Datasets:

Modalities:
Text
Libraries:
Datasets
License:
File size: 6,588 Bytes
0c414d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""LILA: A Unified Benchmark for Mathematical Reasoning

Loading script author: Sean Welleck
"""


import json
import os
import datasets


_CITATION = """\
@INPROCEEDINGS{Mishra2022Lila,
  author = {
    Swaroop Mishra 
      and Matthew Finlayson 
      and Pan Lu 
      and Leonard Tang 
      and Sean Welleck 
      and Chitta Baral 
      and Tanmay Rajpurohit 
      and Oyvind Tafjord 
      and Ashish Sabharwal 
      and Peter Clark 
      and Ashwin Kalyan},
  title = {Lila: A Unified Benchmark for Mathematical Reasoning},
  booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year = {2022}
}
"""

_DESCRIPTION = """\
Līla is a comprehensive benchmark for mathematical reasoning with over 140K natural language questions annotated with Python programs and natural language instructions. The data set comes with multiple splits: Līla-IID (train, dev, test), Līla-OOD (train, dev, test), and Līla-Robust.
"""

_HOMEPAGE = "https://lila.apps.allenai.org/"

_LICENSE = "Creative Commons Attribution 4.0 International"

_URL = "https://github.com/allenai/Lila/raw/b81117ac7e56cc1dfb0fcabf0005d1755177252b/lila.zip"

_BASEDIR = 'lila'
_MULTIDIR = 'multi'
_ALLDIR = 'all'

_NAMES = [
    'iid',
    'ood',
    'addsub',
    'amps_algebra',
    'amps_calculus',
    'amps_counting_and_stats',
    'amps_geometry',
    'amps_linear_algebra',
    'amps_number_theory',
    'APPS_structured',
    'asdiv',
    'conala_structured',
    'deepmind_mathematics_algebra',
    'deepmind_mathematics_basicmath',
    'deepmind_mathematics_calculus',
    'deepmind_mathematics_muldiv',
    'deepmind_mathematics_numbertheory',
    'dolphin_t2_final',
    'draw_structured',
    'GSM8k_structured',
    'MATH_algebra_crowdsourced',
    'MATH_counting_and_probability_crowdsourced',
    'MATH_intermediate_algebra_crowdsourced',
    'mathqa_gain',
    'mathqa_general',
    'mathqa_geometry',
    'mathqa_other',
    'mathqa_physics',
    'mathqa_probability',
    'mbpp_structured',
    'MCTaco_event_duration_structured',
    'MCTaco_event_ordering_structured',
    'MCTaco_event_typical_time_structured',
    'MCTaco_frequency_structured',
    'MCTaco_stationarity_structured',
    'multiarith',
    'Numersense_structured',
    'NumGLUE_Type_1_crowdsourced',
    'NumGLUE_Type_2_crowdsourced',
    'NumGLUE_Type_3_crowdsourced',
    'NumGLUE_Type_4_crowdsourced',
    'NumGLUE_Type_5_crowdsourced',
    'NumGLUE_Type_6_crowdsourced',
    'NumGLUE_Type_7_crowdsourced',
    'NumGLUE_Type_8_crowdsourced',
    'simuleq',
    'singleop',
    'singleq',
    'svamp_structured'
]

VERSION = "1.1.0"


class Lila(datasets.GeneratorBasedBuilder):
    """Lila: A Unified Benchmark for Mathematical Reasoning"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=name, version=VERSION, description=name) for name in _NAMES
    ]

    DEFAULT_CONFIG_NAME = "iid"

    def _info(self):
        features = datasets.Features(
            {
                "input": datasets.Value("string"),
                "output_program": datasets.Value("string"),
                "output_answer": datasets.Value("string"),
                "split": datasets.Value("string"),
                "dataset": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URL
        data_dir = dl_manager.download_and_extract(urls)
        if self.config.name in {'iid', 'ood'}:
            train_filepath = os.path.join(data_dir, _BASEDIR, _MULTIDIR, self.config.name, "train.json")
            dev_filepath = os.path.join(data_dir, _BASEDIR, _MULTIDIR, self.config.name, "dev.json")
            test_filepath = os.path.join(data_dir, _BASEDIR, _MULTIDIR, self.config.name, "test.json")
        else:
            train_filepath = os.path.join(data_dir, _BASEDIR, _ALLDIR, self.config.name + ".json")
            dev_filepath = train_filepath
            test_filepath = train_filepath
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": train_filepath,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": dev_filepath,
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": test_filepath,
                    "split": "test"
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        if self.config.name in {"iid", "ood"}:
            with open(filepath) as f:
                for key, row in enumerate(f.readlines()):
                    data = json.loads(row)
                    yield key, {
                        "input": data["Input"],
                        "output_program": data["Output Program"][0],
                        "output_answer": data["Output Answer"][0],
                        "split": data["split"],
                        "dataset": data["dataset"],
                    }
        else:
            for key, data in enumerate(json.load(open(filepath))["Instances"]):
                if data['split'] == split:
                    yield key, {
                        "input": data["Input"],
                        "output_program": data["Output Program"][0],
                        "output_answer": data["Output Answer"][0],
                        "split": data["split"],
                        "dataset": self.config.name,
                    }