879149414,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_guides\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.29331591227576675,\n \"min\": -0.09742121499676613,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3608646723860577,\n \"min\": -0.4268300691494102,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.40707337614717365,\n \"min\": -0.4268300691494102,\n \"max\": 1.0,\n \"num_unique_values\": 12,\n \"samples\": [],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 13
}
]
},
{
"cell_type": "code",
"source": [
"df.isnull().sum()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 492
},
"id": "hHHXgtnS33vD",
"outputId": "7142635d-a1c5-434f-8178-aedb067f5c7f"
},
"execution_count": 14,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"edge_followed_by 0\n",
"edge_follow 0\n",
"username_length 0\n",
"username_has_number 0\n",
"full_name_has_number 0\n",
"full_name_length 0\n",
"is_private 0\n",
"is_joined_recently 0\n",
"has_channel 0\n",
"is_business_account 0\n",
"has_guides 0\n",
"has_external_url 0\n",
"is_fake 0\n",
"dtype: int64"
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
"
\n",
" \n",
" \n",
" \n",
" edge_followed_by | \n",
" 0 | \n",
"
\n",
" \n",
" edge_follow | \n",
" 0 | \n",
"
\n",
" \n",
" username_length | \n",
" 0 | \n",
"
\n",
" \n",
" username_has_number | \n",
" 0 | \n",
"
\n",
" \n",
" full_name_has_number | \n",
" 0 | \n",
"
\n",
" \n",
" full_name_length | \n",
" 0 | \n",
"
\n",
" \n",
" is_private | \n",
" 0 | \n",
"
\n",
" \n",
" is_joined_recently | \n",
" 0 | \n",
"
\n",
" \n",
" has_channel | \n",
" 0 | \n",
"
\n",
" \n",
" is_business_account | \n",
" 0 | \n",
"
\n",
" \n",
" has_guides | \n",
" 0 | \n",
"
\n",
" \n",
" has_external_url | \n",
" 0 | \n",
"
\n",
" \n",
" is_fake | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"metadata": {},
"execution_count": 14
}
]
},
{
"cell_type": "code",
"source": [
"df.describe().T"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 477
},
"id": "alGAES6336fG",
"outputId": "01842472-8284-43a5-858a-7ff246d1b5bd"
},
"execution_count": 15,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" count mean std min 25% 50% 75% \\\n",
"edge_followed_by 785.0 0.002223 0.036105 0.0 0.000 0.000 0.000 \n",
"edge_follow 785.0 0.401606 0.293845 0.0 0.135 0.336 0.623 \n",
"username_length 785.0 11.630573 3.284329 5.0 9.000 11.000 13.000 \n",
"username_has_number 785.0 0.644586 0.478944 0.0 0.000 1.000 1.000 \n",
"full_name_has_number 785.0 0.109554 0.312532 0.0 0.000 0.000 0.000 \n",
"full_name_length 785.0 6.129936 6.943903 0.0 0.000 5.000 11.000 \n",
"is_private 785.0 0.184713 0.388312 0.0 0.000 0.000 0.000 \n",
"is_joined_recently 785.0 0.361783 0.480823 0.0 0.000 0.000 1.000 \n",
"has_channel 785.0 0.000000 0.000000 0.0 0.000 0.000 0.000 \n",
"is_business_account 785.0 0.073885 0.261751 0.0 0.000 0.000 0.000 \n",
"has_guides 785.0 0.001274 0.035692 0.0 0.000 0.000 0.000 \n",
"has_external_url 785.0 0.062420 0.242072 0.0 0.000 0.000 0.000 \n",
"is_fake 785.0 0.881529 0.323371 0.0 1.000 1.000 1.000 \n",
"\n",
" max \n",
"edge_followed_by 1.0 \n",
"edge_follow 1.0 \n",
"username_length 26.0 \n",
"username_has_number 1.0 \n",
"full_name_has_number 1.0 \n",
"full_name_length 30.0 \n",
"is_private 1.0 \n",
"is_joined_recently 1.0 \n",
"has_channel 0.0 \n",
"is_business_account 1.0 \n",
"has_guides 1.0 \n",
"has_external_url 1.0 \n",
"is_fake 1.0 "
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" count | \n",
" mean | \n",
" std | \n",
" min | \n",
" 25% | \n",
" 50% | \n",
" 75% | \n",
" max | \n",
"
\n",
" \n",
" \n",
" \n",
" edge_followed_by | \n",
" 785.0 | \n",
" 0.002223 | \n",
" 0.036105 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" edge_follow | \n",
" 785.0 | \n",
" 0.401606 | \n",
" 0.293845 | \n",
" 0.0 | \n",
" 0.135 | \n",
" 0.336 | \n",
" 0.623 | \n",
" 1.0 | \n",
"
\n",
" \n",
" username_length | \n",
" 785.0 | \n",
" 11.630573 | \n",
" 3.284329 | \n",
" 5.0 | \n",
" 9.000 | \n",
" 11.000 | \n",
" 13.000 | \n",
" 26.0 | \n",
"
\n",
" \n",
" username_has_number | \n",
" 785.0 | \n",
" 0.644586 | \n",
" 0.478944 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" full_name_has_number | \n",
" 785.0 | \n",
" 0.109554 | \n",
" 0.312532 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" full_name_length | \n",
" 785.0 | \n",
" 6.129936 | \n",
" 6.943903 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 5.000 | \n",
" 11.000 | \n",
" 30.0 | \n",
"
\n",
" \n",
" is_private | \n",
" 785.0 | \n",
" 0.184713 | \n",
" 0.388312 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" is_joined_recently | \n",
" 785.0 | \n",
" 0.361783 | \n",
" 0.480823 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" has_channel | \n",
" 785.0 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.0 | \n",
"
\n",
" \n",
" is_business_account | \n",
" 785.0 | \n",
