system HF staff commited on
Commit
27ca4d4
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - tw
8
+ licenses:
9
+ - cc-by-nc-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 100K<n<1M
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - sequence-modeling
18
+ task_ids:
19
+ - language-modeling
20
+ ---
21
+
22
+ # Dataset Card for Twi Text C3
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-fields)
32
+ - [Data Splits](#data-splits)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** https://www.aclweb.org/anthology/2020.lrec-1.335
50
+ - **Repository:** https://github.com/ajesujoba/YorubaTwi-Embedding/
51
+ - **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335
52
+ - **Leaderboard:**
53
+ - **Point of Contact:** [Kwabena Amponsah-Kaakyire](mailto:[email protected])
54
+
55
+ ### Dataset Summary
56
+
57
+ Twi Text C3 was collected from various sources from the web (Bible, JW300, wikipedia, etc)
58
+ to compare pre-trained word embeddings (Fasttext) and embeddings and embeddings trained on curated Twi Texts.
59
+ The dataset consists of clean texts (i.e the Bible) and noisy texts (with incorrect orthography and mixed dialects)
60
+ from other online sources like Wikipedia and JW300
61
+
62
+
63
+ ### Supported Tasks and Leaderboards
64
+
65
+ For training word embeddings and language models on Twi texts.
66
+
67
+ ### Languages
68
+
69
+ The language supported is Twi.
70
+
71
+ ## Dataset Structure
72
+
73
+ ### Data Instances
74
+
75
+ A data point is a sentence in each line.
76
+ {
77
+ 'text': 'mfitiaseɛ no onyankopɔn bɔɔ ɔsoro ne asaase'
78
+ }
79
+ ### Data Fields
80
+
81
+ - `text`: a `string` feature.
82
+ a sentence text per line
83
+
84
+ ### Data Splits
85
+
86
+ Contains only the training split.
87
+
88
+ ## Dataset Creation
89
+
90
+ ### Curation Rationale
91
+
92
+ The data was created to help introduce resources to new language - Twi.
93
+
94
+ ### Source Data
95
+
96
+ #### Initial Data Collection and Normalization
97
+
98
+ The dataset comes from various sources of the web: Bible, JW300, and wikipedia.
99
+ See Table 1 in the [paper](https://www.aclweb.org/anthology/2020.lrec-1.335/) for the summary of the dataset and statistics
100
+
101
+ #### Who are the source language producers?
102
+
103
+ [Jehovah Witness](https://www.jw.org/) (JW300)
104
+ [Twi Bible](http://www.bible.com/)
105
+ [Yorùbá Wikipedia](dumps.wikimedia.org/twwiki)
106
+ ### Annotations
107
+
108
+ #### Annotation process
109
+
110
+ [More Information Needed]
111
+
112
+ #### Who are the annotators?
113
+
114
+ [More Information Needed]
115
+
116
+ ### Personal and Sensitive Information
117
+
118
+ [More Information Needed]
119
+
120
+ ## Considerations for Using the Data
121
+
122
+ ### Social Impact of Dataset
123
+
124
+ [More Information Needed]
125
+
126
+ ### Discussion of Biases
127
+
128
+ The dataset is biased to the religion domain (Christianity) because of the inclusion of JW300 and the Bible.
129
+
130
+ ### Other Known Limitations
131
+
132
+ [More Information Needed]
133
+
134
+ ## Additional Information
135
+
136
+ ### Dataset Curators
137
+
138
+ The data sets were curated by Kwabena Amponsah-Kaakyire, Jesujoba Alabi, and David Adelani, students of Saarland University, Saarbrücken, Germany .
