Datasets:

Languages:
English
ArXiv:
License:
File size: 10,765 Bytes
efb73aa
 
8e0586b
efb73aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0586b
efb73aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0586b
 
efb73aa
 
 
 
 
 
 
 
8e0586b
 
 
 
 
efb73aa
 
 
8e0586b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb73aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e0586b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import json
import os
from typing import Any, Dict, List, Tuple, Union

import datasets

logger = datasets.logging.get_logger(__name__)


def _load_jsonl(filename):
    with open(filename, "r") as fp:
        jsonl_content = fp.read()

    result = [json.loads(jline) for jline in jsonl_content.splitlines()]
    return result


def _load_json(filepath):
    with open(filepath, "r") as fp:
        res = json.load(fp)
    return res


_CITATION = """
@article{Shen2022MultiLexSum,
    author    = {Zejiang Shen and
                Kyle Lo and
                Lauren Yu and
                Nathan Dahlberg and
                Margo Schlanger and
                Doug Downey},
    title     = {Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities},
    journal   = {CoRR},
    volume    = {abs/2206.10883},
    year      = {2022},
    url       = {https://doi.org/10.48550/arXiv.2206.10883},
    doi       = {10.48550/arXiv.2206.10883}
}
"""  # TODO

_DESCRIPTION = """
Multi-LexSum is a multi-doc summarization dataset for civil rights litigation lawsuits with summaries of three granularities. 
"""  # TODO: Update with full abstract

_HOMEPAGE = "https://multilexsum.github.io"

# _BASE_URL = "https://ai2-s2-research.s3.us-west-2.amazonaws.com/multilexsum/releases"
_BASE_URL = "https://huggingface.co/datasets/allenai/multi_lexsum/resolve/main/releases"
_FILES = {
    "train": "train.json",
    "dev": "dev.json",
    "test": "test.json",
    "sources": "sources.json",
}


class MultiLexsumConfig(datasets.BuilderConfig):
    """BuilderConfig for LexSum."""

    def __init__(self, **kwargs):
        """BuilderConfig for LexSum.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(MultiLexsumConfig, self).__init__(**kwargs)


class MultiLexsum(datasets.GeneratorBasedBuilder):
    """MultiLexSum Dataset: a multi-doc summarization dataset for
    civil rights litigation lawsuits with summaries of three granularities.
    """

    BUILDER_CONFIGS = [
        MultiLexsumConfig(
            name="v20220616",
            version=datasets.Version("1.0.0", "Public v1.0 release."),
            description="The v1.0 Multi-LexSum dataset",
        ),
        MultiLexsumConfig(
            name="v20230518",
            version=datasets.Version("1.1.0", "Public v1.1 release."),
            description="It adds additional metadata for documents and cases",
        ),
    ]

    def _info(self):
        if self.config.name == "v20220616":
            return datasets.DatasetInfo(
                description=_DESCRIPTION,
                features=datasets.Features(
                    {
                        "id": datasets.Value("string"),
                        "sources": datasets.Sequence(datasets.Value("string")),
                        "summary/long": datasets.Value("string"),
                        "summary/short": datasets.Value("string"),
                        "summary/tiny": datasets.Value("string"),
                    }
                ),
                supervised_keys=None,
                homepage=_HOMEPAGE,
                citation=_CITATION,
            )
        elif self.config.name == "v20230518":
            return datasets.DatasetInfo(
                description=_DESCRIPTION,
                features=datasets.Features(
                    {
                        "id": datasets.Value("string"),
                        "sources": datasets.Sequence(datasets.Value("string")),
                        "sources_metadata": datasets.Sequence(
                            {
                                "doc_id": datasets.Value("string"),
                                "doc_type": datasets.Value("string"),
                                "doc_title": datasets.Value("string"),
                                "parser": datasets.Value("string"),
                                "is_ocr": datasets.Value("bool"),
                                "url": datasets.Value("string"),
                            }
                        ),
                        "summary/long": datasets.Value("string"),
                        "summary/short": datasets.Value("string"),
                        "summary/tiny": datasets.Value("string"),
                        "case_metadata": datasets.Features(
                            {
                                # fmt: off
                            "case_name": datasets.Value("string"),
                            "case_type": datasets.Value("string"),
                            "filing_date": datasets.Value("string"),
                            "filing_year": datasets.Value("string"),
                            "case_ongoing": datasets.Value("string"),
                            "case_ongoing_record_time": datasets.Value("string"),
                            "closing_year": datasets.Value("string"),
                            "order_start_year": datasets.Value("string"),
                            "order_end_year": datasets.Value("string"),
                            "defendant_payment": datasets.Value("string"),
                            "class_action_sought": datasets.Value("string"),
                            "class_action_granted": datasets.Value("string"),
                            "attorney_orgs": [datasets.Value("string")],
                            "prevailing_party": datasets.Value("string"),
                            "plaintiff_types": [datasets.Value("string")],
                            "plaintiff_description": datasets.Value("string"),
                            "constitutional_clauses": [datasets.Value("string")],
                            "causes_of_action": [datasets.Value("string")],
                            "summary_authors": [datasets.Value("string")],
                            "case_url": datasets.Value("string"),
                                # fmt: on
                            }
                        ),
                    }
                ),
                supervised_keys=None,
                homepage=_HOMEPAGE,
                citation=_CITATION,
            )

