|
"""TODO(sciTail): Add a description here.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
import textwrap |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
inproceedings{scitail, |
|
Author = {Tushar Khot and Ashish Sabharwal and Peter Clark}, |
|
Booktitle = {AAAI}, |
|
Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering}, |
|
Year = {2018} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question |
|
and the correct answer choice are converted into an assertive statement to form the hypothesis. We use information |
|
retrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We |
|
crowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create |
|
the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples |
|
with neutral label |
|
""" |
|
|
|
_URL = "http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip" |
|
|
|
|
|
class ScitailConfig(datasets.BuilderConfig): |
|
|
|
"""BuilderConfig for Xquad""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ScitailConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs) |
|
|
|
|
|
class Scitail(datasets.GeneratorBasedBuilder): |
|
"""TODO(sciTail): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
ScitailConfig( |
|
name="snli_format", |
|
description="JSONL format used by SNLI with a JSON object corresponding to each entailment example in each line.", |
|
), |
|
ScitailConfig( |
|
name="tsv_format", description="Tab-separated format with three columns: premise hypothesis label" |
|
), |
|
ScitailConfig( |
|
name="dgem_format", |
|
description="Tab-separated format used by the DGEM model: premise hypothesis label hypothesis graph structure", |
|
), |
|
ScitailConfig( |
|
name="predictor_format", |
|
description=textwrap.dedent( |
|
"""\ |
|
AllenNLP predictors work only with JSONL format. This folder contains the SciTail train/dev/test in JSONL format |
|
so that it can be loaded into the predictors. Each line is a JSON object with the following keys: |
|
gold_label : the example label from {entails, neutral} |
|
sentence1: the premise |
|
sentence2: the hypothesis |
|
sentence2_structure: structure from the hypothesis """ |
|
), |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
if self.config.name == "snli_format": |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"sentence1_binary_parse": datasets.Value("string"), |
|
"sentence1_parse": datasets.Value("string"), |
|
"sentence1": datasets.Value("string"), |
|
"sentence2_parse": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"annotator_labels": datasets.features.Sequence(datasets.Value("string")), |
|
"gold_label": datasets.Value("string") |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://allenai.org/data/scitail", |
|
citation=_CITATION, |
|
) |
|
elif self.config.name == "tsv_format": |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"label": datasets.Value("string") |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://allenai.org/data/scitail", |
|
citation=_CITATION, |
|
) |
|
elif self.config.name == "predictor_format": |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"answer": datasets.Value("string"), |
|
"sentence2_structure": datasets.Value("string"), |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"gold_label": datasets.Value("string"), |
|
"question": datasets.Value("string") |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://allenai.org/data/scitail", |
|
citation=_CITATION, |
|
) |
|
elif self.config.name == "dgem_format": |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"hypothesis_graph_structure": datasets.Value("string") |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://allenai.org/data/scitail", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
data_dir = os.path.join(dl_dir, "SciTailV1.1") |
|
snli = os.path.join(data_dir, "snli_format") |
|
dgem = os.path.join(data_dir, "dgem_format") |
|
tsv = os.path.join(data_dir, "tsv_format") |
|
predictor = os.path.join(data_dir, "predictor_format") |
|
if self.config.name == "snli_format": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_train.txt")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_test.txt")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_dev.txt")}, |
|
), |
|
] |
|
elif self.config.name == "tsv_format": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_train.tsv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_test.tsv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_dev.tsv")}, |
|
), |
|
] |
|
elif self.config.name == "predictor_format": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_train.jsonl")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_test.jsonl")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_dev.jsonl")}, |
|
), |
|
] |
|
elif self.config.name == "dgem_format": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_train.tsv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_test.tsv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_dev.tsv")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
if self.config.name == "snli_format": |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
|
|
yield id_, { |
|
"sentence1_binary_parse": data["sentence1_binary_parse"], |
|
"sentence1_parse": data["sentence1_parse"], |
|
"sentence1": data["sentence1"], |
|
"sentence2_parse": data["sentence2_parse"], |
|
"sentence2": data["sentence2"], |
|
"annotator_labels": data["annotator_labels"], |
|
"gold_label": data["gold_label"], |
|
} |
|
elif self.config.name == "tsv_format": |
|
data = csv.reader(f, delimiter="\t") |
|
for id_, row in enumerate(data): |
|
yield id_, {"premise": row[0], "hypothesis": row[1], "label": row[2]} |
|
elif self.config.name == "dgem_format": |
|
data = csv.reader(f, delimiter="\t") |
|
for id_, row in enumerate(data): |
|
yield id_, { |
|
"premise": row[0], |
|
"hypothesis": row[1], |
|
"label": row[2], |
|
"hypothesis_graph_structure": row[3], |
|
} |
|
elif self.config.name == "predictor_format": |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, { |
|
"answer": data["answer"], |
|
"sentence2_structure": data["sentence2_structure"], |
|
"sentence1": data["sentence1"], |
|
"sentence2": data["sentence2"], |
|
"gold_label": data["gold_label"], |
|
"question": data["question"], |
|
} |
|
|