139
+
140
+ ### Licensing Information
141
+
142
+
143
+ The data is under the [Creative Commons Attribution-NonCommercial 4.0 ](https://creativecommons.org/licenses/by-nc/4.0/legalcode)
144
+
145
+ ### Citation Information
146
+ ```
147
+ @inproceedings{alabi-etal-2020-massive,
148
+ title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
149
+ author = "Alabi, Jesujoba and
150
+ Amponsah-Kaakyire, Kwabena and
151
+ Adelani, David and
152
+ Espa{\~n}a-Bonet, Cristina",
153
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
154
+ month = may,
155
+ year = "2020",
156
+ address = "Marseille, France",
157
+ publisher = "European Language Resources Association",
158
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
159
+ pages = "2754--2762",
160
+ abstract = "The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor{\`u}b{\'a} and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor{\`u}b{\'a} and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yor{\`u}b{\'a}. As output of the work, we provide corpora, embeddings and the test suits for both languages.",
161
+ language = "English",
162
+ ISBN = "979-10-95546-34-4",
163
+ }
164
+ ```
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "Twi Text C3 is the largest Twi texts collected and used to train FastText embeddings in the\nYorubaTwi Embedding paper: https://www.aclweb.org/anthology/2020.lrec-1.335/\n", "citation": "@inproceedings{alabi-etal-2020-massive,\n title = \"Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yoruba and {T}wi\",\n author = \"Alabi, Jesujoba and\n Amponsah-Kaakyire, Kwabena and\n Adelani, David and\n Espa{\\~n}a-Bonet, Cristina\",\n booktitle = \"Proceedings of the 12th Language Resources and Evaluation Conference\",\n month = may,\n year = \"2020\",\n address = \"Marseille, France\",\n publisher = \"European Language Resources Association\",\n url = \"https://www.aclweb.org/anthology/2020.lrec-1.335\",\n pages = \"2754--2762\",\n language = \"English\",\n ISBN = \"979-10-95546-34-4\",\n}\n", "homepage": "https://www.aclweb.org/anthology/2020.lrec-1.335/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "twi_text_c3", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71198430, "num_examples": 675772, "dataset_name": "twi_text_c3"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1s8NSFT4Kz0caKZ4VybPNzt88F8ZanprY": {"num_bytes": 69170842, "checksum": "1f924fc1cf1dcfb550a2a46799b6a1fce4041eaf19de7f2c7af5e31fd3e1360f"}}, "download_size": 69170842, "post_processing_size": null, "dataset_size": 71198430, "size_in_bytes": 140369272}}
dummy/plain_text/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6511180ac7e51981fe4d40c4f28fc1a4fe8357d91a8ca97b4719dd2c14ae196f
3
+ size 525
twi_text_c3.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The BookCorpus dataset."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import datasets
22
+
23
+
24
+ _DESCRIPTION = """\
25
+ Twi Text C3 is the largest Twi texts collected and used to train FastText embeddings in the
26
+ YorubaTwi Embedding paper: https://www.aclweb.org/anthology/2020.lrec-1.335/
27
+ """
28
+
29
+ _CITATION = """\
30
+ @inproceedings{alabi-etal-2020-massive,
31
+ title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yoruba and {T}wi",
32
+ author = "Alabi, Jesujoba and
33
+ Amponsah-Kaakyire, Kwabena and
34
+ Adelani, David and
35
+ Espa{\\~n}a-Bonet, Cristina",
36
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
37
+ month = may,
38
+ year = "2020",
39
+ address = "Marseille, France",
40
+ publisher = "European Language Resources Association",
41
+ url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
42
+ pages = "2754--2762",
43
+ language = "English",
44
+ ISBN = "979-10-95546-34-4",
45
+ }
46
+ """
47
+
48
+ URL = "https://drive.google.com/uc?export=download&id=1s8NSFT4Kz0caKZ4VybPNzt88F8ZanprY"
49
+
50
+
51
+ class TwiTextC3Config(datasets.BuilderConfig):
52
+ """BuilderConfig for Twi Text C3."""
53
+
54
+ def __init__(self, **kwargs):
55
+ """BuilderConfig for BookCorpus.
56
+ Args:
57
+ **kwargs: keyword arguments forwarded to super.
58
+ """
59
+ super(TwiTextC3Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
60
+
61
+
62
+ class TwiTextC3(datasets.GeneratorBasedBuilder):
63
+ """Twi Text C3 dataset."""
64
+
65
+ BUILDER_CONFIGS = [
66
+ TwiTextC3Config(
67
+ name="plain_text",
68
+ description="Plain text",
69
+ )
70
+ ]
71
+
72
+ def _info(self):
73
+ return datasets.DatasetInfo(
74
+ description=_DESCRIPTION,
75
+ features=datasets.Features(
76
+ {
77
+ "text": datasets.Value("string"),
78
+ }
79
+ ),
80
+ supervised_keys=None,
81
+ homepage="https://www.aclweb.org/anthology/2020.lrec-1.335/",
82
+ citation=_CITATION,
83
+ )
84
+
85
+ def _split_generators(self, dl_manager):
86
+ arch_path = dl_manager.download_and_extract(URL)
87
+
88
+ return [
89
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": arch_path}),
90
+ ]
91
+
92
+ def _generate_examples(self, filepath):
93
+ with open(filepath, mode="r", encoding="utf-8") as f:
94
+ lines = f.read().splitlines()
95
+ for id, line in enumerate(lines):
96
+ yield id, {"text": line.strip()}