Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -42,8 +42,13 @@ The task is to predict the correct label of the review.
|
|
42 |
|
43 |
**Measurements**: Accuracy
|
44 |
|
45 |
-
**Example
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
## Data splits
|
49 |
|
|
|
42 |
|
43 |
**Measurements**: Accuracy
|
44 |
|
45 |
+
**Example**:
|
46 |
+
|
47 |
+
Input: `Lekarz zalecił mi kurację alternatywną do dotychczasowej , więc jeszcze nie daję najwyższej oceny ( zobaczymy na ile okaże się skuteczna ) . Do Pana doktora nie mam zastrzeżeń : bardzo profesjonalny i kulturalny . Jedyny minus dotyczy gabinetu , który nie jest nowoczesny , co może zniechęcać pacjentki .`
|
48 |
+
|
49 |
+
Input (translated by DeepL): `The doctor recommended me an alternative treatment to the current one , so I do not yet give the highest rating ( we will see how effective it turns out to be ) . To the doctor I have no reservations : very professional and cultured . The only minus is about the office , which is not modern , which may discourage patients .`
|
50 |
+
|
51 |
+
Output: `amb` (ambiguous)
|
52 |
|
53 |
## Data splits
|
54 |
|