|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""LILA: A Unified Benchmark for Mathematical Reasoning |
|
|
|
Loading script author: Sean Welleck |
|
""" |
|
|
|
|
|
import json |
|
import os |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{Mishra2022Lila, |
|
author = { |
|
Swaroop Mishra |
|
and Matthew Finlayson |
|
and Pan Lu |
|
and Leonard Tang |
|
and Sean Welleck |
|
and Chitta Baral |
|
and Tanmay Rajpurohit |
|
and Oyvind Tafjord |
|
and Ashish Sabharwal |
|
and Peter Clark |
|
and Ashwin Kalyan}, |
|
title = {Lila: A Unified Benchmark for Mathematical Reasoning}, |
|
booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, |
|
year = {2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Līla is a comprehensive benchmark for mathematical reasoning with over 140K natural language questions annotated with Python programs and natural language instructions. The data set comes with multiple splits: Līla-IID (train, dev, test), Līla-OOD (train, dev, test), and Līla-Robust. |
|
""" |
|
|
|
_HOMEPAGE = "https://lila.apps.allenai.org/" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0 International" |
|
|
|
_URL = "https://github.com/allenai/Lila/raw/b81117ac7e56cc1dfb0fcabf0005d1755177252b/lila.zip" |
|
|
|
_BASEDIR = 'lila' |
|
_MULTIDIR = 'multi' |
|
_ALLDIR = 'all' |
|
|
|
_NAMES = [ |
|
'iid', |
|
'ood', |
|
'addsub', |
|
'amps_algebra', |
|
'amps_calculus', |
|
'amps_counting_and_stats', |
|
'amps_geometry', |
|
'amps_linear_algebra', |
|
'amps_number_theory', |
|
'APPS_structured', |
|
'asdiv', |
|
'conala_structured', |
|
'deepmind_mathematics_algebra', |
|
'deepmind_mathematics_basicmath', |
|
'deepmind_mathematics_calculus', |
|
'deepmind_mathematics_muldiv', |
|
'deepmind_mathematics_numbertheory', |
|
'dolphin_t2_final', |
|
'draw_structured', |
|
'GSM8k_structured', |
|
'MATH_algebra_crowdsourced', |
|
'MATH_counting_and_probability_crowdsourced', |
|
'MATH_intermediate_algebra_crowdsourced', |
|
'mathqa_gain', |
|
'mathqa_general', |
|
'mathqa_geometry', |
|
'mathqa_other', |
|
'mathqa_physics', |
|
'mathqa_probability', |
|
'mbpp_structured', |
|
'MCTaco_event_duration_structured', |
|
'MCTaco_event_ordering_structured', |
|
'MCTaco_event_typical_time_structured', |
|
'MCTaco_frequency_structured', |
|
'MCTaco_stationarity_structured', |
|
'multiarith', |
|
'Numersense_structured', |
|
'NumGLUE_Type_1_crowdsourced', |
|
'NumGLUE_Type_2_crowdsourced', |
|
'NumGLUE_Type_3_crowdsourced', |
|
'NumGLUE_Type_4_crowdsourced', |
|
'NumGLUE_Type_5_crowdsourced', |
|
'NumGLUE_Type_6_crowdsourced', |
|
'NumGLUE_Type_7_crowdsourced', |
|
'NumGLUE_Type_8_crowdsourced', |
|
'simuleq', |
|
'singleop', |
|
'singleq', |
|
'svamp_structured' |
|
] |
|
|
|
VERSION = "1.1.0" |
|
|
|
|
|
class Lila(datasets.GeneratorBasedBuilder): |
|
"""Lila: A Unified Benchmark for Mathematical Reasoning""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name=name, version=VERSION, description=name) for name in _NAMES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "iid" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"input": datasets.Value("string"), |
|
"output_program": datasets.Value("string"), |
|
"output_answer": datasets.Value("string"), |
|
"split": datasets.Value("string"), |
|
"dataset": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URL |
|
data_dir = dl_manager.download_and_extract(urls) |
|
if self.config.name in {'iid', 'ood'}: |
|
train_filepath = os.path.join(data_dir, _BASEDIR, _MULTIDIR, self.config.name, "train.json") |
|
dev_filepath = os.path.join(data_dir, _BASEDIR, _MULTIDIR, self.config.name, "dev.json") |
|
test_filepath = os.path.join(data_dir, _BASEDIR, _MULTIDIR, self.config.name, "test.json") |
|
else: |
|
train_filepath = os.path.join(data_dir, _BASEDIR, _ALLDIR, self.config.name + ".json") |
|
dev_filepath = train_filepath |
|
test_filepath = train_filepath |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_filepath, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": dev_filepath, |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_filepath, |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
if self.config.name in {"iid", "ood"}: |
|
with open(filepath) as f: |
|
for key, row in enumerate(f.readlines()): |
|
data = json.loads(row) |
|
yield key, { |
|
"input": data["Input"], |
|
"output_program": data["Output Program"][0], |
|
"output_answer": data["Output Answer"][0], |
|
"split": data["split"], |
|
"dataset": data["dataset"], |
|
} |
|
else: |
|
for key, data in enumerate(json.load(open(filepath))["Instances"]): |
|
if data['split'] == split: |
|
yield key, { |
|
"input": data["Input"], |
|
"output_program": data["Output Program"][0], |
|
"output_answer": data["Output Answer"][0], |
|
"split": data["split"], |
|
"dataset": self.config.name, |
|
} |
|
|