|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The Multidocument Summarization for Literature Review (MSLR) Shared Task aims to study how medical |
|
evidence from different clinical studies are summarized in literature reviews. Reviews provide the |
|
highest quality of evidence for clinical care, but are expensive to produce manually. |
|
(Semi-)automation via NLP may facilitate faster evidence synthesis without sacrificing rigor. The |
|
MSLR shared task uses two datasets to assess the current state of multidocument summarization for |
|
this task, and to encourage the development of modeling contributions, scaffolding tasks, methods |
|
for model interpretability, and improved automated evaluation methods in this domain. |
|
""" |
|
|
|
|
|
import os |
|
|
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{DeYoung2021MS2MS, |
|
title = {MSˆ2: Multi-Document Summarization of Medical Studies}, |
|
author = {Jay DeYoung and Iz Beltagy and Madeleine van Zuylen and Bailey Kuehl and Lucy Lu Wang}, |
|
booktitle = {EMNLP}, |
|
year = {2021} |
|
} |
|
@article{Wallace2020GeneratingN, |
|
title = {Generating (Factual?) Narrative Summaries of RCTs: Experiments with Neural Multi-Document Summarization}, |
|
author = {Byron C. Wallace and Sayantani Saha and Frank Soboczenski and Iain James Marshall}, |
|
year = 2020, |
|
journal = {AMIA Annual Symposium}, |
|
volume = {abs/2008.11293} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "mslr2022" |
|
|
|
_DESCRIPTION = """\ |
|
The Multidocument Summarization for Literature Review (MSLR) Shared Task aims to study how medical |
|
evidence from different clinical studies are summarized in literature reviews. Reviews provide the |
|
highest quality of evidence for clinical care, but are expensive to produce manually. |
|
(Semi-)automation via NLP may facilitate faster evidence synthesis without sacrificing rigor. |
|
The MSLR shared task uses two datasets to assess the current state of multidocument summarization |
|
for this task, and to encourage the development of modeling contributions, scaffolding tasks, methods |
|
for model interpretability, and improved automated evaluation methods in this domain. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/allenai/mslr-shared-task" |
|
|
|
_LICENSE = "Apache-2.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://ai2-s2-mslr.s3.us-west-2.amazonaws.com/mslr_data.tar.gz", |
|
} |
|
|
|
|
|
class MSLR2022(datasets.GeneratorBasedBuilder): |
|
"""MSLR2022 Shared Task.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="ms2", |
|
version=VERSION, |
|
description="This dataset consists of around 20K reviews and 470K studies collected from PubMed. For details on dataset contents and construction, please read the MS^2 paper (https://arxiv.org/abs/2104.06486).", |
|
), |
|
datasets.BuilderConfig( |
|
name="cochrane", |
|
version=VERSION, |
|
description="This is a dataset of 4.5K reviews collected from Cochrane systematic reviews. For details on dataset contents and construction, please read the AMIA paper (https://arxiv.org/abs/2008.11293).", |
|
), |
|
] |
|
|
|
def _info(self): |
|
fields = { |
|
"review_id": datasets.Value("string"), |
|
"pmid": datasets.Sequence(datasets.Value("string")), |
|
"title": datasets.Sequence(datasets.Value("string")), |
|
"abstract": datasets.Sequence(datasets.Value("string")), |
|
"target": datasets.Value("string"), |
|
} |
|
|
|
if self.config.name == "ms2": |
|
fields["background"] = datasets.Value("string") |
|
|
|
features = datasets.Features(fields) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
mslr_data_dir = os.path.join(data_dir, "mslr_data", self.config.name) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": mslr_data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data_dir": mslr_data_dir, "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_dir": mslr_data_dir, |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir, split): |
|
inputs_filepath = os.path.join(data_dir, f"{split}-inputs.csv") |
|
|
|
inputs_df = pd.read_csv(inputs_filepath, index_col=0, dtype={"ReviewID": "string"}) |
|
|
|
|
|
if split != "test": |
|
targets_filepath = os.path.join(data_dir, f"{split}-targets.csv") |
|
targets_df = pd.read_csv(targets_filepath, index_col=0, dtype={"ReviewID": "string"}) |
|
|
|
|
|
if self.config.name == "ms2": |
|
reviews_info_filepath = os.path.join(data_dir, f"{split}-reviews-info.csv") |
|
reviews_info_df = pd.read_csv(reviews_info_filepath, index_col=0, dtype={"ReviewID": "string"}) |
|
|
|
for review_id in inputs_df.ReviewID.unique(): |
|
inputs = inputs_df[inputs_df.ReviewID == review_id] |
|
|
|
example = { |
|
"review_id": review_id, |
|
"pmid": inputs.PMID.values.tolist(), |
|
"title": inputs.Title.values.tolist(), |
|
"abstract": inputs.Abstract.values.tolist(), |
|
"target": "", |
|
} |
|
|
|
|
|
if split != "test": |
|
targets = targets_df[targets_df.ReviewID == review_id] |
|
example["target"] = targets.Target.values[0] |
|
|
|
|
|
if self.config.name == "ms2": |
|
reviews_info = reviews_info_df[reviews_info_df.ReviewID == review_id] |
|
example["background"] = reviews_info.Background.values[0] |
|
|
|
yield review_id, example |
|
|