Add script to visualize tiles.
Browse files- README.md +4 -0
- visualize_tile.py +95 -0
README.md
CHANGED
@@ -89,6 +89,10 @@ Then launch Python shell:
|
|
89 |
# These group together many 1.25 m/pixel 512x512 tiles into one tar file.
|
90 |
print(f"{epsg_code}_{col//512//32}_{row//512//32}")
|
91 |
|
|
|
|
|
|
|
|
|
92 |
|
93 |
Sentinel-2
|
94 |
----------
|
|
|
89 |
# These group together many 1.25 m/pixel 512x512 tiles into one tar file.
|
90 |
print(f"{epsg_code}_{col//512//32}_{row//512//32}")
|
91 |
|
92 |
+
So then you would download the tar file from the second prefix, extract it, and look at the file with name matching the first prefix.
|
93 |
+
|
94 |
+
See visualize_tile.py for example of visualizing the data at a particular tile.
|
95 |
+
|
96 |
|
97 |
Sentinel-2
|
98 |
----------
|
visualize_tile.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This script visualizes a tile.
|
3 |
+
Example usage:
|
4 |
+
python visualize_tile.py 32610_859_-8247 /path/to/dataset/ /path/to/output/
|
5 |
+
"""
|
6 |
+
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
import rasterio
|
14 |
+
import rasterio.features
|
15 |
+
|
16 |
+
label = sys.argv[1]
|
17 |
+
root_dir = sys.argv[2]
|
18 |
+
out_dir = sys.argv[3]
|
19 |
+
|
20 |
+
# Landsat.
|
21 |
+
with rasterio.open(os.path.join(root_dir, "landsat", f"{label}_8.tif")) as src:
|
22 |
+
array = src.read()
|
23 |
+
for idx in range(16):
|
24 |
+
img = np.clip((array[idx, :, :].astype(np.float64) - 5000) / 20, 0, 255).astype(np.uint8)
|
25 |
+
img = img.repeat(axis=0, repeats=8).repeat(axis=1, repeats=8)
|
26 |
+
Image.fromarray(img).save(os.path.join(out_dir, f"{label}_landsat{idx}.png"))
|
27 |
+
|
28 |
+
# NAIP.
|
29 |
+
array = np.array(Image.open(os.path.join(root_dir, "naip", f"{label}.png")))
|
30 |
+
Image.fromarray(array[:, :, 0:3]).save(os.path.join(out_dir, f"{label}_naip.png"))
|
31 |
+
|
32 |
+
# Old NAIP.
|
33 |
+
array = np.array(Image.open(os.path.join(root_dir, "oldnaip", f"{label}.png")))
|
34 |
+
Image.fromarray(array[:, :, 0:3]).save(os.path.join(out_dir, f"{label}_oldnaip.png"))
|
35 |
+
|
36 |
+
# OpenStreetMap.
|
37 |
+
with open(os.path.join(root_dir, "openstreetmap", f"{label}.geojson")) as f:
|
38 |
+
data = json.load(f)
|
39 |
+
category_colors = {
|
40 |
+
"river": [0, 0, 255],
|
41 |
+
"road": [255, 255, 255],
|
42 |
+
"building": [255, 255, 0],
|
43 |
+
"parking": [255, 0, 0],
|
44 |
+
"leisure_park": [144, 238, 144],
|
45 |
+
"solar": [128, 128, 128],
|
46 |
+
}
|
47 |
+
category_selectors = {
|
48 |
+
"leisure_park": lambda feat: feat["properties"]["category"] == "leisure" and feat["properties"].get("leisure") == "park",
|
49 |
+
"solar": lambda feat: feat["properties"]["category"] == "power_plant" and feat["properties"].get("plant:source") == "solar",
|
50 |
+
}
|
51 |
+
img = np.zeros((512, 512, 3), dtype=np.uint8)
|
52 |
+
for category, color in category_colors.items():
|
53 |
+
selector = category_selectors.get(category, lambda feat: feat["properties"]["category"] == category)
|
54 |
+
geometries = [feat["geometry"] for feat in data["features"] if selector(feat)]
|
55 |
+
if len(geometries) == 0:
|
56 |
+
continue
|
57 |
+
mask = rasterio.features.rasterize(geometries, out_shape=(512, 512))
|
58 |
+
img[mask > 0] = color
|
59 |
+
Image.fromarray(img).save(os.path.join(out_dir, f"{label}_openstreetmap.png"))
|
60 |
+
|
61 |
+
# Sentinel-1.
|
62 |
+
with rasterio.open(os.path.join(root_dir, "sentinel1", f"{label}.tif")) as src:
|
63 |
+
array = src.read()
|
64 |
+
img = np.clip((array[0, :, :] + 20) * 10, 0, 255).astype(np.uint8)
|
65 |
+
img = img.repeat(axis=0, repeats=8).repeat(axis=1, repeats=8)
|
66 |
+
Image.fromarray(img).save(os.path.join(out_dir, f"{label}_sentinel1.png"))
|
67 |
+
|
68 |
+
# Sentinel-2.
|
69 |
+
with rasterio.open(os.path.join(root_dir, "sentinel2", f"{label}_8.tif")) as src:
|
70 |
+
array = src.read()
|
71 |
+
for idx in range(8):
|
72 |
+
img = np.clip(array[(idx*4+2, idx*4+1, idx*4+0), :, :].transpose(1, 2, 0) / 10, 0, 255).astype(np.uint8)
|
73 |
+
img = img.repeat(axis=0, repeats=8).repeat(axis=1, repeats=8)
|
74 |
+
Image.fromarray(img).save(os.path.join(out_dir, f"{label}_sentinel2_{idx}.png"))
|
75 |
+
|
76 |
+
# WorldCover.
|
77 |
+
array = np.array(Image.open(os.path.join(root_dir, "worldcover", f"{label}.png")))
|
78 |
+
img = np.zeros((512, 512, 3), dtype=np.uint8)
|
79 |
+
category_colors = {
|
80 |
+
10: [0, 100, 0],
|
81 |
+
20: [255, 187, 34],
|
82 |
+
30: [255, 255, 76],
|
83 |
+
40: [240, 150, 255],
|
84 |
+
50: [250, 0, 0],
|
85 |
+
60: [180, 180, 180],
|
86 |
+
70: [240, 240, 240],
|
87 |
+
80: [0, 100, 200],
|
88 |
+
90: [0, 150, 160],
|
89 |
+
95: [0, 207, 117],
|
90 |
+
100: [250, 230, 160],
|
91 |
+
}
|
92 |
+
for category, color in category_colors.items():
|
93 |
+
mask = (array == category).repeat(axis=0, repeats=8).repeat(axis=1, repeats=8)
|
94 |
+
img[mask] = color
|
95 |
+
Image.fromarray(img).save(os.path.join(out_dir, f"{label}_worldcover.png"))
|