|
import torch |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
print(torch.__version__) |
|
|
|
scalar = torch.tensor(7) |
|
scalar |
|
|
|
scalar.ndim |
|
|
|
scalar.item() |
|
|
|
vector = torch.tensor([7, 7]) |
|
|
|
vector.ndim |
|
|
|
vector.shape |
|
|
|
MATRIX = torch.tensor[[7, 8],[9, 10]] |
|
|
|
MATRIX |
|
|
|
MATRIX.ndim |
|
|
|
MATRIX[1] |
|
|
|
MATRIX.shape |
|
|
|
TENSOR = torch.tensor([[[1, 2, 3], |
|
[3, 6, 9], |
|
[2, 4, 5]]]) |
|
|
|
TENSOR.ndim |
|
|
|
TENSOR.shape |
|
|
|
TENSOR[0] |
|
|
|
random_tensor = torch.rand(3, 4) |
|
random_tensor |
|
|
|
|
|
random_tensor.ndim |
|
|
|
random_image_size_tensor = torch.rand(size=(224, 224, 3)) |
|
random_image_size_tensor.shape, random_image_size_tensor.ndim |
|
|
|
zeros = torch.zeros(size=(3, 4)) |
|
zeros |
|
|
|
ones = torch.ones(size=(3, 4)) |
|
ones |
|
|
|
ones.dtype |
|
|
|
random_tensor.dtype |
|
|
|
one_to_ten = torch.arange(start=1, end=11, step=1) |
|
|
|
ten_zeros = torch.zeros_like(input=one_to_ten) |
|
ten_zeros |
|
|
|
float_32_tensor - torch.tensor([3.0, 6.0, 9.0], |
|
dtype=None, |
|
device=None, |
|
requires_grad=False) |