" 0.073885 | \n",
" 0.261751 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" has_guides | \n",
" 785.0 | \n",
" 0.001274 | \n",
" 0.035692 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" has_external_url | \n",
" 785.0 | \n",
" 0.062420 | \n",
" 0.242072 | \n",
" 0.0 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 0.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
" is_fake | \n",
" 785.0 | \n",
" 0.881529 | \n",
" 0.323371 | \n",
" 0.0 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.0 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"df\",\n \"rows\": 13,\n \"fields\": [\n {\n \"column\": \"count\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 785.0,\n \"max\": 785.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 785.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"mean\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.4412915317173853,\n \"min\": 0.0,\n \"max\": 11.630573248407643,\n \"num_unique_values\": 13,\n \"samples\": [\n 0.062420382165605096\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"std\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.9763261374553287,\n \"min\": 0.0,\n \"max\": 6.943903001842641,\n \"num_unique_values\": 13,\n \"samples\": [\n 0.24207173753796538\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"min\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.3867504905630723,\n \"min\": 0.0,\n \"max\": 5.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 5.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"25%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.485236794166086,\n \"min\": 0.0,\n \"max\": 9.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 0.135\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"50%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.1917951222727474,\n \"min\": 0.0,\n \"max\": 11.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.336\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"75%\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.422419244526571,\n \"min\": 0.0,\n \"max\": 13.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.623\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"max\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10.209975011898399,\n \"min\": 0.0,\n \"max\": 30.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 26.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 15
}
]
},
{
"cell_type": "code",
"source": [
"df.drop([\"has_guides\"],axis=1,inplace=True)\n",
"df.drop([\"edge_follow\"],axis=1,inplace=True)\n",
"df.drop([\"has_channel\"],axis=1,inplace=True)\n",
"df.drop([\"edge_followed_by\"],axis=1,inplace=True)"
],
"metadata": {
"id": "JhH_px8j39hh"
},
"execution_count": 16,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df.head(5)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 226
},
"id": "D4HjYEfJ4URK",
"outputId": "60b8ba9b-20a0-4ee6-b445-a36ded57b775"
},
"execution_count": 17,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" username_length username_has_number full_name_has_number \\\n",
"0 13 1 1 \n",
"1 9 1 0 \n",
"2 12 0 0 \n",
"3 10 1 0 \n",
"4 11 0 0 \n",
"\n",
" full_name_length is_private is_joined_recently is_business_account \\\n",
"0 13 0 0 0 \n",
"1 0 0 1 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 11 1 0 0 \n",
"\n",
" has_external_url is_fake \n",
"0 0 1 \n",
"1 0 1 \n",
"2 0 1 \n",
"3 0 1 \n",
"4 0 1 "
],
"text/html": [
"\n",
" \n",
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" username_length | \n",
" username_has_number | \n",
" full_name_has_number | \n",
" full_name_length | \n",
" is_private | \n",
" is_joined_recently | \n",
" is_business_account | \n",
" has_external_url | \n",
" is_fake | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 13 | \n",
" 1 | \n",
" 1 | \n",
" 13 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" 9 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" 12 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 10 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
" 11 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df",
"summary": "{\n \"name\": \"df\",\n \"rows\": 785,\n \"fields\": [\n {\n \"column\": \"username_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 5,\n \"max\": 26,\n \"num_unique_values\": 21,\n \"samples\": [\n 13,\n 22,\n 19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"username_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_has_number\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"full_name_length\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 6,\n \"min\": 0,\n \"max\": 30,\n \"num_unique_values\": 30,\n \"samples\": [\n 29,\n 27\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_private\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_joined_recently\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_business_account\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"has_external_url\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"is_fake\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 17