    def _split_generators(self, dl_manager):
        base_url = _BASE_URL if self.config.data_dir is None else self.config.data_dir
        downloaded_files = dl_manager.download_and_extract(
            {
                name: f"{base_url}/{self.config.name}/{filename}"
                for name, filename in _FILES.items()
            }
        )
        # Given sources is a large file, we read it first
        sources = _load_json(downloaded_files["sources"])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "subset_file": downloaded_files["train"],
                    "sources": sources,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "subset_file": downloaded_files["dev"],
                    "sources": sources,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "subset_file": downloaded_files["test"],
                    "sources": sources,
                },
            ),
        ]

    def _generate_examples(self, subset_file: str, sources: Dict[str, Dict]):
        """This function returns the examples in the raw (text) form."""
        logger.info(f"generating examples from = {subset_file}")

        if self.config.name == "v20220616":
            subset_cases = _load_jsonl(subset_file)
            for case_data in subset_cases:
                case_sources = [
                    sources[source_id]["doc_text"]
                    for source_id in case_data["case_documents"]
                ]
                yield case_data["case_id"], {
                    "id": case_data["case_id"],
                    "sources": case_sources,
                    "summary/long": case_data["summary/long"],
                    "summary/short": case_data["summary/short"],
                    "summary/tiny": case_data["summary/tiny"],
                }
        elif self.config.name == "v20230518":
            subset_cases = _load_jsonl(subset_file)

            for idx, case_data in enumerate(subset_cases):
                case_sources = [
                    sources[source_id]["doc_text"]
                    for source_id in case_data["case_documents"]
                ]

                case_source_metadata = [
                    {
                        key: val
                        for key, val in sources[source_id].items()
                        if key != "doc_text"
                    }
                    for source_id in case_data["case_documents"]
                ]

                case_metadata = {
                    "case_name": case_data["case_name"],
                    "case_type": case_data["case_type"],
                    "filing_date": case_data["filing_date"],
                    "filing_year": case_data["filing_year"],
                    "case_ongoing": case_data["case_ongoing"],
                    "case_ongoing_record_time": case_data["case_ongoing_record_time"],
                    "closing_year": case_data["closing_year"],
                    "order_start_year": case_data["order_start_year"],
                    "order_end_year": case_data["order_end_year"],
                    "defendant_payment": case_data["defendant_payment"],
                    "class_action_sought": case_data["class_action_sought"],
                    "class_action_granted": case_data["class_action_granted"],
                    "attorney_orgs": case_data["attorney_org"],
                    "prevailing_party": case_data["prevailing_party"],
                    "plaintiff_types": case_data["plaintiff_types"],
                    "plaintiff_description": case_data["plaintiff_description"],
                    "constitutional_clauses": case_data["constitutional_clauses"],
                    "causes_of_action": case_data["causes_of_action"],
                    "summary_authors": case_data["summary_authors"],
                    "case_url": case_data["case_url"],
                }

                yield case_data["case_id"], {
                    "id": case_data["case_id"],
                    "sources": case_sources,
                    "sources_metadata": case_source_metadata,
                    "summary/long": case_data["summary/long"],
                    "summary/short": case_data["summary/short"],
                    "summary/tiny": case_data["summary/tiny"],
                    "case_metadata": case_metadata,
                }