}
]
},
{
"cell_type": "code",
"source": [
"account = df.groupby(\"is_business_account\")\n",
"account = account.size()\n",
"account"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 178
},
"id": "U_a8cipo4WT9",
"outputId": "151c867d-2149-481f-ecc8-c67d043bbd3a"
},
"execution_count": 23,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"is_business_account\n",
"0 727\n",
"1 58\n",
"dtype: int64"
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
"
\n",
" \n",
" is_business_account | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 727 | \n",
"
\n",
" \n",
" 1 | \n",
" 58 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"metadata": {},
"execution_count": 23
}
]
},
{
"cell_type": "code",
"source": [
"plt.pie(account.values , labels = (\"Business Account\", \"Personal Account\"), autopct='%1.1f%%',colors=['Lavender','lightgreen'], radius = 1, textprops = {\"fontsize\" : 16})\n",
"plt.title(\"Account Type\", c=\"Blue\")\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 375
},
"id": "X3jS5mYW4c2J",
"outputId": "6632034b-e44d-4491-d759-962aebc36ae3"
},
"execution_count": 24,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAGbCAYAAAAGFxytAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP1klEQVR4nO3deXxTVf7/8fdN2nRfWGXfqoiioCyCsgooyOIoIIjKIu4L4zgqg8oIOvIVUdGfiqMsggqIoIigIKAgsjgKsosIshQUZIfSvUnu749rU2JbaEPTpOnr+Xj0UXLvzb2nKUnePfmccwzTNE0BAAAAKDZboBsAAAAAlFWEaQAAAMBHhGkAAADAR4RpAAAAwEeEaQAAAMBHhGkAAADAR4RpAAAAwEeEaQAAAMBHhGkAAADAR4RpAAAAwEeEaQAh6623JMOQWrUKdEv86//+T5o379zHdexoPR7n+ho92s8NBoAQYpimaQa6EQDgD23aSAcOSHv3Sjt3ShdeGOgW+UdsrNS3rzRt2tmPW7pUOnQo7/batdLrr0tPPSVdckne9iZNrC8AwLmFBboBAOAPe/ZIa9ZIc+dK990nzZghjRoV6FYF1nXXed+OjLTC9HXXWb3WAIDio8wDQEiaMUOqUEHq0cPqtZ0xo+DjTp6UHn1UqldPioiQatWSBg2Sjh7NOyYz0yp9aNjQCqDVq0u9e0u7duUdk5YmPfaYVLu2dZ6LL5Zeflk687O/vXutMoqCepD/Wl4xerS17ddfpSFDpMREKSFBuvNOKT3d+35padJ77+WVaQwZUpxHKs/Uqdb9N2zIv+///k+y26Xff7dud+woXXaZ9OOP0jXXSFFRUv360ttv579vVpb1h8yFF1qPTe3a0vDh1nYAKOvomQYQkmbMsAKvwyENGCD9979WWUPLlnnHpKZK7dpJP/8sDR0qNWtmhej586XffpMqV5ZcLqlnT+nrr6Vbb5UeeUQ6fdoqmdi6VUpKsgLzjTdKy5dLd90lXXGFtHix9MQTVvh89VXff45+/ayQ+sIL0vr10uTJUtWq0osvWvs/+EC6+27pqquke++1tiUl+Xatvn2lhx6yHrsrr/TeN2OGFaBr1szbduKE1L271cYBA6TZs6UHHrAe86FDrWPcbuuxWbXKat8ll0hbtliPyY4dRav1BoCgZgJAiFm3zjQl01y61LrtdptmrVqm+cgj3sc984x13Ny5+c/hdlvf333XOmb8+MKPmTfPOub557339+1rmoZhmr/+at3es8c6burU/OeSTHPUqLzbo0ZZ24YO9T7u5ptNs1Il720xMaY5eHD+c57LnDnWNZYvz9s2YIBp1qhhmi5X3rb16/O3u0MHa9srr+Rty8oyzSuuMM2qVU0zO9va9sEHpmmzmebKld7Xfvtt6/6rVxe/3QAQTCjzABByZsyQLrhAuvZa67ZhSP37S7NmWT3NuT75RGraVLr55vznMIy8YypXloYNK/yYhQutEoi//917/2OPWb3Wixb5/rPcf7/37XbtpGPHpJQU3895NoMGWYM2ly/P2zZjhlXG0aeP97FhYVY9ei6Hw7p9+LBV/iFJc+ZYvdGNGlm9/rlfnTpZ+8+8DgCURYRpACHF5bJC87XXWoMQf/3V+mrVyprJ4uuv847dtcuq+z2bXbus+uewsxTFJSdLNWpIcXHe23NnyEhO9u1nkaQ6dbxvV6hgfT9xwvdzns1111k14bk15m639OGH0t/+lv/nq1FDionx3tawofV9717r+86d0k8/SVWqeH/lHnf4sH9+DgAoLdRMAwgpy5ZJBw9agXrWrPz7Z8yQrr++9Nsl5fVk/9WZveV/ZbcXvN1fk5ra7dJtt0mTJlnzdK9ebfVU33GHb+dzu6XLL5fGjy94f+3avrcVAIIBYRpASJkxwxqgN2FC/n1z50qffmrNOBEVZQ3U27r17OdLSpK+/17KyZHCwws+pm5d6auvrIGJZ/bebt+et1/K61U+edL7/ufTcy0VHtJ9NWiQ9Mor0oIFVolKlSpS1675jztwwJpJ5Mze6R07rO/16lnfk5KkTZukzp1Lvp0AEAwo8wAQMjIyrMDcs6c1M8Vfvx5+2Aq88+dbx/fpYwW9Tz/Nf67cnt8+fawa3zffLPyY7t2t3uW/HvPqq1aAvOEG63Z8vFV//e233se99ZbvP7Nkhdm/BvTzkbtoy+TJVs34rbcWXObidErvvJN3Ozvbul2litS8ubWtXz9rRpNJk/LfPyPDCuMAUJbRMw0gZMyfb4XlG28seH/r1lbQmzHDGpD4xBPSxx9Lt9xiTeXWvLl0/Lh1nrfftgYnDhokvf++9M9/Sj/8YA0ATEuzeqIffNCqJe7Vy6rRfvppq1a4aVNpyRLps8+kf/zDe6q6u++Wxo61vrdoYQXr3N5cXzVvbrVn/Hirjrl+/fNfQn3QIOnxx61/F1biUaOGNUXf3r1WDfRHH0kbN0oTJ+b14g8caE2Zd//91mDDNm2sPzy2b7e2L15sPQ4AUGYFejoRACgpvXqZZmSkaaalFX7MkCGmGR5umkePWrePHTPNhx82zZo1TdPhsKbQGzw4b79pmmZ6umk+/bRp1q9v3bdaNWvau1278o45fdo0H33UmlYuPNw0L7rINF96KW/6vDPPddddppmQYJpxcabZr59pHj5c+NR4R45433/qVGv7nj1527ZvN8327U0zKsraV9Rp8gqaGi/XwYOmabebZsOGBd+3QwfTbNzYmobw6qutx71uXdN88838x2Znm+aLL1rHR0SYZoUKptm8uWk++6xpnjpVtLYCQLAyTNNfw1gAAGXV0aPWrB7PPCP9+9/593fsaB1zrppzAAh11EwDAPKZNs0qxxg4MNAtAYDgRs00AMBj2TJp2zZpzBjpppvyZuUAABSMMA0A8HjuOWnNGmug4BtvBLo1ABD8qJkGAAAAfETNNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4CPCNAAAAOAjwjQAAADgI8I0AAAA4KOwQDcAAMob0zRlmpLbrT+/m4X+W5IMQzIM44x/q4B/5+232SSbzZDdbn0HAPgPYRoASphpmnI6JafT9Hy5XN5B2Yez+tye3FBtt0t2e973sDDr37lBHABQfIZp+vayDgDlncvlHZbP/HdZYrNJYWGGwsPzvsLCCNgAUBSEaQAoApfLVHa29ZWTY4XmUH71tNnkFa4dDoOSEQAoAGEaAArgdOaGZ7eys8teb7M/2O3yCtfh4QYlIgDKPcI0ACiv5zkry62sLKu2GecWEWEoIsJQZKRNdjvBGkD5Q5gGUC6ZplWukZlpBWinM9AtKvvCwqTISJsiI20KDydYAygfCNMAypWcHFMZGW5lZLjpffYju12KiLApMtIqCaEcBECoIkwDCHlOpxWgMzPpgQ4Ew5CnFCQigoGMAEILYRpASHK5TGVmupWRYZVzIHhERRmKjrbJ4WARXgBlH2EaQMhwu60a6IwMawYOBLfwcCtUR0VRBgKg7CJMAyjznE5TaWlupadTBF0WGYYUFWVTdDQDFwGUPYRpAGVWdrZbaWluZWbyMhYqHA6rtzoykt5qAGUDYRpAmWKaprKyrJ5oSjlCl82W11vN0uYAghlhGkCZYJqmMjJMpaW5mJGjnImMNBQXZydUAwhKhGkAQc3tNpWebpVzMC90+UaoBhCMCNMAgpLLlTeokFcpnIlQDSCYEKYBBBXTtEJ0aiohGmcXFWWFarudUA0gcAjTAIJGZqZbKSkuuVyBbgnKkpgYm2JjbaysCCAgCNMAAi4nx1RKiovZOeAzw5BiY22KibExpR6AUkWYBhAwLpep1FQWW0HJsdul+Hi7IiNZqhxA6SBMAyh11EXD3yIjDcXHU08NwP8I0wBKFXXRKC2GYfVSR0fTSw3AfwjTAEqF02nVRWdl8ZKD0uVwGEpIYCo9AP5BmAbgd+npVm80rzYIFAYoAvAXwjQAv3G5TJ06RW80gkd4uNVLHR5OoAZQMgjTAPwiI8OtU6fojUZwiomxKS6OXmoA548wDaBEud1Wb3RmJi8tCG52u5SYaJfDwQBFAL4jTAMoMdnZbp08yUwdKFvi422KibEHuhkAyijCNIDzZprW4iupqSy+grIpKsqqpabsA0BxEaYBnBeXy9TJkywFjrIvLEyqUCGMKfQAFAthGoDPsrLcOnGCQYYIHYZh1VGzHDmAoiJMA/BJero1WwcQimJjbYqNZbYPAOdGmAZQLKZp6vRpt9LSqI9GaHM4DFWoYJfNRqAGUDjCNIAiM02rPppp71BeMH0egHMhTAMoEpfL1IkTLuXk8JKB8ichwa7oaAI1gPwI0wDOKSfH1PHjTrmp7EA5FhtrU1wc81ED8EaYBnBWmZnWQiy8UgAsQw4gP8I0gEKlprp0+jTd0cCZWOAFwJkI0wDyMU1TKSlupacTpIGCREYaSkwkUAMgTAP4C2bsAIrG4TBUsSKBGijvGJoMwMM0TZ06RZAGiiI729SxYy653TxfgPKMnmkAkvKCdEYGLwlAcYSFSRUrhslup4caKI/omQZAkAbOg9MpHTvmlMvF8wcojwjTAJSS4iZIA+fB5ZKOHnXK6eR5BJQ3hGmgnDt1ysWsHUAJcLutHmoCNVC+EKaBciwlhSANlCS3Wzp+nJIPoDwhTAPlVEqKS2lpBGmgpLlcVqBmlg+gfCBMA+UQQRrwL6dTOnHCJSbMAkIfYRooZ1JTCdJAacjONgnUQDlAmAbKkcxMt06fJkgDpSUry1RKCs85IJQRpoFyIifHWiYcQOlKT3crNZXnHhCqCNNAOeB2mzpxwik+bQYC4/RptzIz6aEGQhFhGghxpmnVbbroGAMC6uRJl7KzCdRAqCFMAyEuJcWt7Gy6pIFAM01rhg8WdQFCC2EaCGFpaSzKAgQTt1t/llwRqIFQQZgGQlRWlptZBIAg5HSK5yYQQgjTQAhyOpm5Awhm6ekMSARCBWEaCDG5M3e4eZ8GgtrJky65XJR7AGUdYRoIMSdPuuR0BroVAM4ld0Ai9dNA2UaYBkJIWppLWVm8MQNlRU6OyaqkQBlHmAZChNPJssVAWZSW5lZWFs9doKwiTAMhwDQZcAiUZdRPA2UXYRoIAampbuXk8EYMlFVutxWoqZ8Gyh7CNFDGZWe7lZrKR8RAWZedbfJcBsogwjRQhlHeAYSW1FS3srMJ1EBZQpgGyrCUFLdcZGkgpFDuAZQthGmgjMrOdis9nR4sINS4XNYMHwDKBsI0UAZR3gGEttRUt5xOeqeBsoAwDZRBp09T3gGEMtOUUlJ4kgNlAWEaKGNyckw+AgbKgawsU5mZPNeBYEeYBsqYU6forQLKi5QUBiMCwY4wDZQhGRkszgKUJy6XmHsaCHKEaaCMME1Tp0/TKw2UNwxGBIIbYRooI9LTGXQIlFeUdwHBizANlAFut6nTp/moFyivsrNNZWTwGgAEI8I0UAakprrFGCSgfEtJccnt5oUACDaEaSDIOZ1MhQdAcrtZGREIRoRpIMgx6BBArrQ0N73TQJAhTANBLCfHVGYmb5wALKZJ7zQQbAjTQBBjOWEAf0XvNBBcCNNAkMrMdCs7mzdMAN5M05oqE0BwIEwDQYgFWgCcDb3TQPAgTANBKCvLlNMZ6FYACFZuN73TQLAgTANBiAFGAM4lLc0tkwnogYAjTANBJifHpFYawDnROw0EB8I0EGTS0qiVBlA01uqo/PENBBJhGggiLpepjAzeGAEUDb3TQOARpoEgwpsigOKidhoILMI0ECRM0yRMAyg2l0t8ogUEEGEaCBIZGabcZGkAPuAPcSBwCNNAkGDgIQBf5eSYysmhdxoIBMI0EASystws0gLgvNA7DQQGYRoIAizSAuB8ZWQwEBEIBMI0EGBOp6msLN4AAZwf02QgIhAIhGkgwDIy6JUGUDJ4PQFKH2EaCDDe/ACUlOxsU04nvdNAaSJMAwGUk2PKxSQeAEoQf6ADpYswDQQQb3oAShqvK0DpIkwDAZSZyZsegJLlcknZ2by2AKWFMA0ECCUeAPyFWT2A0kOYBgKEj2IB+AtzTgOlp9hhul69ejIMI99XbGysmjZtqieffFLHjh3zR1uL3ca9e/cGtB3BYvz48Z7f0xtvvBHo5uBPlHgA8BfTtGb2AOB/PvdMt2nTRoMHD9bgwYM1cOBAtW7dWjt37tTYsWPVpEkT7d69uyTbifMwZcoUz7/ffffdALak7Pjmm29kGIY6duzol/NT4gHA31gMCigdYb7e8e6779aQIUO8tv3xxx/q0KGDduzYoeHDh+vjjz8+3/b55Ouvv1ZOTo5q1qwZkOsHk//973/atm2bEhMTlZOTo40bN2r9+vVq1qxZoJtWrlHiAcDfsrLckuyBbgYQ8kq0ZrpatWp64oknJFmBNlCSkpLUqFEjhYeHB6wNwSK3V3rAgAG65ZZbvLYhcCjxAOBvTqfkctE7DfhbiQ9ArFatmiTJ6XTm23euWuYhQ4bIMAxNmzbNa3tWVpZeeuklNW/eXHFxcXI4HKpWrZpatmyp4cOH6/jx40W6TseOHWUYhr755htt3LhRvXv3VuXKlRUREaFLL71Ur7zyylkHbHz99dfq3bu3qlevLofDoapVq+rmm2/Wd999V+DxO3fu1NChQ1W/fn1FREQoNjZWdevWVY8ePTR16tR8x8+ZM0ddunRRpUqVFB4erkqVKunSSy/VPffco82bNxfarsKkpaXpo48+kiTddddduuuuuyRJM2fOVGZmZqH3M01Tc+fOVc+ePVWtWjXP4922bVu9+OKLysjIyHefH3/8UYMHD1b9+vUVGRmpihUrqmnTpnriiSeUnJyc7/gffvhB/fr1U40aNTyPZa9evbR06dIC23Tm764go0ePlmEYGj16dKHbjxw5ooceeki1a9eWw+FQ7dq1NWzYMJ08eTLfta699lpJ0ooVK7zGBtSrV6/Qx62osrPdlHgAKBWUegD+53OZR2F++OEHSVLjxo1L5Hxut1s9evTQ119/rfj4eLVr106JiYk6cuSIdu7cqZdeekm33XabKlasWORzLl68WOPHj1dSUpKuu+46HTx4UKtWrdLjjz+u/fv367XXXst3n8cff1yvvPKKbDabWrRooXbt2mnfvn367LPPtGDBAk2aNEl33nmn5/itW7eqTZs2SklJ0cUXX6yePXvKbrfrt99+07fffqvff//d6/jnnntOo0aNUlhYmK655hrVrFlTp06d0r59+zRlyhQ1btxYTZo0KdZj99FHH+n06dNq0qSJmjdvLklq2LChduzYoblz5+q2227Ld5+cnBzdeuutmjt3rmw2m6666ip16tRJR48e1bZt2zRixAj179/fK1S+9NJLGjFihNxutxo2bKi//e1vysjI0K+//qqXX35ZjRs39ioJmjRpku6//3653W5deeWV6tixo5KTk/X555/r888/1+jRozVq1Khi/aznsn//fjVr1kw5OTlq06aNMjMztXr1ar355pv6/vvvtXr1as8nGd26dVNkZKQWL16sCy64QN26dfOcp3LlyufdlsxM3twAlI6sLLeio5m4C/CnEgnTbrdbBw8e1Keffqpx48bJbrdr5MiRJXFqrVq1Sl9//bWuvPJKrVixQnFxcV77161bp9q1axfrnGPHjtXbb7+t++67z7Nt2bJl6tKli9588009/vjjqlWrlmffpEmT9Morr+jCCy/UJ5984hVqv/32W/Xs2VP333+/2rZtq4suukiSNYNGSkqKnn/+eT399NNe18/IyNDatWs9t7OysjR27FjFxsZq3bp1uvjii72OT05OLrA3+FxyyzmGDh3q2XbnnXfqySef1JQpUwoM0yNGjNDcuXNVr149zZs3T02bNvXsM01Ty5YtU4UKFTzb5s+fr+HDhysyMlLvvfee+vXr53W+bdu2yTAMz+0tW7bowQcflGmaev/99zVw4EDPvkWLFummm27S6NGjdc011+i6664r9s9cmHfffVdDhgzR22+/rYiICElWwL766qu1du1affzxxxowYIDnMWjdurUWL16sRo0a5fuk5HxZdYwA4H9ZWaZM0/R6HQZQsnz+c/XOO+/0fPRtt9tVq1YtDRs2TE2aNNGKFSvUs2fPEmngoUOHJEnt2rXLF6QlqUWLFqpUqVKxztm7d2+vIC1JnTp1UteuXeVyubR8+XLPdrfb7SkdmDVrVr7e4fbt2+vf//63srOz9c477+Rrd/fu3fNdPyoqSu3bt/fcTklJUUZGhho0aJAvSEtS3bp11ahRo2L9jNu3b9eaNWvkcDh0xx13eLYPHjxYdrtdy5cv1549e7zuc/jwYb355puSpI8//tgrSEuSYRjq3LmzEhISPNtye5DHjBmTL0hL0qWXXqpLLrnEc/v//b//J6fTqZtvvtkrSEvSDTfcoHvvvVeS1dtdkmrVqqUJEyZ4grQkT5mHJH311Vcler3CuN2mCqiAAgC/ME1r9iAA/lMiU+MNHjxYPXr0UO3atbV27Vo9+uij2rlzZ4k0sFmzZrLb7Xr33Xc1YcIEHTx48LzP2atXrwK354a+33//3bNtw4YNOnDggJKSkjylEn+VO33amjVrPNuuuuoqSdIDDzygxYsXn7VGuUqVKqpXr542b96sxx57TNu2bSvWz1OQyZMnS5L+9re/ef2xUb16dd1www0yTTPfNHnLly9Xdna2mjdvXujPeqY//vhDGzdulM1m89Rjn0tuzfNfZ4LJlXuelStXylWChcWdO3dWdHR0vu0F/c79iXlfAZQ26qYB//I5TN99992aNm2a5+vzzz/X7t279eSTT2rt2rXq0KGDTp8+fd4NTEpK0quvvqqcnBw9/PDDqlGjhurVq6cBAwZoxowZys7OLvY569SpU+D2+Ph4SfIKvrnzZe/atavAxWoMw/AE5yNHjnju98QTT6hLly76/vvv1a1bN8XHx6tly5Z67LHHvEo8cr3//vuqWrWqxo8fr8aNG6tSpUrq3r27Xn31VR09erRYP19OTo4++OADSd4lHrlyt7333ntyu/NKDnIHCha1F3zfvn2SrIB+Zm/12eSG1vr16xe4PykpSZL1OyjJxX+K8zv3J8I0gNJGmAb8q0QHIIaFhen555/XpEmTdPDgQb3//vt66KGHinz/M4PdmYYNG6Z+/fpp/vz5WrVqlVatWqVZs2Zp1qxZGjVqlFauXKnq1asX+To2W9H/hshtU7Vq1dS1a9ezHnvm4LTo6GgtXbpUa9eu1Zdffqk1a9ZozZo1WrduncaPH68HH3xQEyZM8Bzfrl077d27V1988YVWrFihNWvWaPHixVq0aJFGjRqlTz/9VJ07dy5SmxcsWKDDhw9LsgY2Pv/88177c2da2b9/v5YsWeI1wK6sKuz/Tq7i/M79iXppAKUtJ8eU223KZqNuGvCHEp/Nw2azqV69ejp69Kh+/vlnr30Oh0OSCu2xLmgKtVwXXHCB7rnnHt1zzz2SrJrgoUOH6rvvvtOIESP03nvvldBP4C13cGOlSpV8GojWsmVLtWzZUpIVYufNm6dBgwbprbfeUt++fT1TsElWLXXfvn3Vt29fSVZP98iRIzVx4kQNHTr0rI/Pmc6cR7qwafvOPDY3TOf23m7fvr1I18k9/uDBgzp16lSReqdr1qypXbt2affu3brsssvy7c/9JCB3er1c5/N/J1hQLw0gULKyTEVFEaYBfyjx7jq32+2Z3zk2NtZrX+6KhH8N2ZJVf7t+/foiX6dRo0b617/+JUnauHGjb40tgpYtW6py5cratm2bfvrpp/M6V1hYmPr27evp4T5Xu6tUqaJx48ZJskoqTpw4cc5r/Pbbb1q8eLEk63E2TbPAr9y67Pnz53vKSDp16iSHw6Eff/yxSL+LatWqqWnTpnK73UVepjy3vrywP0xyz9OuXTuFheX9rXe2/zvp6eleg0ZLQm54L2i+dF9R4gEgUPhUDPCfEg3TTqdTI0eO9ISzG2+80Wt/ly5dJEkvvvii10IZR44c0aBBg5SamprvnMuWLdPChQuVk5Pjtd00TX3++eeSrNku/CU8PFyjRo2SaZq6+eabtWrVqnzHuFwuLVu2TP/73/8829566y398ssv+Y79448/tG7dOq92Jycna/LkyUpJScl3/IIFCyRJFSpU8NT3ns20adPkcrl01VVXnbX2+ZJLLlGLFi2UnZ2t6dOnS5KqVq2qBx54QJJ0yy23aOvWrV73yZ0a79SpU55tubN5PP300/rkk0/yXWfbtm1eAfiRRx5RWFiY5s2b57luriVLlnhmRHn88ce99uX+35kwYYLXYMG0tDTde++92r9/f6E/qy9yp0bcuXNnvv97viJMAwgUZvQA/MfnMo/Jkyd7rUZ37Ngxbdq0yRNqnn76aV1zzTVe93nooYc0adIkrV+/XhdffLGuvvpqpaWlae3atapTp45uuukmzZs3z+s+mzdv1qOPPqr4+Hg1a9ZMNWrUUEZGhtavX6/k5GQlJCToueee8/XHKJKHH35Y+/bt00svvaR27dqpcePGuvDCCxUVFeWZ0eLkyZP673//q9atW0uSJk6cqIceekj169fXZZddpvj4eB05ckQrV65URkaGOnXq5Plj48SJE7rnnnv04IMP6oorrvAMztu5c6c2bNggwzD00ksvyW63n7Wdpml6VlYcPHjwOX+uQYMGad26dZoyZYr+8Y9/SJLGjRunPXv2aP78+WratKlatWql+vXr6+jRo/rpp5/0+++/a8+ePZ6SjptvvlljxozRyJEj1bdvXzVq1EhNmzb1LNqybds2TZ061TNrxuWXX64JEybogQce0MCBA/Xqq6+qUaNGSk5O1po1a2SapkaPHq3rr7/eq639+vXTa6+9pnXr1qlx48Zq27at3G631q1bJ4fDoaFDhxa5d7wo6tSpoxYtWmjdunW6/PLL1aJFC0VGRqpy5coaO3asT+fkzQxAoDidYr5pwE987plevXq13nvvPc/XkiVLZLPZ1L9/fy1fvjzfoDdJSkxM1OrVqzVo0CBJ1iIdu3bt0r333qs1a9YUWHPbq1cvjR49Wi1bttTu3bs1d+5cffPNN0pISNCIESO0detWXXHFFb7+GEU2btw4rV69WrfffrtSU1P15Zdf6osvvtCBAwfUsWNHTZ48Wf379/ccP2bMGD3wwANKTEzU//73P82ZM0fbtm1Tq1at9N577+nLL7/0lDEkJSXptddeU8+ePXXy5EktXLhQX3zxhdLS0jRo0CCtXbu2SFPPLV++XLt375bD4dCtt956zuMHDBig8PBwbd261bNypcPh0Lx58zRz5kx16dJFO3bs0Jw5c7R582Y1aNBAL730kmfJ+FxPPfWU1qxZowEDBuj06dOaO3euVq1apfDwcA0fPlydOnXyOj739923b18dOHBAs2fP1vbt29W9e3ctWbKkwNUPw8PDtXTpUj388MOKi4vTkiVLtHnzZt18881av359sRfuKYpPPvlEt912m1JSUvTRRx9pypQpmjVrlk/nMk2TMA0goHgNAvzDME2TZxfgZzk5po4eZfQhgMBJSLCztDjgBzyrgFKQnV16g39+/32/nnrqEV19dSPVqxerxo2ra8CAHvrqq4X5jnW73Vq79juNGzdaf/tbRzVuXE116kSrcePq6t//Bs2dO1Pn+/f2l1/O1+DBN6tp09qqWzdGl19eU716tdf48fk/vXI6nRo3bpSaN2+gevVi1anTlVqw4ONCz71160bVqROtJ5544LzaCJQH9EwD/kHPNFAKTp50KiPD/0+1jRvX6fbbe+rEieO64ILquuKKFjpx4rg2bPhBOTk5evTRp/XEE3llNHv2/Ko2bS6VJFWoUFFNmjRXQkKi9u3bo40brYGyXbp01+TJsz0znBRVdna2hg0brAULPlFkZJRatGitypWr6siRQ/rll21yuVz66SfvFU2fffZfeuedV1W3bgNdeunlWrNmhU6dOqmJEz9Uz559vI51uVzq2bOtDh78XStWbFZCQqIPjxhQfjgchipVKvEZcYFyjzANlIKjR51+7xXKzMxU27aNdeDAft144y169dXJioqKkpQbsnvpxIlj+vDDherQwZodZe/eXRo+/EE98MA/1b59F69Brt99960GDvyb0tPT9Pjjz+if/xxZrPY88shQzZkzXd263aiXXnpblSrlLWrkdru1YcNaNW/eyrPt6NHDatGigerVS9LChd8pOjpaO3duV5cuzdWgwUVavnyj1/knTvx/Gj36Cb3zzkz16tW3uA8XUO4YhlStWnigmwGEHMo8gFLgdPr/b9ZFi+bpwIH9SkhI1IsvTvAEaUm64ooWevTRpyVJr746xrO9Xr0kzZ69WNde2zXfbDFXX91eDz/8hCTp449nFKstK1cu05w509WoUWO9886HXkFashZ3OjNIS9LPP29Vdna2evceoOjoaEnSRRc1UuvW7fXLL9t0+nTe1JG//bZP48aNVpcu3QnSQBGZZum8FgHlDWEa8DO321RpfP6zadOPkqTLL29WYMlD+/bWrCpr167R4cN/FOmcl112hSTpwIHizeP97rsTJEl33/13hYcXrSfsxIljkqTExIpe2ytUsG6npeXNQ//UU3+XYRh64YU3itUuoLwjTAMlj+IpwM9K680rN2zmhs+/qljR6h02TVNbtmxQ5843nPOce/b8KkmqWrV6kdvhcrm0apW1ImXr1m11+PAf+uyz2dq1a4ccjghddllT9ejRWzEx3iuk1q5dT5K0c6f3cva//rpdDofD0/758+foq68W6rnnxqtmzZKfEhEIZTk5piIjA90KILQQpgE/K8EVyc+qcuUqkqR9+/YUuD85OW/7vn17z3m+9PR0TZli9TD36HFzkduRnLzbE+zXr/9eTz75d69eZUn6z3+e1H//O11t217r2da4cVPVqlVXH330njp3vkHNm7fSzJnvatu2Lbr++p5yOBw6deqknnnmMV15ZUsNHfpgkdsEwELPNFDyKPMA/MzlKp03rzZtrGC6efN6bdmyId/+Dz6Y6Pl3amr+pev/6qmnhmnfvj2qVq2Ghg37V5HbceLEcc+/H3vsPjVp0kyLFn2nnTuPa+nSterc+QYdO3ZEd97ZR7t37/Qc63A49PzzryozM0O33dZDF19cWc8+O1wXXFBdzz77siRpzJindPz4Ub388tuy2fJevtLT04vcPqA8Y3o8oOQRpgE/K62eoLZtr1Xr1u1kmqaGDOmjJUs+V0rKKSUn79azz/5Lc+ZM99QvG8bZn/qvvjpGs2d/oMjISL399kxVrFipyO04c4KgatVqaubML9S0aXPFxMSqceOmmjZtrho1aqy0tFS9+eZLXve9/vqeWrp0rf7+93/p9tvv0r//PVbLlm1Q3boN9P33qzVjxhQ98MA/dckll8vlcmncuNG67LIauvDCRF18cWU9+eTfCdbAWbhc1jgOACWHMg/Az1yu0rvWxIkf6q67+mnt2jUaMqS317577vm7fvhhtTZt+rHQumpJeued1/TSS88qIiJCU6bM0VVXXVOsNsTG5tVC9+s3UBEREV777Xa77rjjHo0c+Q+tXLks3/0vvrixRoz4j9e27OxsDR/+gOrVS9Kjj1pT9P3nPyM0ceL/04ABd6pr1176/vtVevvtV3XkyB+aPHl2sdoMlCcul2SjKw0oMYRpwM9Ks0axcuWqmjdvub799mutXr1cJ04cV5UqVdW1641q2rS5rryyriSpUaPLCrz/lCkT9Oyzw+VwODRp0ke69tquxW5D7dr1ZBiGTNNU3br1Czwmd/vhwwcL3P9Xb7zxonbu3K7ZsxcrMjJSqamnNW3af9WixdV65ZV3JFm92r//vl/z58/Rrl07lJTUsNhtB8oDq2faCHQzgJBBmAb8qLSmxTuTYRjq0KGLZ2GWXHv37tKhQwdVoUIlXX75lfnuN3Xqf/Xvfz/qCdJdunT36foxMbFKSmqoX3/9RcePHyvwmOPHj3qOPZdff/1Fb745Tv36DfIMWNyx42dlZ2erRYurvY696qo2mj9/jn76aRNhGihEaX5aBpQHfNAD+FEwjZx/++1XJUl33HFXvqXB339/op5++hFPkL7uuh7nda3cpb8LKuOQpG+//VqSdMUVLc96HtM09a9/PaS4uASNGjXOs90wrF61jIw0r+PT09O89gPIj5ppoGQRpgE/Ku0eoB07vFcKlCSn06nXXx+rDz6YpPr1L9QjjzzptX/GjCl68slhxQ7SixbNU7t2l6lfv/ylIHfd9bASEyvo668X6YMPJnntmzfvI82d++Gfxz101mvMnDlV3333rUaPfsmrzrthw0sUERGhRYs+88wekp6errlzZ0rKW2wGQH5ud6BbAIQWwzRL+0NooPw4fdql1NTSe+d65pnHNH36JF1+eTNVq1ZD2dlZWr/+Bx05ckj161+oWbMWehZHkaStWzeqa9dWMk1TF154sZo1u6rQc7/22hSv2x999L4effRu1apVVz/8sDPf8StWfKU77+ytzMxMXXzxpbrookbau3e3tm7dKEn6xz+e0vDhowu93pEjh9ShQxNdeeVVmjFjQb79L7wwUm+8MU5Vq1ZTy5ZXa8uWjdq3b49uuqm/3nrrg7M/UEA5FhlpqEIFqjyBksKzCfCj0u4B6tSpm/bv36stWzZq8+Yf5XBEKCmpoe677x+6884HFRUV5XV8Ssopz1R2v/76i3799ZdCz/3XMH0uHTp00dKl6/TGGy9q5cplWrx4gWJj49W58w26666H1bHjdWe9/zPPPKbs7GyNHVvwkuEjRvxHCQkVNH36ZC1evEBVqlyghx56XE88MbpY7QTKG3qmgZJFzzTgRydOOJWZyVMMQPAIC5OqVAkPdDOAkEHNNOBH/KkKINjQMw2ULMI04EeEaQDBxu32XqkUwPkhTAN+xBRUAIIRvdNAySFMA35E5w+AYESYBkoOYRrwI8I0gGDkcvHiBJQUwjTgR4RpAMGInmmg5BCmAT8xTZMwDQBAiCNMA35CkAYQrJjNAyg5hGnAT3ivAgAg9BGmAT8hTAMAEPoI04CfMMc0gGDFH/tAySFMAwAAAD4KC3QDAADn5pJT+6N+1l5jh0wxrxnOTxN7U12mxoFuBhASCNOAnxiGEegmIITYFaZ6GZerqr22tkf8qF3uHTLFZ/XwTaaREegmACGDMg/AT8jS8IdoV6KapXdWj5wButB2sQzxHw3Fx/8boOQQpgE/IUzDn3JDdXdCNXzA/xeg5BCmAT8hTKM0xBCq4QMbb/9AieHZBPgJYRqliVCN4nAYjkA3AQgZhGnATxiAiEDIC9W3EqpRKMI0UHII04AfkacRKDGuCoRqFCrCiAh0E4CQQZgG/IgwjUAjVKMg9EwDJYcwDfgRYRrBwjtUNyRUl3P0TAMlhzAN+BFhGsHGCtVdCNXlHD3TQMkhTAN+xCBEBKszQ3USobrcoWcaKDksJw74EVkawS7GVUHN07uokb25tkf8qN3unUGzTPmxfcf0nyv+U6Rjh30+TEnXJPl0nVVTVunjJz6WJLW+o7Vuff3WfMdkpWVpwegF2jh/ozJTMlWjcQ31fKanGrZvWOA5f1r8kyYNmKQeI3voun9e51O7/MUuu+yGPdDNAEIGYRrwIxuf/aCMCMZQHREToZYDWha6/9Avh7Rv/T5FxEaoVtNaPl3j6N6jmj96vgzDkGkW/vPOfHCmNi3YpOqXVFe9FvX0yze/6O2+b+vvX/xd9VrW8zo2KzVLcx6fo+qXVlenYZ18apc/RRlRgW4CEFII04Af2e2GFCS9fEBReEJ1WDNtd/yo3e5fAxaqYyvF6vYJtxe6/51+70iSmvVupoiY4pctuN1uzXxopgzDUItbW2jth2sLPO63Lb9p04JNatihoe7/+H7Z7DbtWLFDb938lpa8skT3zrrX6/gvnv9Cpw6e0pB3h8geHnw9wHG2uEA3AQgp9JsBfmQPvvdRoEhinBXVPP06dXf2V5LtoqCrqT554KS2L9suSWp1RyufzvHt299q93e71WtUL1WsXbHQ437b+Jt1ndtbyWa33jYbdmioyg0qa+8Pe72O3bd+n1ZOXqm2d7XN12MdLAjTQMkiTAN+ZPVMA2VXsIbqHz78QabbVLVG1VSvRb1i3//QzkP6YswXSmqTpDZD25z12LQTaZKk6MRor+0xFWKUlZblue1yuvTRox8poVqCeozsUew2lRbCNFCyCNOAHxGmESrODNUNgiBU//DhD5KsAYPF5Xa5NfNBq7xjwOsDzjnrTm6v9aEdhzzbXDkuHd1zVAnVEzzbvnnrG/2+5Xf1famvIuMii92u0kKYBkoWYRrwI8o8EGpinBXVIsCh+tfVv+ro7qOyO+xq0b9Fse+/7I1lSv4xWd2f7q7K9Suf8/iL2l+kiNgILZ+wXPvW71P6qXQteHaB0o6n6bJul0mSjiUf0+Jxi9X0xqa67IbLit2m0kSYBkoWAxABP7LZDBmGdJZJAoAyKcZZUS2c16lRWHNtd6zTHveuUhuo+P2M7yVJl3W7TLGVYot134PbDmrR2EWqf1V9tb+vfZHuE1spVr1G99LHj3+s8V3Ge7Zf0PACdRvRTZI057E5soXZ1Htsb6/7ZqdnyxEdXAukEKaBkkWYBvwsLMxQTg5pGqEp1llRLZzXq1HY8VIJ1Zkpmdo0f5Mka0BgcbicLs14aIZsNptufeNW2Yoxd2XboW1V6/Ja2rRgkzJPZ6rmZTV11YCr5Ih2aN2cddq+bLv6je+nhGoJyk7P1vxR87Vu9jplns5UTKUYtbmzjbr9q5tnAGMgEaaBkkWYBvzMbpdycgLdCsC//hqqd7t/9ct11s9dr+z0bCXWSFSjzo2Kdd+lryzVb5t+U6/RvXTBRRcU+9r1WtbLN0NH2ok0zXt6nhpc3UBXD75akjT9/unasnCLrn34WjVo3UBbvtiiJS8vUXZ6tm56/qZiX7ckOeRQpC1467mBsogwDfhZWBhzTaP8yAvVLfwSqnNLPK4acFWxepYlafMXmyVJP335k7Yt3ea17/i+45KkbUu36Y1eb0iShi0Yds5zfjbyM2WezlT/V/vLMAwd2nlImz/frOZ9m+vG0TdKsspR/tj+h1ZOXqkbRtygiNjALeVd0V74FIAAfEOYBvzMCtNA+ZIXqpt7Fn85X39s/0PJPybLMAxddftVPp9n9/92F7ov5VCKUg6lFOk8O1fu1A8f/qBu/+qmCxpaPd2/b/ldklTvqnpexzZo3UDJPybrj1/+UN3mdX1reAmobD/3gEsAxUOYBvyMGT1QnsU6K5VYqP7f9P9Jki5sd6Eq1yt+KBz+7fBC9y0au0iLxy1W6zta69bXbz3nuZxZTs1+bLYuaHiBujzaxbM9d5q97PRsr+Oz0rO89gdKJXulgF4fCEWBHwkBhDh6poE/Q3X69eru7K/6tguLfX9Xjkvr5qyTdO65pVdOWqn/a/V/mv7AdJ/aWhSLX16so7uOqv9r/RXmyOuXqtW0liTpxzk/KjvDCtSpx1K1+fPNCo8M1wUXF79WuyTRMw2UPHqmAT+z2QzZbJLbHeiWAIEX66ykls7rdUlYc/3s+FF7ithT/dPin5R6JFVRCVFq0rPJWY9NPZaqwzsPK66qf2atOPjzQS17fZmuHnK1GrRu4LWvSoMqatanmdZ/sl4vXvOiajWppT0/7FHqkVR1ebSLImICVy8t0TMN+AM900ApcDjonQbOFOuspJaenuqkcx6fO/Cwed/mCo8M93fzCmWapmY/OluxlWPVa1SvAo+5bcJt6vxIZ7lyXNr65VaFR4XrxtE3BnyJ8RgjRlG2qIC2AQhFhmmynATgb2lpLqWk0DUNFCY17Jh+/nOeavhHnbA6ujnu5kA3Awg59EwDpSA8nJ5p4GysnuquRe6pRvGdb710vXr1ZBiG11dERITq1Kmj/v37a+XKlSXU0vJp2rRpMgxDQ4YM8fkc2dnZqlKligzDULVq1eR0OkuugSgUYRooBeHh1rLiAM4uN1Tf4OyneoTqElUlrEqJnKdNmzYaPHiwBg8erBtuuEFut1uzZ89Whw4dNH78+HOfAH7z2Wef6ejRo5KkQ4cO6Ysvvghwi8qGjh07yjAMffPNNz7dnzANlALDMOidBoohzllZVxGqS1QNe40SOc/dd9+tadOmadq0aZo3b55+/fVXDRo0SKZpavjw4dqxY0eJXAfFN2XKFElSzZo1vW7DvwjTQCkhTAPF5x2qG5z7DihQjBGjeHu8X84dGRmpCRMmKCYmRi6XS3PnzvXLdXB2+/fv19KlS2W32zV79mwZhqGFCxfq4MGDgW5ayCNMA6WEGT0A31mhuhuh2kfVw6r79fyxsbG6+OKLJUl79+712rdjxw7dd999SkpKUmRkpBISEtS+fXtNn17wPOBnfuS+cuVK9erVS1WqVJHNZtO0adMkSW63WxMnTlSbNm2UmJio8PBwVa1aVU2bNtWwYcPytUGSjh8/rqeeekqNGzdWdHS04uLi1Lx5c40bN04ZGRn5jv/mm29kGIY6duyonJwcvfjii2rcuLGioqJUqVIl9e7dWz///HOBP8NXX32lYcOG6YorrlDlypUVERGhWrVqqX///lq7dm3RH9hiePfdd+V2u3XDDTfommuuUadOneRyufTee++d9X6///67nnjiCV1++eWKi4tTTEyMGjZsqCFDhmjNmjX5jk9PT9drr72mtm3bqkKFCoqIiFDdunXVq1cvzZw5s8Djx44dq2bNmikuLk7R0dFq3LixRo4cqRMnTuQ7/szHvTC5Nftn2/7JJ5+obdu2io+PV0xMjNq0aaOFCxcWeK0VK1ZIkq699lqvMQG5/9/OhXmmgVJCmAbOX5yzsq5ydtMlYUf1s2Od9roLXxoceWqElUyJx9mkpFjLsEdE5M2lPWfOHA0aNEiZmZlq1KiRunfvrlOnTun777/XwIEDtWzZMr377rsFnm/OnDl6++231ahRI3Xp0kXHjx/3nPvuu+/W1KlTFRkZqbZt26pKlSo6fvy4du/erTfffFOdO3dWvXr1POfavXu3OnXqpOTkZFWpUkXdu3dXTk6Oli9frn/961/66KOP9NVXX6lChQr52pGTk6Pu3btrzZo1at++vS655BL98MMP+vTTT7V8+XJt2LDB61qSdP/992v//v1q3Lix2rRpo7CwMG3fvl2zZ8/W3LlzNWvWLPXp0+c8H/E8pmlq6tSpkqShQ4d6vn/99deaOnWqRowYUeD9vv76a/Xt21cnT55U1apV1blzZzkcDu3du9cTjK+55hrP8fv371e3bt20bds2RUdHq02bNqpUqZJ+//13rVy5Ulu2bNFtt93mOf748ePq3LmzNm7cqPj4eHXq1Enh4eFasWKFxowZo5kzZ2rZsmX5Hr/zNWrUKP3nP//RNddco+7du2v79u1as2aNevbsqU8++UQ332zNalOtWjUNHjxYX375pQ4dOqSuXbuqWrVqnvNceGHRFpgiTAOlxGYzZLdLLlegWwKUfYTq4qkZVtOv59+8ebN277Z+B1dccYUkacuWLRo4cKAMw9Ann3yi3r17e45PTk5Wr169NHXqVHXs2FGDBg3Kd8633npLEyZM0IMPPui1fd++fZo6dapq1aqltWvXeoUfSfr5558VExPjte22225TcnKybrzxRs2cOdOz/8iRI+rWrZvWr1+vhx9+WDNmzMjXjjVr1ujKK6/Url27PNfKzMzUTTfdpMWLF+uFF17QO++843Wfl19+WR06dMgXzufNm6dbbrlF9913n7p3766oqJKZ9/urr75ScnKyqlatqp49e0qSevfurcTERO3YsUMrV65Uu3btvO6zf/9+9enTR6dOndKIESP07LPPyuFwePYfPnzYq/7d7Xard+/e2rZtm66//npNnz5dVarkDWrNzMzUsmXLvK7x4IMPauPGjWrVqpW++OILVapkLRqUmpqqfv36adGiRbr99tu1evXqEnkccr3++uv67rvv1KpVK8+20aNH69lnn9WIESM8YbpRo0aaNm2aOnbsqEOHDmnEiBFn7REvDGUeQCmidxooWZR/nFuEEaEq9pKZyeOvTp06pYULF6p3795yu92qUaOG+vXrJ0kaM2aMsrKy9Pzzz3sFaUmqW7euZ3Dc66+/XuC5O3XqlC9IS9YsFZLUrFmzfEFaki655BLVqVPHc3vVqlX6/vvvFR0drYkTJ3oF7SpVqmjixImSpFmzZum3337Ldz7DMDR16lSva0VGRurZZ5+VZAXZv7rpppsK7OW+6aabdMstt+jYsWNavnx5gT+3L3Ify4EDByo8PNzTxtxe4oIGIo4fP16nTp1Sr1699MILL3gFaUmqWrWq2rZt67m9YMECrVu3TtWrV9cnn3ziFaRzr9e9e3fP7X379mnOnDkyDEMTJ070BGnJKguaNGmSIiMjtWbNmgLLSc7Hc8895xWkJenJJ59UQkKCduzYof3795fo9QjTQClyOHjKAf5AqC5cjbAaBdaX+urOO+/01JQmJiaqR48e2rVrl5KSkrRw4ULFxMTI7XZr0aJFkqT+/fsXeJ4WLVooNjZWGzZsUGZmZr79ffv2LfB+jRo1UlxcnBYuXKgxY8Zoz549Z21v7nRn3bp10wUXXJBvf/PmzdW0aVO53W5P7eyZ6tSpo6ZNm+bbfskll0iyao4LcuDAAU2aNEmPPfaY7r77bg0ZMkRDhgzRTz/9JEn65Zdfztruojp27JjmzZsnKa/EI1fu7Tlz5uj06dNe+7788ktJ0r333luk6+Qef9tttyk2Nvacx3/77bdyu9268sor1aRJk3z7a9asqa5du0pSif5hIUm9euVfnTQiIkINGlivDYX9znxFmQdQipjRA/Cv3PKPRmFHtN2xTnvdZw9a5UGtsFoler42bdp4akkdDoeqVq2q1q1bq1u3bgoLs2LFsWPHPDXUtWvXPuc5jx075pnOLVdhdbRxcXGaOnWq7rzzTo0cOVIjR45U9erVPW34a9jLDU7169cv9PpJSUnatGlTgSHrzF7uM8XHW7OjZGVl5dv37LPPasyYMcrJySn0mrmPz/maPn26srKy1KpVK1166aVe+5o3b64mTZpo8+bNmjVrlu655x7PvuTkZEnWHydFUdzji/q4n3lsSTnX76ygP97OB2EaKEVhYZLNJrlZWRzwq3hnFV3lvIFQLal+eOFhxhe5vaxn4z7jRW7w4MHnPOeZgxZzna2euE+fPurSpYvmz5+vlStXavXq1fr000/16aef6plnntHSpUt1+eWXn/O6RWGzFe8Txblz52r06NGKjY3Vm2++qU6dOqlGjRqKioqSYRh66qmn9MILL8g0zRJpX24Jx2+//eZVlpHryJEjnuPODNNllbsIb6DF/Z2dL8I0UIqs5XcNZWSUzIsogLM7M1T/7Fin5HIWqhNtiapgz1+762+VK1dWVFSUMjIy9PLLL6ty5fNbyrwgCQkJGjhwoAYOHCjJGlA3bNgwffbZZ3r44Yc9JRu5Pd65AyQLkrvvr73jvpg9e7Ykq2a8oBKKnTt3nvc1cq1du1ZbtmyRZPXunq2H9/vvv9dPP/2kxo0bS7J6b3/55Rdt3769SLNW5Pb2bt++vUht8/Vxz63d/mtZSq7cHvJgQgEnUMoiI3naAaUt3llFrdJvUDfnLaprK9me2mBW0r3SRWW323XddddJyguX/la7dm3PoMCNGzd6tufOzpA7/dlfbdiwQRs3bpTNZlP79u3Pux3Hjx+XZA2y/KvDhw9r6dKl532NXJMnT5Zk1aWbplnoV+6g0DMHInbr1k2SNGnSpCJdK/f4Dz/8UGlpaec8vn379rLZbNq4caM2bdqUb//Bgwc9ddjXXnutZ/uZITw7Ozvf/fyxRHpugHc6nT7dn3d1oJRFRBgqwbFAAIqhvIXqBuGBG4w5atQoORwOPfHEE3rvvfcK/Hh+69atxV4xccOGDfroo48KXGhlwYIFkryDbNu2bdWqVStlZGTovvvuU3p6umff0aNHdd9990mSbr311iLVd59L7sDEiRMneoXBU6dOafDgwTp16tR5X0OyFkOZNWuWpHOX0uROPTh9+nRPHfc///lPxcXFaf78+Ro5cmS++u7Dhw9r1apVnts33nijrrzySh04cMAzI8mZMjMzPYNOJasn+5ZbbpFpmrrvvvu8jk9LS9O9996rzMxMXXPNNV5zWdetW1cXXXSRTp48qRdffNHrGt98842eeeaZcz42xVWrljWuIHdwaHFR5gGUMsMwFBlJqQcQSPHOKmrlvEGXhHD5R4QRUSqLtRSmWbNmmj59umcWi5EjR+rSSy/1LLCyZcsW/fbbb+rfv3++qfPOJjk5WbfeequioqLUrFkz1a5dW06nU1u2bNEvv/wih8OhcePGed1n5syZ6tSpkz777DPVr19f7du39yzakpKSombNmunNN98skZ/7H//4h95//30tXLhQDRo0UOvWrZWTk6MVK1YoOjpaQ4cOLXShmuKYM2eOUlJSVK1aNV1//fVnPbZr16664IILdOjQIc2fP199+vRRnTp19PHHH6tv374aM2aMJk+erKuvvlrh4eFKTk7Whg0bdNttt3nqsG02mz799FN17dpVixYtUp06ddS2bVvPoi2bNm1SYmKi1+qTEyZM0Pbt2/X9998rKSlJ1157rcLCwrRixQodOXJE9evXL3Bu77Fjx6pv37565plnNHfuXF100UXavXu31q9fr3//+9967rnnzvvxO1OfPn00depUDR8+XF999ZWqVq0qwzA0dOhQr6BfGHqmgQCg1AMIDqHcU103rK5sRmBfa2655Rb99NNPevTRR5WYmKjVq1frk08+0bZt23ThhRdq7NixGjNmTLHO2bp1a40dO1bXXnutDhw4oPnz52vJkiWy2+166KGHtHnzZk9JQq4GDRpo/fr1evLJJ1WpUiV9/vnnWrp0qZKSkjR27FitWrWqwHmhfVG/fn1t2LBBt99+u+x2uz7//HNt2rRJAwYM0IYNG0qk91vKK9m44447ZLfbz3psWFiYBgwY4HU/Sbr++uu1detWPfLII0pMTNSXX36pRYsW6eTJkxo4cKDuv/9+r/PUrVtX69at8yyt/t1332nu3LlKTk5Whw4d8vUkV6pUSWvWrNELL7yg+vXra8mSJfr8889VuXJlPfXUU/rxxx8LnLWld+/e+vzzz9WmTRvt2LFDCxcuVHh4uGbNmuUp5SlJPXr00KRJk3TZZZd5VuWcMmWK16I1Z2OYJTWcFECRmaapQ4ec4tkHBJeUEOqp7hrdVY0iijaNGQDf0T0GBEDurB4Agounp9p1i+rY6gW6OT6zyaZ64fUC3QygXKBnGgiQjAy3Tp50BboZAM4iJfyItoWv1T733kA3pVjqh9fXjbE3BroZQLlAmAYCxO22Sj0ABL+yFqpviLlBDR0NA90MoFwgTAMBdPy4U1lZPAWBsqIshGqH4dA9CfcozGDCLqA0EKaBAEpPd+vUKUo9gLImmEN1Y0djdYnpEuhmAOUGYRoIIEo9gLItJfzwn6E6eJY47hPbR7XCawW6GUC5QZgGAoxSD6DsC5ZQHWeL053xd8pgmVWg1BCmgQDLynLr+HFKPYBQEOhQ3TKypa6JOveKbQBKDmEaCAJHjuTISbUHEDJO/Rmq95dyqB4YP1AV7RVL9ZpAeUeYBoIAAxGB0FSaobpWWC31ievj9+sA8EaYBoIAy4sDoe1U+KE/Q/U+v12jZ0xPJTmS/HZ+AAUjTANBIiXFpbQ0d6CbAcCP/BWq423xGhI/hIGHQAAQpoEg4XSaOnKEwmmgPCjpUN0uqp2aRTYrkXMBKB7CNBBEmCYPKF9OhR/ST+Fr9dt5hOpwheuuhLsUYYsowZYBKCrCNBBEmCYPKJ/OJ1Rf7rhcnWI6+aFVAIqCMA0EGabJA8ovX0I10+EBgUWYBoJMWppLKSkMRATKs5N/1lSfK1TXDaurm+JuKp1GASgQYRoIMkyTByDXuUJ139i+qhles5RbBeBMhGkgCDFNHoAznQz/489Qvd+zrWZYTfWN6xvAVgGQCNNAUHK7TR0+TO80AG9nhuqbY29WnfA6gW4SUO4RpoEgdfq0S6mp9E4DyC8j6pgaJFYLdDMASLIFugEAChYTYxOLmQEoSM2oqoFuAoA/EaaBIGWzGYqN5SkKwJvDYSgigtcGIFjwbASCWEyMTTaepQDOEBfHiwIQTHhGAkHMMOidBpAnIsKQw8FrAhBMeEYCQS462ia7PdCtABAM4uJ4MQCCDWEaCHKGYSg+njdQoLyLijIUHs6oZCDYEKaBMiAy0iaHgzdRoLwyDHqlgWBFmAbKCHqngfIrPt4uu50/qIFgRJgGyojwcENRUbyZAuUNz30guBGmgTIkLs7OQi5AOZOQYJfBEx8IWoRpoAyx2xmMCJQnMTE2Bh0CQY4wDZQx0dE2RUTw5gqEOrudBVqAsoBnKVAGWR/7BroVAPwpPp7yDqAsIEwDZRDlHkBoi4w0FBnJWzRQFvBMBcooyj2A0GQYTIUJlCWEaaAMo9wDCD1xcTbmlAbKEMI0UIZR7gGElrAw61MnAGUHz1igjIuOZqlxIBQYhlShQhiDDoEyhjANhIDERMo9gLIuIcGusDCeyEBZQ5gGQoDdbjAfLVCGRUfbFBXFcxgoi3jmAiEiJsbO7B5AGRQWJsXH83YMlFU8e4EQkphol53xiECZQZ00UPYRpoEQYrMZf74xB7olAIqCOmmg7CNMAyEmPNxQQgLd00Cwo04aCA08i4EQFBVlU0wMT28gWIWHG9RJAyGCZzIQouLiWG4cCEaGkTudJc9PIBQQpoEQZRgGAxKBIESdNBBaCNNACGNAIhBcYmKokwZCDc9oIMSFh1s91AACKzKSxZWAUMSzGigHIiNtio3l6Q4EisNhUCcNhCjeXYFyIjaWAYlAIISHG6pQgSANhCrCNFBO5A5IDA/nDR0oLXa7VKGCXTYbzzsgVBGmgXLEZjNUsSKBGigNNptUsWKY7Haeb0AoI0wD5UxuoA4LC3RLgNBlGFaQZgo8IPQRpoFyyArUYQRqwE/4BAgoPwjTQDlltxt/fgQd6JYAoaVCBbscDt5egfKCZztQjtnthipVIlADJSUhwa7ISN5agfKEZzxQzuX2UNt4NQDOS1ycTdHRPJGA8oZnPQCFhVk91ARqwDfx8TbFxvIRD1Ae8dYJQJIVqOmhBoovIcGumBiCNFBe8bYJwCM83ArULNQGFE1iop3SDqCcM0zTNAPdCADBxek0dfy4Uy5XoFsCBK8KFRhsCIAwDaAQLpcVqJ3OQLcECC7WgixMfwfAQpgGUCi329SJEy5lZ/MyAUh5S4SzIAuAXIRpAGdlmqZOnXIpI4OXCpRvYWH6c6EjgjSAPIRpAEVy+rRLqanuQDcDCAiHw1CFCnbZbARpAN4I0wCKLCPDrZMnGZWI8iUqylBCgl0G09wAKABhGkCxZGe7deKES246qVEOxMfbmEMawFkRpgEUGzN9INTZ7VKFCgw0BHBuhGkAPjFNUydPupSZyUsIQktEhKHEROqjARQNYRrAeUlPdyslxSVeSRAK4uJsiomxUR8NoMgI0wDOm9Np9VLn5PBygrLJZrNWNGQhFgDFRZgGUCJM01Rqqpvp81DmOBxWWQfzRwPwBWEaQInKzramz3Mxgx7KgNhYm2JjKesA4DvCNIAS53ZbqyYyOBHBymaTEhLsioykrAPA+SFMA/AbBiciGEVFGYqPZ7YOACWDMA3ArxiciGBht1u90RER9EYDKDmEaQB+Z5qm0tKswYm84iAQqI0G4C+EaQClxuUylZJCLTVKj8NhKCHBrrAwQjQA/yBMAyh12dlunTrlYjly+I1hSPHxdkVFGfRGA/ArwjSAgDBNU+npbp0+TekHSlZkpDXAkHmjAZQGwjSAgHK7TZ0+7VZ6Oou94PwwwBBAIBCmAQSFnByrnjo7m5ckFI/NZg0wjI5mgCGA0keYBhBUMjKsuanddFTjHAjRAIIBYRpA0Mmtp05Lc7MsOfIhRAMIJoRpAEHLNE1lZppKTWXmD1ghOibGppgYQjSA4EGYBhD0TNNUVpap1FQ3KymWQ4aR1xPNEuAAgg1hGkCZkp1traSYlcVLV6gzjLyeaEI0gGBFmAZQJuXkWOUfrKYYesLCpJgYFlwBUDYQpgGUaU6nqbQ0tzIyWPylrIuMNBQTY5PDwTzRAMoOwjSAkOB2W4MVMzLczFVdhtjtUnS0TVFRNlYsBFAmEaYBhByn05paLyPDzXzVQcgwrF7oqCibHA5KOQCUbYRpACHLNE1lZ1u91ZmZJmUgARYebig62qbISIMBhQBCBmEaQLmQO71eRoY1EwivfP5nGJLDYSgy0qaICIMyDgAhiTANoNxxu61gnZVl1VezymLJsduliAgrPEdEUMIBIPQRpgGUe05nXrCm17r4wsMNRUYaioiwKTyc8AygfCFMA8AZTNOU0ylPuM7OJlz/lc1mlW9ERFD/DACEaQA4i9xBjLm91k5n+QrXNpvV83zmF7XPAJCHMA0AxeRymcrJsYK19aWQCNkEZwAoPsI0AJQA0zTldivoQ7bdLtlshux2yW43ZLNJYWEEZwDwFWEaAPzINK0w7XZbs4hY3/PCt/f2vG1FYRh5X7m3/xqU7XbD82+bTcyuAQAljDANAEHoXC/NhGIACA5hgW4AACA/wjIAlA22QDcAAAAAKKsI0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAjwjTAAAAgI8I0wAAAICPCNMAAACAj/4/WeLGu8kGPukAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"account1 = df.groupby(\"is_private\")\n",
"account1 = account1.size()\n",
"account1"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 178
},
"id": "o0nlD-CS6yr8",
"outputId": "e35d0ea0-b418-4c00-f38d-db6ea5bd09aa"
},
"execution_count": 25,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"is_private\n",
"0 640\n",
"1 145\n",
"dtype: int64"
],
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
"
\n",
" \n",
" is_private | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 640 | \n",
"
\n",
" \n",
" 1 | \n",
" 145 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"metadata": {},
"execution_count": 25
}
]
},
{
"cell_type": "code",
"source": [
"plt.pie(account1.values, labels = (\"Private\", \"Public\"), autopct='%1.1f%%', colors=['pink', 'skyblue'], radius = 1.2, textprops = {\"fontsize\" : 16})\n",
"plt.title(\"Account Type\", c=\"Blue\")\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 428
},
"id": "HudtBp386911",
"outputId": "360a279e-8fdf-4535-f905-8770b119b5b8"
},
"execution_count": 27,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"